qemu/include/exec/cpu-all.h
<<
>>
Prefs
   1/*
   2 * defines common to all virtual CPUs
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef CPU_ALL_H
  20#define CPU_ALL_H
  21
  22#include "qemu-common.h"
  23#include "exec/cpu-common.h"
  24#include "exec/memory.h"
  25#include "qemu/thread.h"
  26#include "qom/cpu.h"
  27#include "qemu/rcu.h"
  28
  29#define EXCP_INTERRUPT  0x10000 /* async interruption */
  30#define EXCP_HLT        0x10001 /* hlt instruction reached */
  31#define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
  32#define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
  33#define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
  34#define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
  35
  36/* some important defines:
  37 *
  38 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
  39 * otherwise little endian.
  40 *
  41 * TARGET_WORDS_BIGENDIAN : same for target cpu
  42 */
  43
  44#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
  45#define BSWAP_NEEDED
  46#endif
  47
  48#ifdef BSWAP_NEEDED
  49
  50static inline uint16_t tswap16(uint16_t s)
  51{
  52    return bswap16(s);
  53}
  54
  55static inline uint32_t tswap32(uint32_t s)
  56{
  57    return bswap32(s);
  58}
  59
  60static inline uint64_t tswap64(uint64_t s)
  61{
  62    return bswap64(s);
  63}
  64
  65static inline void tswap16s(uint16_t *s)
  66{
  67    *s = bswap16(*s);
  68}
  69
  70static inline void tswap32s(uint32_t *s)
  71{
  72    *s = bswap32(*s);
  73}
  74
  75static inline void tswap64s(uint64_t *s)
  76{
  77    *s = bswap64(*s);
  78}
  79
  80#else
  81
  82static inline uint16_t tswap16(uint16_t s)
  83{
  84    return s;
  85}
  86
  87static inline uint32_t tswap32(uint32_t s)
  88{
  89    return s;
  90}
  91
  92static inline uint64_t tswap64(uint64_t s)
  93{
  94    return s;
  95}
  96
  97static inline void tswap16s(uint16_t *s)
  98{
  99}
 100
 101static inline void tswap32s(uint32_t *s)
 102{
 103}
 104
 105static inline void tswap64s(uint64_t *s)
 106{
 107}
 108
 109#endif
 110
 111#if TARGET_LONG_SIZE == 4
 112#define tswapl(s) tswap32(s)
 113#define tswapls(s) tswap32s((uint32_t *)(s))
 114#define bswaptls(s) bswap32s(s)
 115#else
 116#define tswapl(s) tswap64(s)
 117#define tswapls(s) tswap64s((uint64_t *)(s))
 118#define bswaptls(s) bswap64s(s)
 119#endif
 120
 121/* Target-endianness CPU memory access functions. These fit into the
 122 * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
 123 */
 124#if defined(TARGET_WORDS_BIGENDIAN)
 125#define lduw_p(p) lduw_be_p(p)
 126#define ldsw_p(p) ldsw_be_p(p)
 127#define ldl_p(p) ldl_be_p(p)
 128#define ldq_p(p) ldq_be_p(p)
 129#define ldfl_p(p) ldfl_be_p(p)
 130#define ldfq_p(p) ldfq_be_p(p)
 131#define stw_p(p, v) stw_be_p(p, v)
 132#define stl_p(p, v) stl_be_p(p, v)
 133#define stq_p(p, v) stq_be_p(p, v)
 134#define stfl_p(p, v) stfl_be_p(p, v)
 135#define stfq_p(p, v) stfq_be_p(p, v)
 136#else
 137#define lduw_p(p) lduw_le_p(p)
 138#define ldsw_p(p) ldsw_le_p(p)
 139#define ldl_p(p) ldl_le_p(p)
 140#define ldq_p(p) ldq_le_p(p)
 141#define ldfl_p(p) ldfl_le_p(p)
 142#define ldfq_p(p) ldfq_le_p(p)
 143#define stw_p(p, v) stw_le_p(p, v)
 144#define stl_p(p, v) stl_le_p(p, v)
 145#define stq_p(p, v) stq_le_p(p, v)
 146#define stfl_p(p, v) stfl_le_p(p, v)
 147#define stfq_p(p, v) stfq_le_p(p, v)
 148#endif
 149
 150/* MMU memory access macros */
 151
 152#if defined(CONFIG_USER_ONLY)
 153#include "exec/user/abitypes.h"
 154
 155/* On some host systems the guest address space is reserved on the host.
 156 * This allows the guest address space to be offset to a convenient location.
 157 */
 158extern unsigned long guest_base;
 159extern int have_guest_base;
 160extern unsigned long reserved_va;
 161
 162#define GUEST_ADDR_MAX (reserved_va ? reserved_va : \
 163                                    (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
 164#else
 165
 166#include "exec/hwaddr.h"
 167uint32_t lduw_phys(AddressSpace *as, hwaddr addr);
 168uint32_t ldl_phys(AddressSpace *as, hwaddr addr);
 169uint64_t ldq_phys(AddressSpace *as, hwaddr addr);
 170void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val);
 171void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val);
 172void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val);
 173void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val);
 174
 175uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
 176                            MemTxAttrs attrs, MemTxResult *result);
 177uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
 178                            MemTxAttrs attrs, MemTxResult *result);
 179uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
 180                            MemTxAttrs attrs, MemTxResult *result);
 181void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
 182                            MemTxAttrs attrs, MemTxResult *result);
 183void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
 184                            MemTxAttrs attrs, MemTxResult *result);
 185void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
 186                            MemTxAttrs attrs, MemTxResult *result);
 187void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
 188                            MemTxAttrs attrs, MemTxResult *result);
 189#endif
 190
 191/* page related stuff */
 192
 193#ifdef TARGET_PAGE_BITS_VARY
 194extern bool target_page_bits_decided;
 195extern int target_page_bits;
 196#define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \
 197                            target_page_bits; })
 198#else
 199#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
 200#endif
 201
 202#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
 203#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
 204#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
 205
 206/* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
 207 * when intptr_t is 32-bit and we are aligning a long long.
