qemu/target-arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24
  25#if defined(TARGET_AARCH64)
  26  /* AArch64 definitions */
  27#  define TARGET_LONG_BITS 64
  28#else
  29#  define TARGET_LONG_BITS 32
  30#endif
  31
  32#define CPUArchState struct CPUARMState
  33
  34#include "qemu-common.h"
  35#include "cpu-qom.h"
  36#include "exec/cpu-defs.h"
  37
  38#include "fpu/softfloat.h"
  39
  40#define EXCP_UDEF            1   /* undefined instruction */
  41#define EXCP_SWI             2   /* software interrupt */
  42#define EXCP_PREFETCH_ABORT  3
  43#define EXCP_DATA_ABORT      4
  44#define EXCP_IRQ             5
  45#define EXCP_FIQ             6
  46#define EXCP_BKPT            7
  47#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  48#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  49#define EXCP_HVC            11   /* HyperVisor Call */
  50#define EXCP_HYP_TRAP       12
  51#define EXCP_SMC            13   /* Secure Monitor Call */
  52#define EXCP_VIRQ           14
  53#define EXCP_VFIQ           15
  54#define EXCP_SEMIHOST       16   /* semihosting call */
  55
  56#define ARMV7M_EXCP_RESET   1
  57#define ARMV7M_EXCP_NMI     2
  58#define ARMV7M_EXCP_HARD    3
  59#define ARMV7M_EXCP_MEM     4
  60#define ARMV7M_EXCP_BUS     5
  61#define ARMV7M_EXCP_USAGE   6
  62#define ARMV7M_EXCP_SVC     11
  63#define ARMV7M_EXCP_DEBUG   12
  64#define ARMV7M_EXCP_PENDSV  14
  65#define ARMV7M_EXCP_SYSTICK 15
  66
  67/* ARM-specific interrupt pending bits.  */
  68#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  69#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  70#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  71
  72/* The usual mapping for an AArch64 system register to its AArch32
  73 * counterpart is for the 32 bit world to have access to the lower
  74 * half only (with writes leaving the upper half untouched). It's
  75 * therefore useful to be able to pass TCG the offset of the least
  76 * significant half of a uint64_t struct member.
  77 */
  78#ifdef HOST_WORDS_BIGENDIAN
  79#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  80#define offsetofhigh32(S, M) offsetof(S, M)
  81#else
  82#define offsetoflow32(S, M) offsetof(S, M)
  83#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
  84#endif
  85
  86/* Meanings of the ARMCPU object's four inbound GPIO lines */
  87#define ARM_CPU_IRQ 0
  88#define ARM_CPU_FIQ 1
  89#define ARM_CPU_VIRQ 2
  90#define ARM_CPU_VFIQ 3
  91
  92#define NB_MMU_MODES 7
  93/* ARM-specific extra insn start words:
  94 * 1: Conditional execution bits
  95 * 2: Partial exception syndrome for data aborts
  96 */
  97#define TARGET_INSN_START_EXTRA_WORDS 2
  98
  99/* The 2nd extra word holding syndrome info for data aborts does not use
 100 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 101 * help the sleb128 encoder do a better job.
 102 * When restoring the CPU state, we shift it back up.
 103 */
 104#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 105#define ARM_INSN_START_WORD2_SHIFT 14
 106
 107/* We currently assume float and double are IEEE single and double
 108   precision respectively.
 109   Doing runtime conversions is tricky because VFP registers may contain
 110   integer values (eg. as the result of a FTOSI instruction).
 111   s<2n> maps to the least significant half of d<n>
 112   s<2n+1> maps to the most significant half of d<n>
 113 */
 114
 115/* CPU state for each instance of a generic timer (in cp15 c14) */
 116typedef struct ARMGenericTimer {
 117    uint64_t cval; /* Timer CompareValue register */
 118    uint64_t ctl; /* Timer Control register */
 119} ARMGenericTimer;
 120
 121#define GTIMER_PHYS 0
 122#define GTIMER_VIRT 1
 123#define GTIMER_HYP  2
 124#define GTIMER_SEC  3
 125#define NUM_GTIMERS 4
 126
 127typedef struct {
 128    uint64_t raw_tcr;
 129    uint32_t mask;
 130    uint32_t base_mask;
 131} TCR;
 132
 133typedef struct CPUARMState {
 134    /* Regs for current mode.  */
 135    uint32_t regs[16];
 136
 137    /* 32/64 switch only happens when taking and returning from
 138     * exceptions so the overlap semantics are taken care of then
 139     * instead of having a complicated union.
 140     */
 141    /* Regs for A64 mode.  */
 142    uint64_t xregs[32];
 143    uint64_t pc;
 144    /* PSTATE isn't an architectural register for ARMv8. However, it is
 145     * convenient for us to assemble the underlying state into a 32 bit format
 146     * identical to the architectural format used for the SPSR. (This is also
 147     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 148     * 'pstate' register are.) Of the PSTATE bits:
 149     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 150     *    semantics as for AArch32, as described in the comments on each field)
 151     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 152     *  DAIF (exception masks) are kept in env->daif
 153     *  all other bits are stored in their correct places in env->pstate
 154     */
 155    uint32_t pstate;
 156    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 157
 158    /* Frequently accessed CPSR bits are stored separately for efficiency.
