qemu/hw/intc/arm_gicv3_cpuif.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3
   3 *
   4 * Copyright (c) 2016 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This code is licensed under the GPL, version 2 or (at your option)
   8 * any later version.
   9 */
  10
  11/* This file contains the code for the system register interface
  12 * portions of the GICv3.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "trace.h"
  17#include "gicv3_internal.h"
  18#include "cpu.h"
  19
  20static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
  21{
  22    /* Given the CPU, find the right GICv3CPUState struct.
  23     * Since we registered the CPU interface with the EL change hook as
  24     * the opaque pointer, we can just directly get from the CPU to it.
  25     */
  26    return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
  27}
  28
  29static bool gicv3_use_ns_bank(CPUARMState *env)
  30{
  31    /* Return true if we should use the NonSecure bank for a banked GIC
  32     * CPU interface register. Note that this differs from the
  33     * access_secure_reg() function because GICv3 banked registers are
  34     * banked even for AArch64, unlike the other CPU system registers.
  35     */
  36    return !arm_is_secure_below_el3(env);
  37}
  38
  39static int icc_highest_active_prio(GICv3CPUState *cs)
  40{
  41    /* Calculate the current running priority based on the set bits
  42     * in the Active Priority Registers.
  43     */
  44    int i;
  45
  46    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
  47        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
  48            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
  49
  50        if (!apr) {
  51            continue;
  52        }
  53        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
  54    }
  55    /* No current active interrupts: return idle priority */
  56    return 0xff;
  57}
  58
  59static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
  60{
  61    /* Return a mask word which clears the subpriority bits from
  62     * a priority value for an interrupt in the specified group.
  63     * This depends on the BPR value:
  64     *  a BPR of 0 means the group priority bits are [7:1];
  65     *  a BPR of 1 means they are [7:2], and so on down to
  66     *  a BPR of 7 meaning no group priority bits at all.
  67     * Which BPR to use depends on the group of the interrupt and
  68     * the current ICC_CTLR.CBPR settings.
  69     */
  70    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
  71        (group == GICV3_G1NS &&
  72         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
  73        group = GICV3_G0;
  74    }
  75
  76    return ~0U << ((cs->icc_bpr[group] & 7) + 1);
  77}
  78
  79static bool icc_no_enabled_hppi(GICv3CPUState *cs)
  80{
  81    /* Return true if there is no pending interrupt, or the
  82     * highest priority pending interrupt is in a group which has been
  83     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
  84     */
  85    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
  86}
  87
  88static bool icc_hppi_can_preempt(GICv3CPUState *cs)
  89{
  90    /* Return true if we have a pending interrupt of sufficient
  91     * priority to preempt.
  92     */
  93    int rprio;
  94    uint32_t mask;
  95
  96    if (icc_no_enabled_hppi(cs)) {
  97        return false;
  98    }
  99
 100    if (cs->hppi.prio >= cs->icc_pmr_el1) {
 101        /* Priority mask masks this interrupt */
 102        return false;
 103    }
 104
 105    rprio = icc_highest_active_prio(cs);
 106    if (rprio == 0xff) {
 107        /* No currently running interrupt so we can preempt */
 108        return true;
 109    }
 110
 111    mask = icc_gprio_mask(cs, cs->hppi.grp);
 112
 113    /* We only preempt a running interrupt if the pending interrupt's
 114     * group priority is sufficient (the subpriorities are not considered).
 115     */
 116    if ((cs->hppi.prio & mask) < (rprio & mask)) {
 117        return true;
 118    }
 119
 120    return false;
 121}
 122
 123void gicv3_cpuif_update(GICv3CPUState *cs)
 124{
 125    /* Tell the CPU about its highest priority pending interrupt */
 126    int irqlevel = 0;
 127    int fiqlevel = 0;
 128    ARMCPU *cpu = ARM_CPU(cs->cpu);
 129    CPUARMState *env = &cpu->env;
 130
 131    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 132                             cs->hppi.grp, cs->hppi.prio);
 133
 134    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 135        /* If a Security-enabled GIC sends a G1S interrupt to a
 136         * Security-disabled CPU, we must treat it as if it were G0.
 137         */
 138        cs->hppi.grp = GICV3_G0;
 139    }
 140
 141    if (icc_hppi_can_preempt(cs)) {
 142        /* We have an interrupt: should we signal it as IRQ or FIQ?
 143         * This is described in the GICv3 spec section 4.6.2.
