qemu/hw/net/mcf_fec.c
<<
>>
Prefs
   1/*
   2 * ColdFire Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GPL
   7 */
   8#include "qemu/osdep.h"
   9#include "hw/hw.h"
  10#include "net/net.h"
  11#include "hw/m68k/mcf.h"
  12#include "hw/net/mii.h"
  13/* For crc32 */
  14#include <zlib.h>
  15#include "exec/address-spaces.h"
  16
  17//#define DEBUG_FEC 1
  18
  19#ifdef DEBUG_FEC
  20#define DPRINTF(fmt, ...) \
  21do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
  22#else
  23#define DPRINTF(fmt, ...) do {} while(0)
  24#endif
  25
  26#define FEC_MAX_DESC 1024
  27#define FEC_MAX_FRAME_SIZE 2032
  28
  29typedef struct {
  30    MemoryRegion *sysmem;
  31    MemoryRegion iomem;
  32    qemu_irq *irq;
  33    NICState *nic;
  34    NICConf conf;
  35    uint32_t irq_state;
  36    uint32_t eir;
  37    uint32_t eimr;
  38    int rx_enabled;
  39    uint32_t rx_descriptor;
  40    uint32_t tx_descriptor;
  41    uint32_t ecr;
  42    uint32_t mmfr;
  43    uint32_t mscr;
  44    uint32_t rcr;
  45    uint32_t tcr;
  46    uint32_t tfwr;
  47    uint32_t rfsr;
  48    uint32_t erdsr;
  49    uint32_t etdsr;
  50    uint32_t emrbr;
  51} mcf_fec_state;
  52
  53#define FEC_INT_HB   0x80000000
  54#define FEC_INT_BABR 0x40000000
  55#define FEC_INT_BABT 0x20000000
  56#define FEC_INT_GRA  0x10000000
  57#define FEC_INT_TXF  0x08000000
  58#define FEC_INT_TXB  0x04000000
  59#define FEC_INT_RXF  0x02000000
  60#define FEC_INT_RXB  0x01000000
  61#define FEC_INT_MII  0x00800000
  62#define FEC_INT_EB   0x00400000
  63#define FEC_INT_LC   0x00200000
  64#define FEC_INT_RL   0x00100000
  65#define FEC_INT_UN   0x00080000
  66
  67#define FEC_EN      2
  68#define FEC_RESET   1
  69
  70/* Map interrupt flags onto IRQ lines.  */
  71#define FEC_NUM_IRQ 13
  72static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
  73    FEC_INT_TXF,
  74    FEC_INT_TXB,
  75    FEC_INT_UN,
  76    FEC_INT_RL,
  77    FEC_INT_RXF,
  78    FEC_INT_RXB,
  79    FEC_INT_MII,
  80    FEC_INT_LC,
  81    FEC_INT_HB,
  82    FEC_INT_GRA,
  83    FEC_INT_EB,
  84    FEC_INT_BABT,
  85    FEC_INT_BABR
  86};
  87
  88/* Buffer Descriptor.  */
  89typedef struct {
  90    uint16_t flags;
  91    uint16_t length;
  92    uint32_t data;
  93} mcf_fec_bd;
  94
  95#define FEC_BD_R    0x8000
  96#define FEC_BD_E    0x8000
  97#define FEC_BD_O1   0x4000
  98#define FEC_BD_W    0x2000
  99#define FEC_BD_O2   0x1000
 100#define FEC_BD_L    0x0800
 101#define FEC_BD_TC   0x0400
 102#define FEC_BD_ABC  0x0200
 103#define FEC_BD_M    0x0100
 104#define FEC_BD_BC   0x0080
 105#define FEC_BD_MC   0x0040
 106#define FEC_BD_LG   0x0020
 107#define FEC_BD_NO   0x0010
 108#define FEC_BD_CR   0x0004
 109#define FEC_BD_OV   0x0002
 110#define FEC_BD_TR   0x0001
 111
 112static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
 113{
 114    cpu_physical_memory_read(addr, bd, sizeof(*bd));
 115    be16_to_cpus(&bd->flags);
 116    be16_to_cpus(&bd->length);
 117    be32_to_cpus(&bd->data);
 118}
 119
 120static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
 121{
 122    mcf_fec_bd tmp;
 123    tmp.flags = cpu_to_be16(bd->flags);
 124    tmp.length = cpu_to_be16(bd->length);
 125    tmp.data = cpu_to_be32(bd->data);
 126    cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
 127}
 128
 129static void mcf_fec_update(mcf_fec_state *s)
 130{
 131    uint32_t active;
 132    uint32_t changed;
 133    uint32_t mask;
 134    int i;
 135
 136    active = s->eir & s->eimr;
 137    changed = active ^s->irq_state;
 138    for (i = 0; i < FEC_NUM_IRQ; i++) {
 139        mask = mcf_fec_irq_map[i];
 140        if (changed & mask) {
 141            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
 142            qemu_set_irq(s->irq[i], (active & mask) != 0);
 143        }
 144    }
 145    s->irq_state = active;
 146}
 147
 148static void mcf_fec_do_tx(mcf_fec_state *s)
 149{
 150    uint32_t addr;
 151    mcf_fec_bd bd;
 152    int frame_size;
 153    int len, descnt = 0;