 159       This contains all the other bits.  Use cpsr_{read,write} to access
 160       the whole CPSR.  */
 161    uint32_t uncached_cpsr;
 162    uint32_t spsr;
 163
 164    /* Banked registers.  */
 165    uint64_t banked_spsr[8];
 166    uint32_t banked_r13[8];
 167    uint32_t banked_r14[8];
 168
 169    /* These hold r8-r12.  */
 170    uint32_t usr_regs[5];
 171    uint32_t fiq_regs[5];
 172
 173    /* cpsr flag cache for faster execution */
 174    uint32_t CF; /* 0 or 1 */
 175    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 176    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 177    uint32_t ZF; /* Z set if zero.  */
 178    uint32_t QF; /* 0 or 1 */
 179    uint32_t GE; /* cpsr[19:16] */
 180    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 181    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 182    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 183
 184    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 185    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 186
 187    /* System control coprocessor (cp15) */
 188    struct {
 189        uint32_t c0_cpuid;
 190        union { /* Cache size selection */
 191            struct {
 192                uint64_t _unused_csselr0;
 193                uint64_t csselr_ns;
 194                uint64_t _unused_csselr1;
 195                uint64_t csselr_s;
 196            };
 197            uint64_t csselr_el[4];
 198        };
 199        union { /* System control register. */
 200            struct {
 201                uint64_t _unused_sctlr;
 202                uint64_t sctlr_ns;
 203                uint64_t hsctlr;
 204                uint64_t sctlr_s;
 205            };
 206            uint64_t sctlr_el[4];
 207        };
 208        uint64_t cpacr_el1; /* Architectural feature access control register */
 209        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 210        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 211        uint64_t sder; /* Secure debug enable register. */
 212        uint32_t nsacr; /* Non-secure access control register. */
 213        union { /* MMU translation table base 0. */
 214            struct {
 215                uint64_t _unused_ttbr0_0;
 216                uint64_t ttbr0_ns;
 217                uint64_t _unused_ttbr0_1;
 218                uint64_t ttbr0_s;
 219            };
 220            uint64_t ttbr0_el[4];
 221        };
 222        union { /* MMU translation table base 1. */
 223            struct {
 224                uint64_t _unused_ttbr1_0;
 225                uint64_t ttbr1_ns;
 226                uint64_t _unused_ttbr1_1;
 227                uint64_t ttbr1_s;
 228            };
 229            uint64_t ttbr1_el[4];
 230        };
 231        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 232        /* MMU translation table base control. */
 233        TCR tcr_el[4];
 234        TCR vtcr_el2; /* Virtualization Translation Control.  */
 235        uint32_t c2_data; /* MPU data cacheable bits.  */
 236        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 237        union { /* MMU domain access control register
 238                 * MPU write buffer control.
 239                 */
 240            struct {
 241                uint64_t dacr_ns;
 242                uint64_t dacr_s;
 243            };
 244            struct {
 245                uint64_t dacr32_el2;
 246            };
 247        };
 248        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 249        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 250        uint64_t hcr_el2; /* Hypervisor configuration register */
 251        uint64_t scr_el3; /* Secure configuration register.  */
 252        union { /* Fault status registers.  */
 253            struct {
 254                uint64_t ifsr_ns;
 255                uint64_t ifsr_s;
 256            };
 257            struct {
 258                uint64_t ifsr32_el2;
 259            };
 260        };
 261        union {
 262            struct {
 263                uint64_t _unused_dfsr;
 264                uint64_t dfsr_ns;
 265                uint64_t hsr;
 266                uint64_t dfsr_s;
 267            };
 268            uint64_t esr_el[4];
 269        };
 270        uint32_t c6_region[8]; /* MPU base/size registers.  */
 271        union { /* Fault address registers. */
 272            struct {
 273                uint64_t _unused_far0;
 274#ifdef HOST_WORDS_BIGENDIAN
 275                uint32_t ifar_ns;
 276                uint32_t dfar_ns;
 277                uint32_t ifar_s;
 278                uint32_t dfar_s;
 279#else
 280                uint32_t dfar_ns;
 281                uint32_t ifar_ns;
 282                uint32_t dfar_s;
 283                uint32_t ifar_s;
 284#endif
 285                uint64_t _unused_far3;
 286            };
 287            uint64_t far_el[4];
 288        };
 289        uint64_t hpfar_el2;
 290        uint64_t hstr_el2;
 291        union { /* Translation result. */
 292            struct {
 293                uint64_t _unused_par_0;
 294                uint64_t par_ns;
 295                uint64_t _unused_par_1;
 296                uint64_t par_s;
 297            };
 298            uint64_t par_el[4];
 299        };
 300
 301        uint32_t c6_rgnr;
 302
 303        uint32_t c9_insn; /* Cache lockdown registers.  */
 304        uint32_t c9_data;
 305        uint64_t c9_pmcr; /* performance monitor control register */
 306        uint64_t c9_pmcnten; /* perf monitor counter enables */
 307        uint32_t c9_pmovsr; /* perf monitor overflow status */
 308        uint32_t c9_pmxevtyper; /* perf monitor event type */
 309        uint32_t c9_pmuserenr; /* perf monitor user enable */
 310        uint32_t c9_pminten; /* perf monitor interrupt enables */
 311        union { /* Memory attribute redirection */
 312            struct {
 313#ifdef HOST_WORDS_BIGENDIAN
 314                uint64_t _unused_mair_0;
 315                uint32_t mair1_ns;
 316                uint32_t mair0_ns;
 317                uint64_t _unused_mair_1;
 318                uint32_t mair1_s;
 319                uint32_t mair0_s;
 320#else
 321                uint64_t _unused_mair_0;
 322                uint32_t mair0_ns;
 323                uint32_t mair1_ns;
 324                uint64_t _unused_mair_1;
 325                uint32_t mair0_s;
 326                uint32_t mair1_s;
 327#endif
 328            };
 329            uint64_t mair_el[4];
 330        };
 331        union { /* vector base address register */
 332            struct {
 333                uint64_t _unused_vbar;
 334                uint64_t vbar_ns;
 335                uint64_t hvbar;
 336                uint64_t vbar_s;
 337            };
 338            uint64_t vbar_el[4];
 339        };
 340        uint32_t mvbar; /* (monitor) vector base address register */
 341        struct { /* FCSE PID. */
 342            uint32_t fcseidr_ns;