 144         */
 145        bool isfiq;
 146
 147        switch (cs->hppi.grp) {
 148        case GICV3_G0:
 149            isfiq = true;
 150            break;
 151        case GICV3_G1:
 152            isfiq = (!arm_is_secure(env) ||
 153                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 154            break;
 155        case GICV3_G1NS:
 156            isfiq = arm_is_secure(env);
 157            break;
 158        default:
 159            g_assert_not_reached();
 160        }
 161
 162        if (isfiq) {
 163            fiqlevel = 1;
 164        } else {
 165            irqlevel = 1;
 166        }
 167    }
 168
 169    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 170
 171    qemu_set_irq(cs->parent_fiq, fiqlevel);
 172    qemu_set_irq(cs->parent_irq, irqlevel);
 173}
 174
 175static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 176{
 177    GICv3CPUState *cs = icc_cs_from_env(env);
 178    uint32_t value = cs->icc_pmr_el1;
 179
 180    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 181        (env->cp15.scr_el3 & SCR_FIQ)) {
 182        /* NS access and Group 0 is inaccessible to NS: return the
 183         * NS view of the current priority
 184         */
 185        if (value & 0x80) {
 186            /* Secure priorities not visible to NS */
 187            value = 0;
 188        } else if (value != 0xff) {
 189            value = (value << 1) & 0xff;
 190        }
 191    }
 192
 193    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
 194
 195    return value;
 196}
 197
 198static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 199                          uint64_t value)
 200{
 201    GICv3CPUState *cs = icc_cs_from_env(env);
 202
 203    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
 204
 205    value &= 0xff;
 206
 207    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 208        (env->cp15.scr_el3 & SCR_FIQ)) {
 209        /* NS access and Group 0 is inaccessible to NS: return the
 210         * NS view of the current priority
 211         */
 212        if (!(cs->icc_pmr_el1 & 0x80)) {
 213            /* Current PMR in the secure range, don't allow NS to change it */
 214            return;
 215        }
 216        value = (value >> 1) & 0x80;
 217    }
 218    cs->icc_pmr_el1 = value;
 219    gicv3_cpuif_update(cs);
 220}
 221
 222static void icc_activate_irq(GICv3CPUState *cs, int irq)
 223{
 224    /* Move the interrupt from the Pending state to Active, and update
 225     * the Active Priority Registers
 226     */
 227    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
 228    int prio = cs->hppi.prio & mask;
 229    int aprbit = prio >> 1;
 230    int regno = aprbit / 32;
 231    int regbit = aprbit % 32;
 232
 233    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
 234
 235    if (irq < GIC_INTERNAL) {
 236        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
 237        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
 238        gicv3_redist_update(cs);
 239    } else {
 240        gicv3_gicd_active_set(cs->gic, irq);
 241        gicv3_gicd_pending_clear(cs->gic, irq);
 242        gicv3_update(cs->gic, irq, 1);
 243    }
 244}
 245
 246static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
 247{
 248    /* Return the highest priority pending interrupt register value
 249     * for group 0.
 250     */
 251    bool irq_is_secure;
 252
 253    if (cs->hppi.prio == 0xff) {
 254        return INTID_SPURIOUS;
 255    }
 256
 257    /* Check whether we can return the interrupt or if we should return
 258     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
 259     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 260     * is always zero.)
 261     */
 262    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 263                     (cs->hppi.grp != GICV3_G1NS));
 264
 265    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
 266        return INTID_SPURIOUS;
 267    }
 268    if (irq_is_secure && !arm_is_secure(env)) {
 269        /* Secure interrupts not visible to Nonsecure */
 270        return INTID_SPURIOUS;
 271    }
 272
 273    if (cs->hppi.grp != GICV3_G0) {
 274        /* Indicate to EL3 that there's a Group 1 interrupt for the other
 275         * state pending.
 276         */
 277        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
 278    }
 279
 280    return cs->hppi.irq;
 281}
 282
 283static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
 284{
 285    /* Return the highest priority pending interrupt register value
 286     * for group 1.
 287     */
 288    bool irq_is_secure;
 289
 290    if (cs->hppi.prio == 0xff) {
 291        return INTID_SPURIOUS;
 292    }
 293
 294    /* Check whether we can return the interrupt or if we should return
 295     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
 296     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 297     * is always zero.)