 154    uint8_t frame[FEC_MAX_FRAME_SIZE];
 155    uint8_t *ptr;
 156
 157    DPRINTF("do_tx\n");
 158    ptr = frame;
 159    frame_size = 0;
 160    addr = s->tx_descriptor;
 161    while (descnt++ < FEC_MAX_DESC) {
 162        mcf_fec_read_bd(&bd, addr);
 163        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
 164                addr, bd.flags, bd.length, bd.data);
 165        if ((bd.flags & FEC_BD_R) == 0) {
 166            /* Run out of descriptors to transmit.  */
 167            break;
 168        }
 169        len = bd.length;
 170        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
 171            len = FEC_MAX_FRAME_SIZE - frame_size;
 172            s->eir |= FEC_INT_BABT;
 173        }
 174        cpu_physical_memory_read(bd.data, ptr, len);
 175        ptr += len;
 176        frame_size += len;
 177        if (bd.flags & FEC_BD_L) {
 178            /* Last buffer in frame.  */
 179            DPRINTF("Sending packet\n");
 180            qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
 181            ptr = frame;
 182            frame_size = 0;
 183            s->eir |= FEC_INT_TXF;
 184        }
 185        s->eir |= FEC_INT_TXB;
 186        bd.flags &= ~FEC_BD_R;
 187        /* Write back the modified descriptor.  */
 188        mcf_fec_write_bd(&bd, addr);
 189        /* Advance to the next descriptor.  */
 190        if ((bd.flags & FEC_BD_W) != 0) {
 191            addr = s->etdsr;
 192        } else {
 193            addr += 8;
 194        }
 195    }
 196    s->tx_descriptor = addr;
 197}
 198
 199static void mcf_fec_enable_rx(mcf_fec_state *s)
 200{
 201    NetClientState *nc = qemu_get_queue(s->nic);
 202    mcf_fec_bd bd;
 203
 204    mcf_fec_read_bd(&bd, s->rx_descriptor);
 205    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
 206    if (s->rx_enabled) {
 207        qemu_flush_queued_packets(nc);
 208    }
 209}
 210
 211static void mcf_fec_reset(mcf_fec_state *s)
 212{
 213    s->eir = 0;
 214    s->eimr = 0;
 215    s->rx_enabled = 0;
 216    s->ecr = 0;
 217    s->mscr = 0;
 218    s->rcr = 0x05ee0001;
 219    s->tcr = 0;
 220    s->tfwr = 0;
 221    s->rfsr = 0x500;
 222}
 223
 224#define MMFR_WRITE_OP   (1 << 28)
 225#define MMFR_READ_OP    (2 << 28)
 226#define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
 227#define MMFR_REGNUM(v)  (((v) >> 18) & 0x1f)
 228
 229static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
 230{
 231    uint64_t v;
 232
 233    if (s->mmfr & MMFR_WRITE_OP)
 234        return s->mmfr;
 235    if (MMFR_PHYADDR(s->mmfr) != 1)
 236        return s->mmfr |= 0xffff;
 237
 238    switch (MMFR_REGNUM(s->mmfr)) {
 239    case MII_BMCR:
 240        v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
 241        break;
 242    case MII_BMSR:
 243        v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
 244            MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
 245            MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
 246        break;
 247    case MII_PHYID1:
 248        v = DP83848_PHYID1;
 249        break;
 250    case MII_PHYID2:
 251        v = DP83848_PHYID2;
 252        break;
 253    case MII_ANAR:
 254        v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
 255            MII_ANAR_10 | MII_ANAR_CSMACD;
 256        break;
 257    case MII_ANLPAR:
 258        v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
 259            MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
 260        break;
 261    default:
 262        v = 0xffff;
 263        break;
 264    }
 265    s->mmfr = (s->mmfr & ~0xffff) | v;
 266    return s->mmfr;
 267}
 268
 269static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
 270                             unsigned size)
 271{
 272    mcf_fec_state *s = (mcf_fec_state *)opaque;
 273    switch (addr & 0x3ff) {
 274    case 0x004: return s->eir;
 275    case 0x008: return s->eimr;
 276    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
 277    case 0x014: return 0; /* TDAR */
 278    case 0x024: return s->ecr;
