qemu/include/qemu/atomic.h
<<
>>
Prefs
   1/*
   2 * Simple interface for atomic operations.
   3 *
   4 * Copyright (C) 2013 Red Hat, Inc.
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   9 * See the COPYING file in the top-level directory.
  10 *
  11 * See docs/atomics.txt for discussion about the guarantees each
  12 * atomic primitive is meant to provide.
  13 */
  14
  15#ifndef QEMU_ATOMIC_H
  16#define QEMU_ATOMIC_H
  17
  18/* Compiler barrier */
  19#define barrier()   ({ asm volatile("" ::: "memory"); (void)0; })
  20
  21/* The variable that receives the old value of an atomically-accessed
  22 * variable must be non-qualified, because atomic builtins return values
  23 * through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
  24 *
  25 * This macro has to handle types smaller than int manually, because of
  26 * implicit promotion.  int and larger types, as well as pointers, can be
  27 * converted to a non-qualified type just by applying a binary operator.
  28 */
  29#define typeof_strip_qual(expr)                                                    \
  30  typeof(                                                                          \
  31    __builtin_choose_expr(                                                         \
  32      __builtin_types_compatible_p(typeof(expr), bool) ||                          \
  33        __builtin_types_compatible_p(typeof(expr), const bool) ||                  \
  34        __builtin_types_compatible_p(typeof(expr), volatile bool) ||               \
  35        __builtin_types_compatible_p(typeof(expr), const volatile bool),           \
  36        (bool)1,                                                                   \
  37    __builtin_choose_expr(                                                         \
  38      __builtin_types_compatible_p(typeof(expr), signed char) ||                   \
  39        __builtin_types_compatible_p(typeof(expr), const signed char) ||           \
  40        __builtin_types_compatible_p(typeof(expr), volatile signed char) ||        \
  41        __builtin_types_compatible_p(typeof(expr), const volatile signed char),    \
  42        (signed char)1,                                                            \
  43    __builtin_choose_expr(                                                         \
  44      __builtin_types_compatible_p(typeof(expr), unsigned char) ||                 \
  45        __builtin_types_compatible_p(typeof(expr), const unsigned char) ||         \
  46        __builtin_types_compatible_p(typeof(expr), volatile unsigned char) ||      \
  47        __builtin_types_compatible_p(typeof(expr), const volatile unsigned char),  \
  48        (unsigned char)1,                                                          \
  49    __builtin_choose_expr(                                                         \
  50      __builtin_types_compatible_p(typeof(expr), signed short) ||                  \
  51        __builtin_types_compatible_p(typeof(expr), const signed short) ||          \
  52        __builtin_types_compatible_p(typeof(expr), volatile signed short) ||       \
  53        __builtin_types_compatible_p(typeof(expr), const volatile signed short),   \
  54        (signed short)1,                                                           \
  55    __builtin_choose_expr(                                                         \
  56      __builtin_types_compatible_p(typeof(expr), unsigned short) ||                \
  57        __builtin_types_compatible_p(typeof(expr), const unsigned short) ||        \
  58        __builtin_types_compatible_p(typeof(expr), volatile unsigned short) ||     \
  59        __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
  60        (unsigned short)1,                                                         \
  61      (expr)+0))))))
  62
  63#ifdef __ATOMIC_RELAXED
  64/* For C11 atomic ops */
  65
  66/* Manual memory barriers
  67 *
  68 *__atomic_thread_fence does not include a compiler barrier; instead,
  69 * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
  70 * semantics. If smp_wmb() is a no-op, absence of the barrier means that
  71 * the compiler is free to reorder stores on each side of the barrier.
  72 * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
  73 */
  74
  75#define smp_mb()                     ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
  76#define smp_mb_release()             ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
  77#define smp_mb_acquire()             ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
  78
  79/* Most compilers currently treat consume and acquire the same, but really
  80 * no processors except Alpha need a barrier here.  Leave it in if
  81 * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
  82 */
  83#if defined(__SANITIZE_THREAD__)
  84#define smp_read_barrier_depends()   ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
  85#elif defined(__alpha__)
  86#define smp_read_barrier_depends()   asm volatile("mb":::"memory")
  87#else
  88#define smp_read_barrier_depends()   barrier()
  89#endif
  90
  91
  92/* Weak atomic operations prevent the compiler moving other
  93 * loads/stores past the atomic operation load/store. However there is
  94 * no explicit memory barrier for the processor.
  95 *
  96 * The C11 memory model says that variables that are accessed from
  97 * different threads should at least be done with __ATOMIC_RELAXED
  98 * primitives or the result is undefined. Generally this has little to
  99 * no effect on the generated code but not using the atomic primitives
 100 * will get flagged by sanitizers as a violation.