 298     */
 299    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 300                     (cs->hppi.grp != GICV3_G1NS));
 301
 302    if (cs->hppi.grp == GICV3_G0) {
 303        /* Group 0 interrupts not visible via HPPIR1 */
 304        return INTID_SPURIOUS;
 305    }
 306    if (irq_is_secure) {
 307        if (!arm_is_secure(env)) {
 308            /* Secure interrupts not visible in Non-secure */
 309            return INTID_SPURIOUS;
 310        }
 311    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 312        /* Group 1 non-secure interrupts not visible in Secure EL1 */
 313        return INTID_SPURIOUS;
 314    }
 315
 316    return cs->hppi.irq;
 317}
 318
 319static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 320{
 321    GICv3CPUState *cs = icc_cs_from_env(env);
 322    uint64_t intid;
 323
 324    if (!icc_hppi_can_preempt(cs)) {
 325        intid = INTID_SPURIOUS;
 326    } else {
 327        intid = icc_hppir0_value(cs, env);
 328    }
 329
 330    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
 331        icc_activate_irq(cs, intid);
 332    }
 333
 334    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
 335    return intid;
 336}
 337
 338static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 339{
 340    GICv3CPUState *cs = icc_cs_from_env(env);
 341    uint64_t intid;
 342
 343    if (!icc_hppi_can_preempt(cs)) {
 344        intid = INTID_SPURIOUS;
 345    } else {
 346        intid = icc_hppir1_value(cs, env);
 347    }
 348
 349    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
 350        icc_activate_irq(cs, intid);
 351    }
 352
 353    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
 354    return intid;
 355}
 356
 357static void icc_drop_prio(GICv3CPUState *cs, int grp)
 358{
 359    /* Drop the priority of the currently active interrupt in
 360     * the specified group.
 361     *
 362     * Note that we can guarantee (because of the requirement to nest
 363     * ICC_IAR reads [which activate an interrupt and raise priority]
 364     * with ICC_EOIR writes [which drop the priority for the interrupt])
 365     * that the interrupt we're being called for is the highest priority
 366     * active interrupt, meaning that it has the lowest set bit in the
 367     * APR registers.
 368     *
 369     * If the guest does not honour the ordering constraints then the
 370     * behaviour of the GIC is UNPREDICTABLE, which for us means that
 371     * the values of the APR registers might become incorrect and the
 372     * running priority will be wrong, so interrupts that should preempt
 373     * might not do so, and interrupts that should not preempt might do so.
 374     */
 375    int i;
 376
 377    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
 378        uint64_t *papr = &cs->icc_apr[grp][i];
 379
 380        if (!*papr) {
 381            continue;
 382        }
 383        /* Clear the lowest set bit */
 384        *papr &= *papr - 1;
 385        break;
 386    }
 387
 388    /* running priority change means we need an update for this cpu i/f */
 389    gicv3_cpuif_update(cs);
 390}
 391
 392static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
 393{
 394    /* Return true if we should split priority drop and interrupt
 395     * deactivation, ie whether the relevant EOIMode bit is set.
 396     */
 397    if (arm_is_el3_or_mon(env)) {
 398        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
 399    }
 400    if (arm_is_secure_below_el3(env)) {
 401        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
 402    } else {
 403        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
 404    }
 405}
 406
 407static int icc_highest_active_group(GICv3CPUState *cs)
 408{
 409    /* Return the group with the highest priority active interrupt.
 410     * We can do this by just comparing the APRs to see which one
 411     * has the lowest set bit.
 412     * (If more than one group is active at the same priority then
 413     * we're in UNPREDICTABLE territory.)
 414     */
 415    int i;
 416
 417    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
 418        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
 419        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
 420        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
 421
 422        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
 423            return GICV3_G1NS;
 424        }
 425        if (g1ctz < g0ctz) {
 426            return GICV3_G1;
 427        }
 428        if (g0ctz < 32) {
 429            return GICV3_G0;
 430        }
 431    }
 432    /* No set active bits? UNPREDICTABLE; return -1 so the caller
 433     * ignores the spurious EOI attempt.
 434     */
 435    return -1;
 436}
 437
 438static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
 439{
 440    if (irq < GIC_INTERNAL) {
 441        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
 442        gicv3_redist_update(cs);
 443    } else {
 444        gicv3_gicd_active_clear(cs->gic, irq);
 445        gicv3_update(cs->gic, irq, 1);
 446    }
 447}
 448
 449static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
 450                           uint64_t value)
 451{
 452    /* End of Interrupt */
 453    GICv3CPUState *cs = icc_cs_from_env(env);
 454    int irq = value & 0xffffff;
 455    int grp;
 456
 457    trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
 458                               gicv3_redist_affid(cs), value);
 459
 460    if (ri->crm == 8) {
 461        /* EOIR0 */
 462        grp = GICV3_G0;
 463    } else {
 464        /* EOIR1 */
 465        if (arm_is_secure(env)) {
 466            grp = GICV3_G1;
 467        } else {
 468            grp = GICV3_G1NS;
 469        }
 470    }
 471
 472    if (irq >= cs->gic->num_irq) {
 473        /* This handles two cases:
 474         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
 475         * to the GICC_EOIR, the GIC ignores that write.
 476         * 2. If software writes the number of a non-existent interrupt
 477         * this must be a subcase of "value written does not match the last
 478         * valid interrupt value read from the Interrupt Acknowledge
 479         * register" and so this is UNPREDICTABLE. We choose to ignore it.