 279    case 0x040: return mcf_fec_read_mdio(s);
 280    case 0x044: return s->mscr;
 281    case 0x064: return 0; /* MIBC */
 282    case 0x084: return s->rcr;
 283    case 0x0c4: return s->tcr;
 284    case 0x0e4: /* PALR */
 285        return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
 286              | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
 287        break;
 288    case 0x0e8: /* PAUR */
 289        return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
 290    case 0x0ec: return 0x10000; /* OPD */
 291    case 0x118: return 0;
 292    case 0x11c: return 0;
 293    case 0x120: return 0;
 294    case 0x124: return 0;
 295    case 0x144: return s->tfwr;
 296    case 0x14c: return 0x600;
 297    case 0x150: return s->rfsr;
 298    case 0x180: return s->erdsr;
 299    case 0x184: return s->etdsr;
 300    case 0x188: return s->emrbr;
 301    default:
 302        hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
 303        return 0;
 304    }
 305}
 306
 307static void mcf_fec_write(void *opaque, hwaddr addr,
 308                          uint64_t value, unsigned size)
 309{
 310    mcf_fec_state *s = (mcf_fec_state *)opaque;
 311    switch (addr & 0x3ff) {
 312    case 0x004:
 313        s->eir &= ~value;
 314        break;
 315    case 0x008:
 316        s->eimr = value;
 317        break;
 318    case 0x010: /* RDAR */
 319        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
 320            DPRINTF("RX enable\n");
 321            mcf_fec_enable_rx(s);
 322        }
 323        break;
 324    case 0x014: /* TDAR */
 325        if (s->ecr & FEC_EN) {
 326            mcf_fec_do_tx(s);
 327        }
 328        break;
 329    case 0x024:
 330        s->ecr = value;
 331        if (value & FEC_RESET) {
 332            DPRINTF("Reset\n");
 333            mcf_fec_reset(s);
 334        }
 335        if ((s->ecr & FEC_EN) == 0) {
 336            s->rx_enabled = 0;
 337        }
 338        break;
 339    case 0x040:
 340        s->mmfr = value;
 341        s->eir |= FEC_INT_MII;
 342        break;
 343    case 0x044:
 344        s->mscr = value & 0xfe;
 345        break;
 346    case 0x064:
 347        /* TODO: Implement MIB.  */
 348        break;
 349    case 0x084:
 350        s->rcr = value & 0x07ff003f;
 351        /* TODO: Implement LOOP mode.  */
 352        break;
 353    case 0x0c4: /* TCR */
 354        /* We transmit immediately, so raise GRA immediately.  */
 355        s->tcr = value;
 356        if (value & 1)
 357            s->eir |= FEC_INT_GRA;
 358        break;
 359    case 0x0e4: /* PALR */
 360        s->conf.macaddr.a[0] = value >> 24;
 361        s->conf.macaddr.a[1] = value >> 16;
 362        s->conf.macaddr.a[2] = value >> 8;
 363        s->conf.macaddr.a[3] = value;
 364        break;
 365    case 0x0e8: /* PAUR */
 366        s->conf.macaddr.a[4] = value >> 24;
 367        s->conf.macaddr.a[5] = value >> 16;
 368        break;
 369    case 0x0ec:
 370        /* OPD */
 371        break;
 372    case 0x118:
 373    case 0x11c:
 374    case 0x120:
 375    case 0x124:
 376        /* TODO: implement MAC hash filtering.  */
 377        break;
 378    case 0x144:
 379        s->tfwr = value & 3;
 380        break;
 381    case 0x14c:
 382        /* FRBR writes ignored.  */
 383        break;
 384    case 0x150:
 385        s->rfsr = (value & 0x3fc) | 0x400;
 386        break;
 387    case 0x180:
 388        s->erdsr = value & ~3;
 389        s->rx_descriptor = s->erdsr;
 390        break;
 391    case 0x184:
 392        s->etdsr = value & ~3;
 393        s->tx_descriptor = s->etdsr;
 394        break;
 395    case 0x188:
 396        s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
 397        break;
 398    default:
 399        hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
 400    }
 401    mcf_fec_update(s);
 402}
 403
 404static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
 405{
 406    mcf_fec_bd bd;
 407    uint32_t addr;
 408