 343            uint32_t fcseidr_s;
 344        };
 345        union { /* Context ID. */
 346            struct {
 347                uint64_t _unused_contextidr_0;
 348                uint64_t contextidr_ns;
 349                uint64_t _unused_contextidr_1;
 350                uint64_t contextidr_s;
 351            };
 352            uint64_t contextidr_el[4];
 353        };
 354        union { /* User RW Thread register. */
 355            struct {
 356                uint64_t tpidrurw_ns;
 357                uint64_t tpidrprw_ns;
 358                uint64_t htpidr;
 359                uint64_t _tpidr_el3;
 360            };
 361            uint64_t tpidr_el[4];
 362        };
 363        /* The secure banks of these registers don't map anywhere */
 364        uint64_t tpidrurw_s;
 365        uint64_t tpidrprw_s;
 366        uint64_t tpidruro_s;
 367
 368        union { /* User RO Thread register. */
 369            uint64_t tpidruro_ns;
 370            uint64_t tpidrro_el[1];
 371        };
 372        uint64_t c14_cntfrq; /* Counter Frequency register */
 373        uint64_t c14_cntkctl; /* Timer Control register */
 374        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 375        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 376        ARMGenericTimer c14_timer[NUM_GTIMERS];
 377        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 378        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 379        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 380        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 381        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 382        uint32_t c15_config_base_address; /* SCU base address.  */
 383        uint32_t c15_diagnostic; /* diagnostic register */
 384        uint32_t c15_power_diagnostic;
 385        uint32_t c15_power_control; /* power control */
 386        uint64_t dbgbvr[16]; /* breakpoint value registers */
 387        uint64_t dbgbcr[16]; /* breakpoint control registers */
 388        uint64_t dbgwvr[16]; /* watchpoint value registers */
 389        uint64_t dbgwcr[16]; /* watchpoint control registers */
 390        uint64_t mdscr_el1;
 391        uint64_t oslsr_el1; /* OS Lock Status */
 392        uint64_t mdcr_el2;
 393        uint64_t mdcr_el3;
 394        /* If the counter is enabled, this stores the last time the counter
 395         * was reset. Otherwise it stores the counter value
 396         */
 397        uint64_t c15_ccnt;
 398        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 399        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 400        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 401    } cp15;
 402
 403    struct {
 404        uint32_t other_sp;
 405        uint32_t vecbase;
 406        uint32_t basepri;
 407        uint32_t control;
 408        int current_sp;
 409        int exception;
 410    } v7m;
 411
 412    /* Information associated with an exception about to be taken:
 413     * code which raises an exception must set cs->exception_index and
 414     * the relevant parts of this structure; the cpu_do_interrupt function
 415     * will then set the guest-visible registers as part of the exception
 416     * entry process.
 417     */
 418    struct {
 419        uint32_t syndrome; /* AArch64 format syndrome register */
 420        uint32_t fsr; /* AArch32 format fault status register info */
 421        uint64_t vaddress; /* virtual addr associated with exception, if any */
 422        uint32_t target_el; /* EL the exception should be targeted for */
 423        /* If we implement EL2 we will also need to store information
 424         * about the intermediate physical address for stage 2 faults.
 425         */
 426    } exception;
 427
 428    /* Thumb-2 EE state.  */
 429    uint32_t teecr;
 430    uint32_t teehbr;
 431
 432    /* VFP coprocessor state.  */
 433    struct {
 434        /* VFP/Neon register state. Note that the mapping between S, D and Q
 435         * views of the register bank differs between AArch64 and AArch32:
 436         * In AArch32:
 437         *  Qn = regs[2n+1]:regs[2n]
 438         *  Dn = regs[n]
 439         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
 440         * (and regs[32] to regs[63] are inaccessible)
 441         * In AArch64:
 442         *  Qn = regs[2n+1]:regs[2n]
 443         *  Dn = regs[2n]
 444         *  Sn = regs[2n] bits 31..0
 445         * This corresponds to the architecturally defined mapping between
 446         * the two execution states, and means we do not need to explicitly
 447         * map these registers when changing states.
 448         */
 449        float64 regs[64];
 450
 451        uint32_t xregs[16];
 452        /* We store these fpcsr fields separately for convenience.  */
 453        int vec_len;
 454        int vec_stride;
 455
 456        /* scratch space when Tn are not sufficient.  */
 457        uint32_t scratch[8];
 458
 459        /* fp_status is the "normal" fp status. standard_fp_status retains
 460         * values corresponding to the ARM "Standard FPSCR Value", ie
 461         * default-NaN, flush-to-zero, round-to-nearest and is used by
 462         * any operations (generally Neon) which the architecture defines
 463         * as controlled by the standard FPSCR value rather than the FPSCR.
 464         *
 465         * To avoid having to transfer exception bits around, we simply
 466         * say that the FPSCR cumulative exception flags are the logical
 467         * OR of the flags in the two fp statuses. This relies on the
 468         * only thing which needs to read the exception flags being
 469         * an explicit FPSCR read.
 470         */
 471        float_status fp_status;
 472        float_status standard_fp_status;
 473    } vfp;
 474    uint64_t exclusive_addr;
 475    uint64_t exclusive_val;
 476    uint64_t exclusive_high;
 477
 478    /* iwMMXt coprocessor state.  */
 479    struct {
 480        uint64_t regs[16];
 481        uint64_t val;
 482
 483        uint32_t cregs[16];
 484    } iwmmxt;
 485
 486#if defined(CONFIG_USER_ONLY)
 487    /* For usermode syscall translation.  */
 488    int eabi;
 489#endif
 490
 491    struct CPUBreakpoint *cpu_breakpoint[16];
 492    struct CPUWatchpoint *cpu_watchpoint[16];
 493
 494    CPU_COMMON
 495
 496    /* These fields after the common ones so they are preserved on reset.  */
 497
 498    /* Internal CPU feature flags.  */
 499    uint64_t features;
 500
 501    /* PMSAv7 MPU */
 502    struct {
 503        uint32_t *drbar;
 504        uint32_t *drsr;
 505        uint32_t *dracr;
 506    } pmsav7;
 507
 508    void *nvic;
 509    const struct arm_boot_info *boot_info;
 510} CPUARMState;
 511
 512/**
 513 * ARMELChangeHook:
 514 * type of a function which can be registered via arm_register_el_change_hook()
 515 * to get callbacks when the CPU changes its exception level or mode.