 480         */
 481        return;
 482    }
 483
 484    if (icc_highest_active_group(cs) != grp) {
 485        return;
 486    }
 487
 488    icc_drop_prio(cs, grp);
 489
 490    if (!icc_eoi_split(env, cs)) {
 491        /* Priority drop and deactivate not split: deactivate irq now */
 492        icc_deactivate_irq(cs, irq);
 493    }
 494}
 495
 496static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 497{
 498    GICv3CPUState *cs = icc_cs_from_env(env);
 499    uint64_t value = icc_hppir0_value(cs, env);
 500
 501    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
 502    return value;
 503}
 504
 505static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 506{
 507    GICv3CPUState *cs = icc_cs_from_env(env);
 508    uint64_t value = icc_hppir1_value(cs, env);
 509
 510    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
 511    return value;
 512}
 513
 514static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 515{
 516    GICv3CPUState *cs = icc_cs_from_env(env);
 517    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
 518    bool satinc = false;
 519    uint64_t bpr;
 520
 521    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 522        grp = GICV3_G1NS;
 523    }
 524
 525    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
 526        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
 527        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
 528         * modify BPR0
 529         */
 530        grp = GICV3_G0;
 531    }
 532
 533    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
 534        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 535        /* reads return bpr0 + 1 sat to 7, writes ignored */
 536        grp = GICV3_G0;
 537        satinc = true;
 538    }
 539
 540    bpr = cs->icc_bpr[grp];
 541    if (satinc) {
 542        bpr++;
 543        bpr = MIN(bpr, 7);
 544    }
 545
 546    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 547
 548    return bpr;
 549}
 550
 551static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 552                          uint64_t value)
 553{
 554    GICv3CPUState *cs = icc_cs_from_env(env);
 555    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
 556
 557    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
 558                              gicv3_redist_affid(cs), value);
 559
 560    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 561        grp = GICV3_G1NS;
 562    }
 563
 564    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
 565        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
 566        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
 567         * modify BPR0
 568         */
 569        grp = GICV3_G0;
 570    }
 571
 572    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
 573        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 574        /* reads return bpr0 + 1 sat to 7, writes ignored */
 575        return;
 576    }
 577
 578    cs->icc_bpr[grp] = value & 7;
 579    gicv3_cpuif_update(cs);
 580}
 581
 582static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 583{
 584    GICv3CPUState *cs = icc_cs_from_env(env);
 585    uint64_t value;
 586
 587    int regno = ri->opc2 & 3;
 588    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
 589
 590    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 591        grp = GICV3_G1NS;
 592    }
 593
 594    value = cs->icc_apr[grp][regno];
 595
 596    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 597    return value;
 598}
 599
 600static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 601                         uint64_t value)
 602{
 603    GICv3CPUState *cs = icc_cs_from_env(env);
 604
 605    int regno = ri->opc2 & 3;
 606    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
 607
 608    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 609
 610    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 611        grp = GICV3_G1NS;
 612    }
 613
 614    /* It's not possible to claim that a Non-secure interrupt is active
 615     * at a priority outside the Non-secure range (128..255), since this
 616     * would otherwise allow malicious NS code to block delivery of S interrupts
 617     * by writing a bad value to these registers.
 618     */
 619    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
 620        return;
 621    }
 622
 623    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
 624    gicv3_cpuif_update(cs);
 625}
 626
 627static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
 628                          uint64_t value)
 629{
 630    /* Deactivate interrupt */
 631    GICv3CPUState *cs = icc_cs_from_env(env);
 632    int irq = value & 0xffffff;
 633    bool irq_is_secure, single_sec_state, irq_is_grp0;
 634    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
 635
 636    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
 637
 638    if (irq >= cs->gic->num_irq) {
 639        /* Also catches special interrupt numbers and LPIs */
 640        return;
 641    }
 642
 643    if (!icc_eoi_split(env, cs)) {
 644        return;
 645    }
 646
 647    int grp = gicv3_irq_group(cs->gic, cs, irq);
 648
 649    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
 650    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
 651    irq_is_grp0 = grp == GICV3_G0;
 652
 653    /* Check whether we're allowed to deactivate this interrupt based
 654     * on its group and the current CPU state.
 655     * These checks are laid out to correspond to the spec's pseudocode.
 656     */
 657    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
 658    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
 659    /* No need to include !IsSecure in route_*_to_el2 as it's only
 660     * tested in cases where we know !IsSecure is true.