 101 */
 102#define atomic_read__nocheck(ptr) \
 103    __atomic_load_n(ptr, __ATOMIC_RELAXED)
 104
 105#define atomic_read(ptr)                              \
 106    ({                                                \
 107    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 108    atomic_read__nocheck(ptr);                        \
 109    })
 110
 111#define atomic_set__nocheck(ptr, i) \
 112    __atomic_store_n(ptr, i, __ATOMIC_RELAXED)
 113
 114#define atomic_set(ptr, i)  do {                      \
 115    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 116    atomic_set__nocheck(ptr, i);                      \
 117} while(0)
 118
 119/* See above: most compilers currently treat consume and acquire the
 120 * same, but this slows down atomic_rcu_read unnecessarily.
 121 */
 122#ifdef __SANITIZE_THREAD__
 123#define atomic_rcu_read__nocheck(ptr, valptr)           \
 124    __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
 125#else
 126#define atomic_rcu_read__nocheck(ptr, valptr)           \
 127    __atomic_load(ptr, valptr, __ATOMIC_RELAXED);       \
 128    smp_read_barrier_depends();
 129#endif
 130
 131#define atomic_rcu_read(ptr)                          \
 132    ({                                                \
 133    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 134    typeof_strip_qual(*ptr) _val;                     \
 135    atomic_rcu_read__nocheck(ptr, &_val);             \
 136    _val;                                             \
 137    })
 138
 139#define atomic_rcu_set(ptr, i) do {                   \
 140    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 141    __atomic_store_n(ptr, i, __ATOMIC_RELEASE);       \
 142} while(0)
 143
 144#define atomic_load_acquire(ptr)                        \
 145    ({                                                  \
 146    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));   \
 147    typeof_strip_qual(*ptr) _val;                       \
 148    __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE);        \
 149    _val;                                               \
 150    })
 151
 152#define atomic_store_release(ptr, i)  do {              \
 153    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));   \
 154    __atomic_store_n(ptr, i, __ATOMIC_RELEASE);         \
 155} while(0)
 156
 157
 158/* All the remaining operations are fully sequentially consistent */
 159
 160#define atomic_xchg__nocheck(ptr, i)    ({                  \
 161    __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST);        \
 162})
 163
 164#define atomic_xchg(ptr, i)    ({                           \
 165    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));       \
 166    atomic_xchg__nocheck(ptr, i);                           \
 167})
 168
 169/* Returns the eventual value, failed or not */
 170#define atomic_cmpxchg__nocheck(ptr, old, new)    ({                    \
 171    typeof_strip_qual(*ptr) _old = (old);                               \
 172    __atomic_compare_exchange_n(ptr, &_old, new, false,                 \
 173                              __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);      \
 174    _old;                                                               \
 175})
 176
 177#define atomic_cmpxchg(ptr, old, new)    ({                             \
 178    QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));                   \
 179    atomic_cmpxchg__nocheck(ptr, old, new);                             \
 180})
 181
 182/* Provide shorter names for GCC atomic builtins, return old value */
 183#define atomic_fetch_inc(ptr)  __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
 184#define atomic_fetch_dec(ptr)  __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
 185#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
 186#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
 187#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
 188#define atomic_fetch_or(ptr, n)  __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
 189#define atomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
 190
 191#define atomic_inc_fetch(ptr)    __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
 192#define atomic_dec_fetch(ptr)    __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
 193#define atomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
 194#define atomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
 195#define atomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
 196#define atomic_or_fetch(ptr, n)  __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
 197#define atomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
 198
 199/* And even shorter names that return void.  */
 200#define atomic_inc(ptr)    ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
 201#define atomic_dec(ptr)    ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
 202#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
 203#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
 204#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
 205#define atomic_or(ptr, n)  ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
 206#define atomic_xor(ptr, n) ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
 207
 208#else /* __ATOMIC_RELAXED */
 209
 210/*
 211 * We use GCC builtin if it's available, as that can use mfence on
 212 * 32-bit as well, e.g. if built with -march=pentium-m. However, on
 213 * i386 the spec is buggy, and the implementation followed it until
 214 * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
 215 */
 216#if defined(__i386__) || defined(__x86_64__)
 217#if !QEMU_GNUC_PREREQ(4, 4)
 218#if defined __x86_64__
 219#define smp_mb()    ({ asm volatile("mfence" ::: "memory"); (void)0; })
 220#else
 221#define smp_mb()    ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
 222#endif
 223#endif
 224#endif
 225
 226
 227#ifdef __alpha__
 228#define smp_read_barrier_depends()   asm volatile("mb":::"memory")
 229#endif
 230
 231#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
 232
 233/*
 234 * Because of the strongly ordered storage model, wmb() and rmb() are nops
 235 * here (a compiler barrier only).  QEMU doesn't do accesses to write-combining
 236 * qemu memory or non-temporal load/stores from C code.