 516 */
 517typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
 518
 519/**
 520 * ARMCPU:
 521 * @env: #CPUARMState
 522 *
 523 * An ARM CPU core.
 524 */
 525struct ARMCPU {
 526    /*< private >*/
 527    CPUState parent_obj;
 528    /*< public >*/
 529
 530    CPUARMState env;
 531
 532    /* Coprocessor information */
 533    GHashTable *cp_regs;
 534    /* For marshalling (mostly coprocessor) register state between the
 535     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 536     * we use these arrays.
 537     */
 538    /* List of register indexes managed via these arrays; (full KVM style
 539     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 540     */
 541    uint64_t *cpreg_indexes;
 542    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 543    uint64_t *cpreg_values;
 544    /* Length of the indexes, values, reset_values arrays */
 545    int32_t cpreg_array_len;
 546    /* These are used only for migration: incoming data arrives in
 547     * these fields and is sanity checked in post_load before copying
 548     * to the working data structures above.
 549     */
 550    uint64_t *cpreg_vmstate_indexes;
 551    uint64_t *cpreg_vmstate_values;
 552    int32_t cpreg_vmstate_array_len;
 553
 554    /* Timers used by the generic (architected) timer */
 555    QEMUTimer *gt_timer[NUM_GTIMERS];
 556    /* GPIO outputs for generic timer */
 557    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 558
 559    /* MemoryRegion to use for secure physical accesses */
 560    MemoryRegion *secure_memory;
 561
 562    /* 'compatible' string for this CPU for Linux device trees */
 563    const char *dtb_compatible;
 564
 565    /* PSCI version for this CPU
 566     * Bits[31:16] = Major Version
 567     * Bits[15:0] = Minor Version
 568     */
 569    uint32_t psci_version;
 570
 571    /* Should CPU start in PSCI powered-off state? */
 572    bool start_powered_off;
 573    /* CPU currently in PSCI powered-off state */
 574    bool powered_off;
 575    /* CPU has security extension */
 576    bool has_el3;
 577    /* CPU has PMU (Performance Monitor Unit) */
 578    bool has_pmu;
 579
 580    /* CPU has memory protection unit */
 581    bool has_mpu;
 582    /* PMSAv7 MPU number of supported regions */
 583    uint32_t pmsav7_dregion;
 584
 585    /* PSCI conduit used to invoke PSCI methods
 586     * 0 - disabled, 1 - smc, 2 - hvc
 587     */
 588    uint32_t psci_conduit;
 589
 590    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 591     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 592     */
 593    uint32_t kvm_target;
 594
 595    /* KVM init features for this CPU */
 596    uint32_t kvm_init_features[7];
 597
 598    /* Uniprocessor system with MP extensions */
 599    bool mp_is_up;
 600
 601    /* The instance init functions for implementation-specific subclasses
 602     * set these fields to specify the implementation-dependent values of
 603     * various constant registers and reset values of non-constant
 604     * registers.
 605     * Some of these might become QOM properties eventually.
 606     * Field names match the official register names as defined in the
 607     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 608     * is used for reset values of non-constant registers; no reset_
 609     * prefix means a constant register.
 610     */
 611    uint32_t midr;
 612    uint32_t revidr;
 613    uint32_t reset_fpsid;
 614    uint32_t mvfr0;
 615    uint32_t mvfr1;
 616    uint32_t mvfr2;
 617    uint32_t ctr;
 618    uint32_t reset_sctlr;
 619    uint32_t id_pfr0;
 620    uint32_t id_pfr1;
 621    uint32_t id_dfr0;
 622    uint32_t pmceid0;
 623    uint32_t pmceid1;
 624    uint32_t id_afr0;
 625    uint32_t id_mmfr0;
 626    uint32_t id_mmfr1;
 627    uint32_t id_mmfr2;
 628    uint32_t id_mmfr3;
 629    uint32_t id_mmfr4;
 630    uint32_t id_isar0;
 631    uint32_t id_isar1;
 632    uint32_t id_isar2;
 633    uint32_t id_isar3;
 634    uint32_t id_isar4;
 635    uint32_t id_isar5;
 636    uint64_t id_aa64pfr0;
 637    uint64_t id_aa64pfr1;
 638    uint64_t id_aa64dfr0;
 639    uint64_t id_aa64dfr1;
 640    uint64_t id_aa64afr0;
 641    uint64_t id_aa64afr1;
 642    uint64_t id_aa64isar0;
 643    uint64_t id_aa64isar1;
 644    uint64_t id_aa64mmfr0;
 645    uint64_t id_aa64mmfr1;
 646    uint32_t dbgdidr;
 647    uint32_t clidr;
 648    uint64_t mp_affinity; /* MP ID without feature bits */
 649    /* The elements of this array are the CCSIDR values for each cache,
 650     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 651     */
 652    uint32_t ccsidr[16];
 653    uint64_t reset_cbar;
 654    uint32_t reset_auxcr;
 655    bool reset_hivecs;
 656    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 657    uint32_t dcz_blocksize;
 658    uint64_t rvbar;
 659
 660    ARMELChangeHook *el_change_hook;
 661    void *el_change_hook_opaque;
 662};
 663
 664static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
 665{
 666    return container_of(env, ARMCPU, env);
 667}
 668
 669#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
 670
 671#define ENV_OFFSET offsetof(ARMCPU, env)
 672
 673#ifndef CONFIG_USER_ONLY
 674extern const struct VMStateDescription vmstate_arm_cpu;
 675#endif
 676
 677void arm_cpu_do_interrupt(CPUState *cpu);
 678void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 679bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 680
 681void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 682                        int flags);
 683
 684hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 685                                         MemTxAttrs *attrs);
 686
 687int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 688int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 689
 690int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 691                             int cpuid, void *opaque);
 692int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 693                             int cpuid, void *opaque);
 694
 695#ifdef TARGET_AARCH64
 696int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 697int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 698#endif
 699
 700ARMCPU *cpu_arm_init(const char *cpu_model);
 701target_ulong do_arm_semihosting(CPUARMState *env);
 702void aarch64_sync_32_to_64(CPUARMState *env);
 703void aarch64_sync_64_to_32(CPUARMState *env);
 704
 705static inline bool is_a64(CPUARMState *env)
 706{
 707    return env->aarch64;
 708}
 709
 710/* you can call this signal handler from your SIGBUS and SIGSEGV
 711   signal handlers to inform the virtual CPU of exceptions. non zero
 712   is returned if the signal was handled by the virtual CPU.  */
 713int cpu_arm_signal_handler(int host_signum, void *pinfo,
 714                           void *puc);
 715
 716/**
 717 * pmccntr_sync
 718 * @env: CPUARMState
 719 *
 720 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 721 * once before any action that might affect the timer and again afterwards.