 409    /* Walk descriptor list to determine if we have enough buffer */
 410    addr = s->rx_descriptor;
 411    while (want > 0) {
 412        mcf_fec_read_bd(&bd, addr);
 413        if ((bd.flags & FEC_BD_E) == 0) {
 414            return 0;
 415        }
 416        if (want < s->emrbr) {
 417            return 1;
 418        }
 419        want -= s->emrbr;
 420        /* Advance to the next descriptor.  */
 421        if ((bd.flags & FEC_BD_W) != 0) {
 422            addr = s->erdsr;
 423        } else {
 424            addr += 8;
 425        }
 426    }
 427    return 0;
 428}
 429
 430static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
 431{
 432    mcf_fec_state *s = qemu_get_nic_opaque(nc);
 433    mcf_fec_bd bd;
 434    uint32_t flags = 0;
 435    uint32_t addr;
 436    uint32_t crc;
 437    uint32_t buf_addr;
 438    uint8_t *crc_ptr;
 439    unsigned int buf_len;
 440    size_t retsize;
 441
 442    DPRINTF("do_rx len %d\n", size);
 443    if (!s->rx_enabled) {
 444        return -1;
 445    }
 446    /* 4 bytes for the CRC.  */
 447    size += 4;
 448    crc = cpu_to_be32(crc32(~0, buf, size));
 449    crc_ptr = (uint8_t *)&crc;
 450    /* Huge frames are truncted.  */
 451    if (size > FEC_MAX_FRAME_SIZE) {
 452        size = FEC_MAX_FRAME_SIZE;
 453        flags |= FEC_BD_TR | FEC_BD_LG;
 454    }
 455    /* Frames larger than the user limit just set error flags.  */
 456    if (size > (s->rcr >> 16)) {
 457        flags |= FEC_BD_LG;
 458    }
 459    /* Check if we have enough space in current descriptors */
 460    if (!mcf_fec_have_receive_space(s, size)) {
 461        return 0;
 462    }
 463    addr = s->rx_descriptor;
 464    retsize = size;
 465    while (size > 0) {
 466        mcf_fec_read_bd(&bd, addr);
 467        buf_len = (size <= s->emrbr) ? size: s->emrbr;
 468        bd.length = buf_len;
 469        size -= buf_len;
 470        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
 471        /* The last 4 bytes are the CRC.  */
 472        if (size < 4)
 473            buf_len += size - 4;
 474        buf_addr = bd.data;
 475        cpu_physical_memory_write(buf_addr, buf, buf_len);
 476        buf += buf_len;
 477        if (size < 4) {
 478            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
 479            crc_ptr += 4 - size;
 480        }
 481        bd.flags &= ~FEC_BD_E;
 482        if (size == 0) {
 483            /* Last buffer in frame.  */
 484            bd.flags |= flags | FEC_BD_L;
 485            DPRINTF("rx frame flags %04x\n", bd.flags);
 486            s->eir |= FEC_INT_RXF;
 487        } else {
 488            s->eir |= FEC_INT_RXB;
 489        }
 490        mcf_fec_write_bd(&bd, addr);
 491        /* Advance to the next descriptor.  */
 492        if ((bd.flags & FEC_BD_W) != 0) {
 493            addr = s->erdsr;
 494        } else {
 495            addr += 8;
 496        }
 497    }
 498    s->rx_descriptor = addr;
 499    mcf_fec_enable_rx(s);
 500    mcf_fec_update(s);
 501    return retsize;
 502}
 503
 504static const MemoryRegionOps mcf_fec_ops = {
 505    .read = mcf_fec_read,
 506    .write = mcf_fec_write,
 507    .endianness = DEVICE_NATIVE_ENDIAN,
 508};
 509
 510static NetClientInfo net_mcf_fec_info = {
 511    .type = NET_CLIENT_DRIVER_NIC,
 512    .size = sizeof(NICState),
 513    .receive = mcf_fec_receive,
 514};
 515
 516void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd,
 517                  hwaddr base, qemu_irq *irq)
 518{
 519    mcf_fec_state *s;
 520
 521    qemu_check_nic_model(nd, "mcf_fec");
 522
 523    s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state));
 524    s->sysmem = sysmem;
 525    s->irq = irq;
 526
 527    memory_region_init_io(&s->iomem, NULL, &mcf_fec_ops, s, "fec", 0x400);
 528    memory_region_add_subregion(sysmem, base, &s->iomem);
 529
 530    s->conf.macaddr = nd->macaddr;
 531    s->conf.peers.ncs[0] = nd->netdev;
 532
 533    s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
 534
 535    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
 536}
 537