 661     */
 662    route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
 663    route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
 664
 665    switch (arm_current_el(env)) {
 666    case 3:
 667        break;
 668    case 2:
 669        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
 670            break;
 671        }
 672        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
 673            break;
 674        }
 675        return;
 676    case 1:
 677        if (!arm_is_secure_below_el3(env)) {
 678            if (single_sec_state && irq_is_grp0 &&
 679                !route_fiq_to_el3 && !route_fiq_to_el2) {
 680                break;
 681            }
 682            if (!irq_is_secure && !irq_is_grp0 &&
 683                !route_irq_to_el3 && !route_irq_to_el2) {
 684                break;
 685            }
 686        } else {
 687            if (irq_is_grp0 && !route_fiq_to_el3) {
 688                break;
 689            }
 690            if (!irq_is_grp0 &&
 691                (!irq_is_secure || !single_sec_state) &&
 692                !route_irq_to_el3) {
 693                break;
 694            }
 695        }
 696        return;
 697    default:
 698        g_assert_not_reached();
 699    }
 700
 701    icc_deactivate_irq(cs, irq);
 702}
 703
 704static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 705{
 706    GICv3CPUState *cs = icc_cs_from_env(env);
 707    int prio = icc_highest_active_prio(cs);
 708
 709    if (arm_feature(env, ARM_FEATURE_EL3) &&
 710        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
 711        /* NS GIC access and Group 0 is inaccessible to NS */
 712        if (prio & 0x80) {
 713            /* NS mustn't see priorities in the Secure half of the range */
 714            prio = 0;
 715        } else if (prio != 0xff) {
 716            /* Non-idle priority: show the Non-secure view of it */
 717            prio = (prio << 1) & 0xff;
 718        }
 719    }
 720
 721    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
 722    return prio;
 723}
 724
 725static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
 726                             uint64_t value, int grp, bool ns)
 727{
 728    GICv3State *s = cs->gic;
 729
 730    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
 731    uint64_t aff = extract64(value, 48, 8) << 16 |
 732        extract64(value, 32, 8) << 8 |
 733        extract64(value, 16, 8);
 734    uint32_t targetlist = extract64(value, 0, 16);
 735    uint32_t irq = extract64(value, 24, 4);
 736    bool irm = extract64(value, 40, 1);
 737    int i;
 738
 739    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
 740        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
 741         * interrupts as Group 0 interrupts and must send Secure Group 0
 742         * interrupts to the target CPUs.
 743         */
 744        grp = GICV3_G0;
 745    }
 746
 747    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
 748                                 aff, targetlist);
 749
 750    for (i = 0; i < s->num_cpu; i++) {
 751        GICv3CPUState *ocs = &s->cpu[i];
 752
 753        if (irm) {
 754            /* IRM == 1 : route to all CPUs except self */
 755            if (cs == ocs) {
 756                continue;
 757            }
 758        } else {
 759            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
 760             * where the corresponding bit is set in targetlist
 761             */
 762            int aff0;
 763
 764            if (ocs->gicr_typer >> 40 != aff) {
 765                continue;
 766            }
 767            aff0 = extract64(ocs->gicr_typer, 32, 8);
 768            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
 769                continue;
 770            }
 771        }
 772
 773        /* The redistributor will check against its own GICR_NSACR as needed */
 774        gicv3_redist_send_sgi(ocs, grp, irq, ns);
 775    }
 776}
 777
 778static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
 779                           uint64_t value)
 780{
 781    /* Generate Secure Group 0 SGI. */
 782    GICv3CPUState *cs = icc_cs_from_env(env);
 783    bool ns = !arm_is_secure(env);
 784
 785    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
 786}
 787
 788static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
 789                           uint64_t value)
 790{
 791    /* Generate Group 1 SGI for the current Security state */
 792    GICv3CPUState *cs = icc_cs_from_env(env);
 793    int grp;
 794    bool ns = !arm_is_secure(env);
 795
 796    grp = ns ? GICV3_G1NS : GICV3_G1;
 797    icc_generate_sgi(env, cs, value, grp, ns);
 798}
 799
 800static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
 801                             uint64_t value)
 802{
 803    /* Generate Group 1 SGI for the Security state that is not
 804     * the current state
 805     */
 806    GICv3CPUState *cs = icc_cs_from_env(env);
 807    int grp;
 808    bool ns = !arm_is_secure(env);
 809
 810    grp = ns ? GICV3_G1 : GICV3_G1NS;
 811    icc_generate_sgi(env, cs, value, grp, ns);
 812}
 813
 814static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 815{
 816    GICv3CPUState *cs = icc_cs_from_env(env);
 817    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
 818    uint64_t value;
 819
 820    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 821        grp = GICV3_G1NS;
 822    }
 823
 824    value = cs->icc_igrpen[grp];
 825    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 826                                gicv3_redist_affid(cs), value);
 827    return value;
 828}
 829
 830static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 831                             uint64_t value)
 832{
 833    GICv3CPUState *cs = icc_cs_from_env(env);
 834    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
 835
 836    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 837                                 gicv3_redist_affid(cs), value);
 838
 839    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
 840        grp = GICV3_G1NS;
 841    }
 842
 843    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
 844    gicv3_cpuif_update(cs);
 845}
 846
 847static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
 848{
 849    GICv3CPUState *cs = icc_cs_from_env(env);
 850    uint64_t value;
 851
 852    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
 853    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
 854    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
 855    return value;
 856}
 857
 858static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 859                                  uint64_t value)
 860{
 861    GICv3CPUState *cs = icc_cs_from_env(env);
 862