 722 * The function is used to swap the state of the register if required.
 723 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 724 */
 725void pmccntr_sync(CPUARMState *env);
 726
 727/* SCTLR bit meanings. Several bits have been reused in newer
 728 * versions of the architecture; in that case we define constants
 729 * for both old and new bit meanings. Code which tests against those
 730 * bits should probably check or otherwise arrange that the CPU
 731 * is the architectural version it expects.
 732 */
 733#define SCTLR_M       (1U << 0)
 734#define SCTLR_A       (1U << 1)
 735#define SCTLR_C       (1U << 2)
 736#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 737#define SCTLR_SA      (1U << 3)
 738#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 739#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 740#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 741#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 742#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 743#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 744#define SCTLR_ITD     (1U << 7) /* v8 onward */
 745#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 746#define SCTLR_SED     (1U << 8) /* v8 onward */
 747#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 748#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 749#define SCTLR_F       (1U << 10) /* up to v6 */
 750#define SCTLR_SW      (1U << 10) /* v7 onward */
 751#define SCTLR_Z       (1U << 11)
 752#define SCTLR_I       (1U << 12)
 753#define SCTLR_V       (1U << 13)
 754#define SCTLR_RR      (1U << 14) /* up to v7 */
 755#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 756#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 757#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 758#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 759#define SCTLR_nTWI    (1U << 16) /* v8 onward */
 760#define SCTLR_HA      (1U << 17)
 761#define SCTLR_BR      (1U << 17) /* PMSA only */
 762#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 763#define SCTLR_nTWE    (1U << 18) /* v8 onward */
 764#define SCTLR_WXN     (1U << 19)
 765#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 766#define SCTLR_UWXN    (1U << 20) /* v7 onward */
 767#define SCTLR_FI      (1U << 21)
 768#define SCTLR_U       (1U << 22)
 769#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 770#define SCTLR_VE      (1U << 24) /* up to v7 */
 771#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 772#define SCTLR_EE      (1U << 25)
 773#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 774#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 775#define SCTLR_NMFI    (1U << 27)
 776#define SCTLR_TRE     (1U << 28)
 777#define SCTLR_AFE     (1U << 29)
 778#define SCTLR_TE      (1U << 30)
 779
 780#define CPTR_TCPAC    (1U << 31)
 781#define CPTR_TTA      (1U << 20)
 782#define CPTR_TFP      (1U << 10)
 783
 784#define MDCR_EPMAD    (1U << 21)
 785#define MDCR_EDAD     (1U << 20)
 786#define MDCR_SPME     (1U << 17)
 787#define MDCR_SDD      (1U << 16)
 788#define MDCR_SPD      (3U << 14)
 789#define MDCR_TDRA     (1U << 11)
 790#define MDCR_TDOSA    (1U << 10)
 791#define MDCR_TDA      (1U << 9)
 792#define MDCR_TDE      (1U << 8)
 793#define MDCR_HPME     (1U << 7)
 794#define MDCR_TPM      (1U << 6)
 795#define MDCR_TPMCR    (1U << 5)
 796
 797/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
 798#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
 799
 800#define CPSR_M (0x1fU)
 801#define CPSR_T (1U << 5)
 802#define CPSR_F (1U << 6)
 803#define CPSR_I (1U << 7)
 804#define CPSR_A (1U << 8)
 805#define CPSR_E (1U << 9)
 806#define CPSR_IT_2_7 (0xfc00U)
 807#define CPSR_GE (0xfU << 16)
 808#define CPSR_IL (1U << 20)
 809/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 810 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 811 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 812 * where it is live state but not accessible to the AArch32 code.
 813 */
 814#define CPSR_RESERVED (0x7U << 21)
 815#define CPSR_J (1U << 24)
 816#define CPSR_IT_0_1 (3U << 25)
 817#define CPSR_Q (1U << 27)
 818#define CPSR_V (1U << 28)
 819#define CPSR_C (1U << 29)
 820#define CPSR_Z (1U << 30)
 821#define CPSR_N (1U << 31)
 822#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
 823#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
 824
 825#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
 826#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
 827    | CPSR_NZCV)
 828/* Bits writable in user mode.  */
 829#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
 830/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
 831#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
 832/* Mask of bits which may be set by exception return copying them from SPSR */
 833#define CPSR_ERET_MASK (~CPSR_RESERVED)
 834
 835#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
 836#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
 837#define TTBCR_PD0    (1U << 4)
 838#define TTBCR_PD1    (1U << 5)
 839#define TTBCR_EPD0   (1U << 7)
 840#define TTBCR_IRGN0  (3U << 8)
 841#define TTBCR_ORGN0  (3U << 10)
 842#define TTBCR_SH0    (3U << 12)
 843#define TTBCR_T1SZ   (3U << 16)
 844#define TTBCR_A1     (1U << 22)
 845#define TTBCR_EPD1   (1U << 23)
 846#define TTBCR_IRGN1  (3U << 24)
 847#define TTBCR_ORGN1  (3U << 26)
 848#define TTBCR_SH1    (1U << 28)
 849#define TTBCR_EAE    (1U << 31)
 850
 851/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 852 * Only these are valid when in AArch64 mode; in
 853 * AArch32 mode SPSRs are basically CPSR-format.