 208 */
 209extern uintptr_t qemu_real_host_page_size;
 210extern intptr_t qemu_real_host_page_mask;
 211extern uintptr_t qemu_host_page_size;
 212extern intptr_t qemu_host_page_mask;
 213
 214#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
 215#define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \
 216                                    qemu_real_host_page_mask)
 217
 218/* same as PROT_xxx */
 219#define PAGE_READ      0x0001
 220#define PAGE_WRITE     0x0002
 221#define PAGE_EXEC      0x0004
 222#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 223#define PAGE_VALID     0x0008
 224/* original state of the write flag (used when tracking self-modifying
 225   code */
 226#define PAGE_WRITE_ORG 0x0010
 227#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 228/* FIXME: Code that sets/uses this is broken and needs to go away.  */
 229#define PAGE_RESERVED  0x0020
 230#endif
 231
 232#if defined(CONFIG_USER_ONLY)
 233void page_dump(FILE *f);
 234
 235typedef int (*walk_memory_regions_fn)(void *, target_ulong,
 236                                      target_ulong, unsigned long);
 237int walk_memory_regions(void *, walk_memory_regions_fn);
 238
 239int page_get_flags(target_ulong address);
 240void page_set_flags(target_ulong start, target_ulong end, int flags);
 241int page_check_range(target_ulong start, target_ulong len, int flags);
 242#endif
 243
 244CPUArchState *cpu_copy(CPUArchState *env);
 245
 246/* Flags for use in ENV->INTERRUPT_PENDING.
 247
 248   The numbers assigned here are non-sequential in order to preserve
 249   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
 250   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
 251   the vmstate dump.  */
 252
 253/* External hardware interrupt pending.  This is typically used for
 254   interrupts from devices.  */
 255#define CPU_INTERRUPT_HARD        0x0002
 256
 257/* Exit the current TB.  This is typically used when some system-level device
 258   makes some change to the memory mapping.  E.g. the a20 line change.  */
 259#define CPU_INTERRUPT_EXITTB      0x0004
 260
 261/* Halt the CPU.  */
 262#define CPU_INTERRUPT_HALT        0x0020
 263
 264/* Debug event pending.  */
 265#define CPU_INTERRUPT_DEBUG       0x0080
 266
 267/* Reset signal.  */
 268#define CPU_INTERRUPT_RESET       0x0400
 269
 270/* Several target-specific external hardware interrupts.  Each target/cpu.h
 271   should define proper names based on these defines.  */
 272#define CPU_INTERRUPT_TGT_EXT_0   0x0008
 273#define CPU_INTERRUPT_TGT_EXT_1   0x0010
 274#define CPU_INTERRUPT_TGT_EXT_2   0x0040
 275#define CPU_INTERRUPT_TGT_EXT_3   0x0200
 276#define CPU_INTERRUPT_TGT_EXT_4   0x1000
 277
 278/* Several target-specific internal interrupts.  These differ from the
 279   preceding target-specific interrupts in that they are intended to
 280   originate from within the cpu itself, typically in response to some
 281   instruction being executed.  These, therefore, are not masked while
 282   single-stepping within the debugger.  */
 283#define CPU_INTERRUPT_TGT_INT_0   0x0100
 284#define CPU_INTERRUPT_TGT_INT_1   0x0800
 285#define CPU_INTERRUPT_TGT_INT_2   0x2000
 286
 287/* First unused bit: 0x4000.  */
 288
 289/* The set of all bits that should be masked when single-stepping.  */
 290#define CPU_INTERRUPT_SSTEP_MASK \
 291    (CPU_INTERRUPT_HARD          \
 292     | CPU_INTERRUPT_TGT_EXT_0   \
 293     | CPU_INTERRUPT_TGT_EXT_1   \
 294     | CPU_INTERRUPT_TGT_EXT_2   \
 295     | CPU_INTERRUPT_TGT_EXT_3   \
 296     | CPU_INTERRUPT_TGT_EXT_4)
 297
 298#if !defined(CONFIG_USER_ONLY)
 299
 300/* Flags stored in the low bits of the TLB virtual address.  These are
 301 * defined so that fast path ram access is all zeros.
 302 * The flags all must be between TARGET_PAGE_BITS and
 303 * maximum address alignment bit.
 304 */
 305/* Zero if TLB entry is valid.  */
 306#define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS - 1))
 307/* Set if TLB entry references a clean RAM page.  The iotlb entry will
 308   contain the page physical address.  */
 309#define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS - 2))
 310/* Set if TLB entry is an IO callback.  */
 311#define TLB_MMIO            (1 << (TARGET_PAGE_BITS - 3))
 312
 313/* Use this mask to check interception with an alignment mask
 314 * in a TCG backend.
 315 */
 316#define TLB_FLAGS_MASK  (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO)
 317
 318void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
 319void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf);
 320#endif /* !CONFIG_USER_ONLY */
 321
 322int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
 323                        uint8_t *buf, int len, int is_write);
 324
 325int cpu_exec(CPUState *cpu);
 326
 327#endif /* CPU_ALL_H */
 328