 863    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
 864
 865    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
 866    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
 867    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
 868    gicv3_cpuif_update(cs);
 869}
 870
 871static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 872{
 873    GICv3CPUState *cs = icc_cs_from_env(env);
 874    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
 875    uint64_t value;
 876
 877    value = cs->icc_ctlr_el1[bank];
 878    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
 879    return value;
 880}
 881
 882static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 883                               uint64_t value)
 884{
 885    GICv3CPUState *cs = icc_cs_from_env(env);
 886    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
 887    uint64_t mask;
 888
 889    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
 890
 891    /* Only CBPR and EOIMODE can be RW;
 892     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
 893     * the asseciated priority-based routing of them);
 894     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
 895     */
 896    if (arm_feature(env, ARM_FEATURE_EL3) &&
 897        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
 898        mask = ICC_CTLR_EL1_EOIMODE;
 899    } else {
 900        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
 901    }
 902
 903    cs->icc_ctlr_el1[bank] &= ~mask;
 904    cs->icc_ctlr_el1[bank] |= (value & mask);
 905    gicv3_cpuif_update(cs);
 906}
 907
 908
 909static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
 910{
 911    GICv3CPUState *cs = icc_cs_from_env(env);
 912    uint64_t value;
 913
 914    value = cs->icc_ctlr_el3;
 915    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
 916        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
 917    }
 918    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
 919        value |= ICC_CTLR_EL3_CBPR_EL1NS;
 920    }
 921    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
 922        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
 923    }
 924    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
 925        value |= ICC_CTLR_EL3_CBPR_EL1S;
 926    }
 927
 928    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
 929    return value;
 930}
 931
 932static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 933                               uint64_t value)
 934{
 935    GICv3CPUState *cs = icc_cs_from_env(env);
 936    uint64_t mask;
 937
 938    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
 939
 940    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
 941    cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
 942    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
 943        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
 944    }
 945    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
 946        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
 947    }
 948
 949    cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
 950    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
 951        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
 952    }
 953    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
 954        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
 955    }
 956
 957    /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
 958    mask = ICC_CTLR_EL3_EOIMODE_EL3;
 959
 960    cs->icc_ctlr_el3 &= ~mask;
 961    cs->icc_ctlr_el3 |= (value & mask);
 962    gicv3_cpuif_update(cs);
 963}
 964
 965static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
 966                                          const ARMCPRegInfo *ri, bool isread)
 967{
 968    CPAccessResult r = CP_ACCESS_OK;
 969
 970    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
 971        switch (arm_current_el(env)) {
 972        case 1:
 973            if (arm_is_secure_below_el3(env) ||
 974                ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
 975                r = CP_ACCESS_TRAP_EL3;
 976            }
 977            break;
 978        case 2:
 979            r = CP_ACCESS_TRAP_EL3;
 980            break;
 981        case 3:
 982            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
 983                r = CP_ACCESS_TRAP_EL3;
 984            }
 985            break;
 986        default:
 987            g_assert_not_reached();
 988        }
 989    }
 990
 991    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
 992        r = CP_ACCESS_TRAP;
 993    }
 994    return r;
 995}
 996
 997static CPAccessResult gicv3_fiq_access(CPUARMState *env,
 998                                       const ARMCPRegInfo *ri, bool isread)
 999{
1000    CPAccessResult r = CP_ACCESS_OK;
1001
1002    if (env->cp15.scr_el3 & SCR_FIQ) {
1003        switch (arm_current_el(env)) {
1004        case 1:
1005            if (arm_is_secure_below_el3(env) ||
1006                ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1007                r = CP_ACCESS_TRAP_EL3;
1008            }
1009            break;
1010        case 2:
1011            r = CP_ACCESS_TRAP_EL3;
1012            break;
1013        case 3:
1014            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1015                r = CP_ACCESS_TRAP_EL3;
1016            }
1017            break;
1018        default:
1019            g_assert_not_reached();
1020        }
1021    }
1022
1023    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1024        r = CP_ACCESS_TRAP;
1025    }
1026    return r;
1027}
1028
1029static CPAccessResult gicv3_irq_access(CPUARMState *env,
1030                                       const ARMCPRegInfo *ri, bool isread)
1031{
1032    CPAccessResult r = CP_ACCESS_OK;
1033
1034    if (env->cp15.scr_el3 & SCR_IRQ) {
1035        switch (arm_current_el(env)) {
1036        case 1:
1037            if (arm_is_secure_below_el3(env) ||
1038                ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1039                r = CP_ACCESS_TRAP_EL3;
1040            }
1041            break;
1042        case 2:
1043            r = CP_ACCESS_TRAP_EL3;
1044            break;
1045        case 3:
1046            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1047                r = CP_ACCESS_TRAP_EL3;
1048            }
1049            break;
1050        default:
1051            g_assert_not_reached();
1052        }
1053    }
1054
1055    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1056        r = CP_ACCESS_TRAP;
1057    }
1058    return r;
1059}
1060
1061static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1062{
1063    GICv3CPUState *cs = icc_cs_from_env(env);
1064