 854 */
 855#define PSTATE_SP (1U)
 856#define PSTATE_M (0xFU)
 857#define PSTATE_nRW (1U << 4)
 858#define PSTATE_F (1U << 6)
 859#define PSTATE_I (1U << 7)
 860#define PSTATE_A (1U << 8)
 861#define PSTATE_D (1U << 9)
 862#define PSTATE_IL (1U << 20)
 863#define PSTATE_SS (1U << 21)
 864#define PSTATE_V (1U << 28)
 865#define PSTATE_C (1U << 29)
 866#define PSTATE_Z (1U << 30)
 867#define PSTATE_N (1U << 31)
 868#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
 869#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
 870#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
 871/* Mode values for AArch64 */
 872#define PSTATE_MODE_EL3h 13
 873#define PSTATE_MODE_EL3t 12
 874#define PSTATE_MODE_EL2h 9
 875#define PSTATE_MODE_EL2t 8
 876#define PSTATE_MODE_EL1h 5
 877#define PSTATE_MODE_EL1t 4
 878#define PSTATE_MODE_EL0t 0
 879
 880/* Map EL and handler into a PSTATE_MODE.  */
 881static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
 882{
 883    return (el << 2) | handler;
 884}
 885
 886/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 887 * interprocessing, so we don't attempt to sync with the cpsr state used by
 888 * the 32 bit decoder.
 889 */
 890static inline uint32_t pstate_read(CPUARMState *env)
 891{
 892    int ZF;
 893
 894    ZF = (env->ZF == 0);
 895    return (env->NF & 0x80000000) | (ZF << 30)
 896        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
 897        | env->pstate | env->daif;
 898}
 899
 900static inline void pstate_write(CPUARMState *env, uint32_t val)
 901{
 902    env->ZF = (~val) & PSTATE_Z;
 903    env->NF = val;
 904    env->CF = (val >> 29) & 1;
 905    env->VF = (val << 3) & 0x80000000;
 906    env->daif = val & PSTATE_DAIF;
 907    env->pstate = val & ~CACHED_PSTATE_BITS;
 908}
 909
 910/* Return the current CPSR value.  */
 911uint32_t cpsr_read(CPUARMState *env);
 912
 913typedef enum CPSRWriteType {
 914    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
 915    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
 916    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
 917    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
 918} CPSRWriteType;
 919
 920/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
 921void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
 922                CPSRWriteType write_type);
 923
 924/* Return the current xPSR value.  */
 925static inline uint32_t xpsr_read(CPUARMState *env)
 926{
 927    int ZF;
 928    ZF = (env->ZF == 0);
 929    return (env->NF & 0x80000000) | (ZF << 30)
 930        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 931        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
 932        | ((env->condexec_bits & 0xfc) << 8)
 933        | env->v7m.exception;
 934}
 935
 936/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
 937static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 938{
 939    if (mask & CPSR_NZCV) {
 940        env->ZF = (~val) & CPSR_Z;
 941        env->NF = val;
 942        env->CF = (val >> 29) & 1;
 943        env->VF = (val << 3) & 0x80000000;
 944    }
 945    if (mask & CPSR_Q)
 946        env->QF = ((val & CPSR_Q) != 0);
 947    if (mask & (1 << 24))
 948        env->thumb = ((val & (1 << 24)) != 0);
 949    if (mask & CPSR_IT_0_1) {
 950        env->condexec_bits &= ~3;
 951        env->condexec_bits |= (val >> 25) & 3;
 952    }
 953    if (mask & CPSR_IT_2_7) {
 954        env->condexec_bits &= 3;
 955        env->condexec_bits |= (val >> 8) & 0xfc;
 956    }
 957    if (mask & 0x1ff) {
 958        env->v7m.exception = val & 0x1ff;
 959    }
 960}
 961
 962#define HCR_VM        (1ULL << 0)
 963#define HCR_SWIO      (1ULL << 1)
 964#define HCR_PTW       (1ULL << 2)
 965#define HCR_FMO       (1ULL << 3)
 966#define HCR_IMO       (1ULL << 4)
 967#define HCR_AMO       (1ULL << 5)
 968#define HCR_VF        (1ULL << 6)
 969#define HCR_VI        (1ULL << 7)
 970#define HCR_VSE       (1ULL << 8)
 971#define HCR_FB        (1ULL << 9)
 972#define HCR_BSU_MASK  (3ULL << 10)
 973#define HCR_DC        (1ULL << 12)
 974#define HCR_TWI       (1ULL << 13)
 975#define HCR_TWE       (1ULL << 14)
 976#define HCR_TID0      (1ULL << 15)
 977#define HCR_TID1      (1ULL << 16)
 978#define HCR_TID2      (1ULL << 17)
 979#define HCR_TID3      (1ULL << 18)
 980#define HCR_TSC       (1ULL << 19)
 981#define HCR_TIDCP     (1ULL << 20)
 982#define HCR_TACR      (1ULL << 21)
 983#define HCR_TSW       (1ULL << 22)
 984#define HCR_TPC       (1ULL << 23)
 985#define HCR_TPU       (1ULL << 24)
 986#define HCR_TTLB      (1ULL << 25)
 987#define HCR_TVM       (1ULL << 26)
 988#define HCR_TGE       (1ULL << 27)
 989#define HCR_TDZ       (1ULL << 28)
 990#define HCR_HCD       (1ULL << 29)
 991#define HCR_TRVM      (1ULL << 30)
 992#define HCR_RW        (1ULL << 31)
 993#define HCR_CD        (1ULL << 32)
 994#define HCR_ID        (1ULL << 33)
 995#define HCR_MASK      ((1ULL << 34) - 1)
 996
 997#define SCR_NS                (1U << 0)
 998#define SCR_IRQ               (1U << 1)
 999#define SCR_FIQ               (1U << 2)
1000#define SCR_EA                (1U << 3)
1001#define SCR_FW                (1U << 4)
1002#define SCR_AW                (1U << 5)
1003#define SCR_NET               (1U << 6)
1004#define SCR_SMD               (1U << 7)
1005#define SCR_HCE               (1U << 8)
1006#define SCR_SIF               (1U << 9)
1007#define SCR_RW                (1U << 10)
1008#define SCR_ST                (1U << 11)
1009#define SCR_TWI               (1U << 12)
1010#define SCR_TWE               (1U << 13)
1011#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1012#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1013
1014/* Return the current FPSCR value.  */
1015uint32_t vfp_get_fpscr(CPUARMState *env);
1016void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1017
1018/* For A64 the FPSCR is split into two logically distinct registers,
1019 * FPCR and FPSR. However since they still use non-overlapping bits
1020 * we store the underlying state in fpscr and just mask on read/write.