 237 */
 238#define smp_mb_release()   barrier()
 239#define smp_mb_acquire()   barrier()
 240
 241/*
 242 * __sync_lock_test_and_set() is documented to be an acquire barrier only,
 243 * but it is a full barrier at the hardware level.  Add a compiler barrier
 244 * to make it a full barrier also at the compiler level.
 245 */
 246#define atomic_xchg(ptr, i)    (barrier(), __sync_lock_test_and_set(ptr, i))
 247
 248#elif defined(_ARCH_PPC)
 249
 250/*
 251 * We use an eieio() for wmb() on powerpc.  This assumes we don't
 252 * need to order cacheable and non-cacheable stores with respect to
 253 * each other.
 254 *
 255 * smp_mb has the same problem as on x86 for not-very-new GCC
 256 * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
 257 */
 258#define smp_wmb()          ({ asm volatile("eieio" ::: "memory"); (void)0; })
 259#if defined(__powerpc64__)
 260#define smp_mb_release()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
 261#define smp_mb_acquire()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
 262#else
 263#define smp_mb_release()   ({ asm volatile("sync" ::: "memory"); (void)0; })
 264#define smp_mb_acquire()   ({ asm volatile("sync" ::: "memory"); (void)0; })
 265#endif
 266#define smp_mb()           ({ asm volatile("sync" ::: "memory"); (void)0; })
 267
 268#endif /* _ARCH_PPC */
 269
 270/*
 271 * For (host) platforms we don't have explicit barrier definitions
 272 * for, we use the gcc __sync_synchronize() primitive to generate a
 273 * full barrier.  This should be safe on all platforms, though it may
 274 * be overkill for smp_mb_acquire() and smp_mb_release().
 275 */
 276#ifndef smp_mb
 277#define smp_mb()           __sync_synchronize()
 278#endif
 279
 280#ifndef smp_mb_acquire
 281#define smp_mb_acquire()   __sync_synchronize()
 282#endif
 283
 284#ifndef smp_mb_release
 285#define smp_mb_release()   __sync_synchronize()
 286#endif
 287
 288#ifndef smp_read_barrier_depends
 289#define smp_read_barrier_depends()   barrier()
 290#endif
 291
 292/* These will only be atomic if the processor does the fetch or store
 293 * in a single issue memory operation
 294 */
 295#define atomic_read__nocheck(p)   (*(__typeof__(*(p)) volatile*) (p))
 296#define atomic_set__nocheck(p, i) ((*(__typeof__(*(p)) volatile*) (p)) = (i))
 297
 298#define atomic_read(ptr)       atomic_read__nocheck(ptr)
 299#define atomic_set(ptr, i)     atomic_set__nocheck(ptr,i)
 300
 301/**
 302 * atomic_rcu_read - reads a RCU-protected pointer to a local variable
 303 * into a RCU read-side critical section. The pointer can later be safely
 304 * dereferenced within the critical section.
 305 *
 306 * This ensures that the pointer copy is invariant thorough the whole critical
 307 * section.
 308 *
 309 * Inserts memory barriers on architectures that require them (currently only
 310 * Alpha) and documents which pointers are protected by RCU.
 311 *
 312 * atomic_rcu_read also includes a compiler barrier to ensure that
 313 * value-speculative optimizations (e.g. VSS: Value Speculation
 314 * Scheduling) does not perform the data read before the pointer read
 315 * by speculating the value of the pointer.
 316 *
 317 * Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
 318 */
 319#define atomic_rcu_read(ptr)    ({                \
 320    typeof(*ptr) _val = atomic_read(ptr);         \
 321    smp_read_barrier_depends();                   \
 322    _val;                                         \
 323})
 324
 325/**
 326 * atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
 327 * meant to be read by RCU read-side critical sections.
 328 *
 329 * Documents which pointers will be dereferenced by RCU read-side critical
 330 * sections and adds the required memory barriers on architectures requiring
 331 * them. It also makes sure the compiler does not reorder code initializing the
 332 * data structure before its publication.
 333 *
 334 * Should match atomic_rcu_read().