1065    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1066        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1067        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1068    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1069        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1070        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1071    cs->icc_pmr_el1 = 0;
1072    cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
1073    cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
1074    if (arm_feature(env, ARM_FEATURE_EL3)) {
1075        cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
1076    } else {
1077        cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
1078    }
1079    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
1080    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
1081    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
1082        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
1083        (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
1084}
1085
1086static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
1087    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
1088      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
1089      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1090      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1091      .readfn = icc_pmr_read,
1092      .writefn = icc_pmr_write,
1093      /* We hang the whole cpu interface reset routine off here
1094       * rather than parcelling it out into one little function
1095       * per register
1096       */
1097      .resetfn = icc_reset,
1098    },
1099    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
1100      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
1101      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1102      .access = PL1_R, .accessfn = gicv3_fiq_access,
1103      .readfn = icc_iar0_read,
1104    },
1105    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
1106      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
1107      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1108      .access = PL1_W, .accessfn = gicv3_fiq_access,
1109      .writefn = icc_eoir_write,
1110    },
1111    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
1112      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
1113      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1114      .access = PL1_R, .accessfn = gicv3_fiq_access,
1115      .readfn = icc_hppir0_read,
1116    },
1117    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
1118      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
1119      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1120      .access = PL1_RW, .accessfn = gicv3_fiq_access,
1121      .fieldoffset = offsetof(GICv3CPUState, icc_bpr[GICV3_G0]),
1122      .writefn = icc_bpr_write,
1123    },
1124    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
1125      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
1126      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1127      .access = PL1_RW, .accessfn = gicv3_fiq_access,
1128      .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][0]),
1129      .writefn = icc_ap_write,
1130    },
1131    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
1132      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
1133      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1134      .access = PL1_RW, .accessfn = gicv3_fiq_access,
1135      .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][1]),
1136      .writefn = icc_ap_write,
1137    },
1138    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
1139      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
1140      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1141      .access = PL1_RW, .accessfn = gicv3_fiq_access,
1142      .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][2]),
1143      .writefn = icc_ap_write,
1144    },
1145    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
1146      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
1147      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1148      .access = PL1_RW, .accessfn = gicv3_fiq_access,
1149      .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][3]),
1150      .writefn = icc_ap_write,
1151    },
1152    /* All the ICC_AP1R*_EL1 registers are banked */
1153    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
1154      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
1155      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1156      .access = PL1_RW, .accessfn = gicv3_irq_access,
1157      .readfn = icc_ap_read,
1158      .writefn = icc_ap_write,
1159    },
1160    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
1161      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
1162      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1163      .access = PL1_RW, .accessfn = gicv3_irq_access,
1164      .readfn = icc_ap_read,
1165      .writefn = icc_ap_write,
1166    },
1167    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
1168      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
1169      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1170      .access = PL1_RW, .accessfn = gicv3_irq_access,
1171      .readfn = icc_ap_read,
1172      .writefn = icc_ap_write,
1173    },
1174    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
1175      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
1176      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1177      .access = PL1_RW, .accessfn = gicv3_irq_access,
1178      .readfn = icc_ap_read,
1179      .writefn = icc_ap_write,
1180    },
1181    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
1182      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
1183      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1184      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1185      .writefn = icc_dir_write,
1186    },
1187    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
1188      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
1189      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1190      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
1191      .readfn = icc_rpr_read,
1192    },
1193    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
1194      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
1195      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1196      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1197      .writefn = icc_sgi1r_write,
1198    },
1199    { .name = "ICC_SGI1R",
1200      .cp = 15, .opc1 = 0, .crm = 12,
1201      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1202      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1203      .writefn = icc_sgi1r_write,