1021 */
1022#define FPSR_MASK 0xf800009f
1023#define FPCR_MASK 0x07f79f00
1024static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1025{
1026    return vfp_get_fpscr(env) & FPSR_MASK;
1027}
1028
1029static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1030{
1031    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1032    vfp_set_fpscr(env, new_fpscr);
1033}
1034
1035static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1036{
1037    return vfp_get_fpscr(env) & FPCR_MASK;
1038}
1039
1040static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1041{
1042    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1043    vfp_set_fpscr(env, new_fpscr);
1044}
1045
1046enum arm_cpu_mode {
1047  ARM_CPU_MODE_USR = 0x10,
1048  ARM_CPU_MODE_FIQ = 0x11,
1049  ARM_CPU_MODE_IRQ = 0x12,
1050  ARM_CPU_MODE_SVC = 0x13,
1051  ARM_CPU_MODE_MON = 0x16,
1052  ARM_CPU_MODE_ABT = 0x17,
1053  ARM_CPU_MODE_HYP = 0x1a,
1054  ARM_CPU_MODE_UND = 0x1b,
1055  ARM_CPU_MODE_SYS = 0x1f
1056};
1057
1058/* VFP system registers.  */
1059#define ARM_VFP_FPSID   0
1060#define ARM_VFP_FPSCR   1
1061#define ARM_VFP_MVFR2   5
1062#define ARM_VFP_MVFR1   6
1063#define ARM_VFP_MVFR0   7
1064#define ARM_VFP_FPEXC   8
1065#define ARM_VFP_FPINST  9
1066#define ARM_VFP_FPINST2 10
1067
1068/* iwMMXt coprocessor control registers.  */
1069#define ARM_IWMMXT_wCID         0
1070#define ARM_IWMMXT_wCon         1
1071#define ARM_IWMMXT_wCSSF        2
1072#define ARM_IWMMXT_wCASF        3
1073#define ARM_IWMMXT_wCGR0        8
1074#define ARM_IWMMXT_wCGR1        9
1075#define ARM_IWMMXT_wCGR2        10
1076#define ARM_IWMMXT_wCGR3        11
1077
1078/* If adding a feature bit which corresponds to a Linux ELF
1079 * HWCAP bit, remember to update the feature-bit-to-hwcap
1080 * mapping in linux-user/elfload.c:get_elf_hwcap().
1081 */
1082enum arm_features {
1083    ARM_FEATURE_VFP,
1084    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1085    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1086    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1087    ARM_FEATURE_V6,
1088    ARM_FEATURE_V6K,
1089    ARM_FEATURE_V7,
1090    ARM_FEATURE_THUMB2,
1091    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1092    ARM_FEATURE_VFP3,
1093    ARM_FEATURE_VFP_FP16,
1094    ARM_FEATURE_NEON,
1095    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1096    ARM_FEATURE_M, /* Microcontroller profile.  */
1097    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1098    ARM_FEATURE_THUMB2EE,
1099    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1100    ARM_FEATURE_V4T,
1101    ARM_FEATURE_V5,
1102    ARM_FEATURE_STRONGARM,
1103    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1104    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1105    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1106    ARM_FEATURE_GENERIC_TIMER,
1107    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1108    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1109    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1110    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1111    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1112    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1113    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1114    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1115    ARM_FEATURE_V8,
1116    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1117    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1118    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1119    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1120    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1121    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1122    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1123    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1124    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1125    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1126    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1127    ARM_FEATURE_PMU, /* has PMU support */
1128};
1129
1130static inline int arm_feature(CPUARMState *env, int feature)
1131{
1132    return (env->features & (1ULL << feature)) != 0;
1133}
1134
1135#if !defined(CONFIG_USER_ONLY)
1136/* Return true if exception levels below EL3 are in secure state,
1137 * or would be following an exception return to that level.
1138 * Unlike arm_is_secure() (which is always a question about the
1139 * _current_ state of the CPU) this doesn't care about the current
1140 * EL or mode.
1141 */
1142static inline bool arm_is_secure_below_el3(CPUARMState *env)
1143{
1144    if (arm_feature(env, ARM_FEATURE_EL3)) {
1145        return !(env->cp15.scr_el3 & SCR_NS);
1146    } else {
1147        /* If EL3 is not supported then the secure state is implementation
1148         * defined, in which case QEMU defaults to non-secure.
1149         */
1150        return false;
1151    }
1152}
1153
1154/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1155static inline bool arm_is_el3_or_mon(CPUARMState *env)
1156{
1157    if (arm_feature(env, ARM_FEATURE_EL3)) {
1158        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1159            /* CPU currently in AArch64 state and EL3 */
1160            return true;
1161        } else if (!is_a64(env) &&
1162                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1163            /* CPU currently in AArch32 state and monitor mode */
1164            return true;
1165        }
1166    }
1167    return false;
1168}
1169
1170/* Return true if the processor is in secure state */
1171static inline bool arm_is_secure(CPUARMState *env)
1172{
1173    if (arm_is_el3_or_mon(env)) {
1174        return true;
1175    }
1176    return arm_is_secure_below_el3(env);
1177}
1178
1179#else
1180static inline bool arm_is_secure_below_el3(CPUARMState *env)
1181{
1182    return false;
1183}
1184
1185static inline bool arm_is_secure(CPUARMState *env)
1186{
1187    return false;
1188}
1189#endif
1190
1191/* Return true if the specified exception level is running in AArch64 state. */
1192static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1193{
1194    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1195     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1196     */
1197    assert(el >= 1 && el <= 3);
1198    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1199
1200    /* The highest exception level is always at the maximum supported
1201     * register width, and then lower levels have a register width controlled
1202     * by bits in the SCR or HCR registers.