 335 */
 336#define atomic_rcu_set(ptr, i)  do {              \
 337    smp_wmb();                                    \
 338    atomic_set(ptr, i);                           \
 339} while (0)
 340
 341#define atomic_load_acquire(ptr)    ({      \
 342    typeof(*ptr) _val = atomic_read(ptr);   \
 343    smp_mb_acquire();                       \
 344    _val;                                   \
 345})
 346
 347#define atomic_store_release(ptr, i)  do {  \
 348    smp_mb_release();                       \
 349    atomic_set(ptr, i);                     \
 350} while (0)
 351
 352#ifndef atomic_xchg
 353#if defined(__clang__)
 354#define atomic_xchg(ptr, i)    __sync_swap(ptr, i)
 355#else
 356/* __sync_lock_test_and_set() is documented to be an acquire barrier only.  */
 357#define atomic_xchg(ptr, i)    (smp_mb(), __sync_lock_test_and_set(ptr, i))
 358#endif
 359#endif
 360#define atomic_xchg__nocheck  atomic_xchg
 361
 362/* Provide shorter names for GCC atomic builtins.  */
 363#define atomic_fetch_inc(ptr)  __sync_fetch_and_add(ptr, 1)
 364#define atomic_fetch_dec(ptr)  __sync_fetch_and_add(ptr, -1)
 365#define atomic_fetch_add(ptr, n) __sync_fetch_and_add(ptr, n)
 366#define atomic_fetch_sub(ptr, n) __sync_fetch_and_sub(ptr, n)
 367#define atomic_fetch_and(ptr, n) __sync_fetch_and_and(ptr, n)
 368#define atomic_fetch_or(ptr, n) __sync_fetch_and_or(ptr, n)
 369#define atomic_fetch_xor(ptr, n) __sync_fetch_and_xor(ptr, n)
 370
 371#define atomic_inc_fetch(ptr)  __sync_add_and_fetch(ptr, 1)
 372#define atomic_dec_fetch(ptr)  __sync_add_and_fetch(ptr, -1)
 373#define atomic_add_fetch(ptr, n) __sync_add_and_fetch(ptr, n)
 374#define atomic_sub_fetch(ptr, n) __sync_sub_and_fetch(ptr, n)
 375#define atomic_and_fetch(ptr, n) __sync_and_and_fetch(ptr, n)
 376#define atomic_or_fetch(ptr, n) __sync_or_and_fetch(ptr, n)
 377#define atomic_xor_fetch(ptr, n) __sync_xor_and_fetch(ptr, n)
 378
 379#define atomic_cmpxchg(ptr, old, new) __sync_val_compare_and_swap(ptr, old, new)
 380#define atomic_cmpxchg__nocheck(ptr, old, new)  atomic_cmpxchg(ptr, old, new)
 381
 382/* And even shorter names that return void.  */
 383#define atomic_inc(ptr)        ((void) __sync_fetch_and_add(ptr, 1))
 384#define atomic_dec(ptr)        ((void) __sync_fetch_and_add(ptr, -1))
 385#define atomic_add(ptr, n)     ((void) __sync_fetch_and_add(ptr, n))
 386#define atomic_sub(ptr, n)     ((void) __sync_fetch_and_sub(ptr, n))
 387#define atomic_and(ptr, n)     ((void) __sync_fetch_and_and(ptr, n))
 388#define atomic_or(ptr, n)      ((void) __sync_fetch_and_or(ptr, n))
 389#define atomic_xor(ptr, n)     ((void) __sync_fetch_and_xor(ptr, n))
 390
 391#endif /* __ATOMIC_RELAXED */
 392
 393#ifndef smp_wmb
 394#define smp_wmb()   smp_mb_release()
 395#endif
 396#ifndef smp_rmb
 397#define smp_rmb()   smp_mb_acquire()
 398#endif
 399
 400/* This is more efficient than a store plus a fence.  */
 401#if !defined(__SANITIZE_THREAD__)
 402#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
 403#define atomic_mb_set(ptr, i)  ((void)atomic_xchg(ptr, i))
 404#endif
 405#endif
 406
 407/* atomic_mb_read/set semantics map Java volatile variables. They are
 408 * less expensive on some platforms (notably POWER) than fully
 409 * sequentially consistent operations.
 410 *
 411 * As long as they are used as paired operations they are safe to
 412 * use. See docs/atomic.txt for more discussion.
 413 */
 414
 415#ifndef atomic_mb_read
 416#define atomic_mb_read(ptr)                             \
 417    atomic_load_acquire(ptr)
 418#endif
 419
 420#ifndef atomic_mb_set
 421#define atomic_mb_set(ptr, i)  do {                     \
 422    atomic_store_release(ptr, i);                       \
 423    smp_mb();                                           \
 424} while(0)
 425#endif
 426
 427#endif /* QEMU_ATOMIC_H */
 428