1204    },
1205    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
1206      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
1207      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1208      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1209      .writefn = icc_asgi1r_write,
1210    },
1211    { .name = "ICC_ASGI1R",
1212      .cp = 15, .opc1 = 1, .crm = 12,
1213      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1214      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1215      .writefn = icc_asgi1r_write,
1216    },
1217    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
1218      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
1219      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1220      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1221      .writefn = icc_sgi0r_write,
1222    },
1223    { .name = "ICC_SGI0R",
1224      .cp = 15, .opc1 = 2, .crm = 12,
1225      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1226      .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1227      .writefn = icc_sgi0r_write,
1228    },
1229    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
1230      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
1231      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1232      .access = PL1_R, .accessfn = gicv3_irq_access,
1233      .readfn = icc_iar1_read,
1234    },
1235    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
1236      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
1237      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1238      .access = PL1_W, .accessfn = gicv3_irq_access,
1239      .writefn = icc_eoir_write,
1240    },
1241    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
1242      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
1243      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1244      .access = PL1_R, .accessfn = gicv3_irq_access,
1245      .readfn = icc_hppir1_read,
1246    },
1247    /* This register is banked */
1248    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
1249      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
1250      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1251      .access = PL1_RW, .accessfn = gicv3_irq_access,
1252      .readfn = icc_bpr_read,
1253      .writefn = icc_bpr_write,
1254    },
1255    /* This register is banked */
1256    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
1257      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
1258      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1259      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1260      .readfn = icc_ctlr_el1_read,
1261      .writefn = icc_ctlr_el1_write,
1262    },
1263    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
1264      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
1265      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1266      .access = PL1_RW,
1267      /* We don't support IRQ/FIQ bypass and system registers are
1268       * always enabled, so all our bits are RAZ/WI or RAO/WI.
1269       * This register is banked but since it's constant we don't
1270       * need to do anything special.
1271       */
1272      .resetvalue = 0x7,
1273    },
1274    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
1275      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
1276      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1277      .access = PL1_RW, .accessfn = gicv3_fiq_access,
1278      .fieldoffset = offsetof(GICv3CPUState, icc_igrpen[GICV3_G0]),
1279      .writefn = icc_igrpen_write,
1280    },
1281    /* This register is banked */
1282    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
1283      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
1284      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1285      .access = PL1_RW, .accessfn = gicv3_irq_access,
1286      .readfn = icc_igrpen_read,
1287      .writefn = icc_igrpen_write,
1288    },
1289    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
1290      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
1291      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1292      .access = PL2_RW,
1293      /* We don't support IRQ/FIQ bypass and system registers are
1294       * always enabled, so all our bits are RAZ/WI or RAO/WI.
1295       */
1296      .resetvalue = 0xf,
1297    },
1298    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
1299      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
1300      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1301      .access = PL3_RW,
1302      .fieldoffset = offsetof(GICv3CPUState, icc_ctlr_el3),
1303      .readfn = icc_ctlr_el3_read,
1304      .writefn = icc_ctlr_el3_write,
1305    },
1306    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
1307      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
1308      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1309      .access = PL3_RW,
1310      /* We don't support IRQ/FIQ bypass and system registers are
1311       * always enabled, so all our bits are RAZ/WI or RAO/WI.
1312       */
1313      .resetvalue = 0xf,
1314    },
1315    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
1316      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
1317      .type = ARM_CP_IO | ARM_CP_NO_RAW,
1318      .access = PL3_RW,
1319      .readfn = icc_igrpen1_el3_read,
1320      .writefn = icc_igrpen1_el3_write,
1321    },
1322    REGINFO_SENTINEL
1323};
1324
1325static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
1326{
1327    GICv3CPUState *cs = opaque;
1328
1329    gicv3_cpuif_update(cs);
1330}
1331
1332void gicv3_init_cpuif(GICv3State *s)
1333{
1334    /* Called from the GICv3 realize function; register our system
1335     * registers with the CPU
1336     */
1337    int i;
1338
1339    for (i = 0; i < s->num_cpu; i++) {
1340        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
1341        GICv3CPUState *cs = &s->cpu[i];
1342
1343        /* Note that we can't just use the GICv3CPUState as an opaque pointer
1344         * in define_arm_cp_regs_with_opaque(), because when we're called back
1345         * it might be with code translated by CPU 0 but run by CPU 1, in
1346         * which case we'd get the wrong value.
1347         * So instead we define the regs with no ri->opaque info, and
1348         * get back to the GICv3CPUState from the ARMCPU by reading back
1349         * the opaque pointer from the el_change_hook, which we're going
1350         * to need to register anyway.
1351         */
1352        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
1353        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
1354    }
1355}
1356