1203     */
1204    if (el == 3) {
1205        return aa64;
1206    }
1207
1208    if (arm_feature(env, ARM_FEATURE_EL3)) {
1209        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1210    }
1211
1212    if (el == 2) {
1213        return aa64;
1214    }
1215
1216    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1217        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1218    }
1219
1220    return aa64;
1221}
1222
1223/* Function for determing whether guest cp register reads and writes should
1224 * access the secure or non-secure bank of a cp register.  When EL3 is
1225 * operating in AArch32 state, the NS-bit determines whether the secure
1226 * instance of a cp register should be used. When EL3 is AArch64 (or if
1227 * it doesn't exist at all) then there is no register banking, and all
1228 * accesses are to the non-secure version.
1229 */
1230static inline bool access_secure_reg(CPUARMState *env)
1231{
1232    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1233                !arm_el_is_aa64(env, 3) &&
1234                !(env->cp15.scr_el3 & SCR_NS));
1235
1236    return ret;
1237}
1238
1239/* Macros for accessing a specified CP register bank */
1240#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1241    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1242
1243#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1244    do {                                                \
1245        if (_secure) {                                   \
1246            (_env)->cp15._regname##_s = (_val);            \
1247        } else {                                        \
1248            (_env)->cp15._regname##_ns = (_val);           \
1249        }                                               \
1250    } while (0)
1251
1252/* Macros for automatically accessing a specific CP register bank depending on
1253 * the current secure state of the system.  These macros are not intended for
1254 * supporting instruction translation reads/writes as these are dependent
1255 * solely on the SCR.NS bit and not the mode.
1256 */
1257#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1258    A32_BANKED_REG_GET((_env), _regname,                \
1259                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1260
1261#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1262    A32_BANKED_REG_SET((_env), _regname,                                    \
1263                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1264                       (_val))
1265
1266void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1267uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1268                                 uint32_t cur_el, bool secure);
1269
1270/* Interface between CPU and Interrupt controller.  */
1271void armv7m_nvic_set_pending(void *opaque, int irq);
1272int armv7m_nvic_acknowledge_irq(void *opaque);
1273void armv7m_nvic_complete_irq(void *opaque, int irq);
1274
1275/* Interface for defining coprocessor registers.
1276 * Registers are defined in tables of arm_cp_reginfo structs
1277 * which are passed to define_arm_cp_regs().
1278 */
1279
1280/* When looking up a coprocessor register we look for it
1281 * via an integer which encodes all of:
1282 *  coprocessor number
1283 *  Crn, Crm, opc1, opc2 fields
1284 *  32 or 64 bit register (ie is it accessed via MRC/MCR
1285 *    or via MRRC/MCRR?)
1286 *  non-secure/secure bank (AArch32 only)
1287 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1288 * (In this case crn and opc2 should be zero.)
1289 * For AArch64, there is no 32/64 bit size distinction;
1290 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1291 * and 4 bit CRn and CRm. The encoding patterns are chosen
1292 * to be easy to convert to and from the KVM encodings, and also
1293 * so that the hashtable can contain both AArch32 and AArch64
1294 * registers (to allow for interprocessing where we might run
1295 * 32 bit code on a 64 bit core).
1296 */
1297/* This bit is private to our hashtable cpreg; in KVM register
1298 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1299 * in the upper bits of the 64 bit ID.
1300 */
1301#define CP_REG_AA64_SHIFT 28
1302#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1303
1304/* To enable banking of coprocessor registers depending on ns-bit we
1305 * add a bit to distinguish between secure and non-secure cpregs in the
1306 * hashtable.
1307 */
1308#define CP_REG_NS_SHIFT 29
1309#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1310
1311#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1312    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1313     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1314
1315#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1316    (CP_REG_AA64_MASK |                                 \
1317     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1318     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1319     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1320     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1321     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1322     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1323
1324/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1325 * version used as a key for the coprocessor register hashtable
1326 */
1327static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1328{
1329    uint32_t cpregid = kvmid;
1330    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1331        cpregid |= CP_REG_AA64_MASK;
1332    } else {
1333        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1334            cpregid |= (1 << 15);
1335        }
1336
1337        /* KVM is always non-secure so add the NS flag on AArch32 register
1338         * entries.
1339         */
1340         cpregid |= 1 << CP_REG_NS_SHIFT;
1341    }
1342    return cpregid;
1343}
1344
1345/* Convert a truncated 32 bit hashtable key into the full
1346 * 64 bit KVM register ID.
1347 */
1348static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1349{
1350    uint64_t kvmid;
1351
1352    if (cpregid & CP_REG_AA64_MASK) {
1353        kvmid = cpregid & ~CP_REG_AA64_MASK;
1354        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1355    } else {
1356        kvmid = cpregid & ~(1 << 15);
1357        if (cpregid & (1 << 15)) {
1358            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1359        } else {
1360            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1361        }
1362    }
1363    return kvmid;
1364}
1365
1366/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1367 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1368 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1369 * TCG can assume the value to be constant (ie load at translate time)
1370 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1371 * indicates that the TB should not be ended after a write to this register
1372 * (the default is that the TB ends after cp writes). OVERRIDE permits
1373 * a register definition to override a previous definition for the
1374 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1375 * old must have the OVERRIDE bit set.
1376 * ALIAS indicates that this register is an alias view of some underlying
1377 * state which is also visible via another register, and that the other
1378 * register is handling migration and reset; registers marked ALIAS will not be
1379 * migrated but may have their state set by syncing of register state from KVM.
1380 * NO_RAW indicates that this register has no underlying state and does not
1381 * support raw access for state saving/loading; it will not be used for either
1382 * migration or KVM state synchronization. (Typically this is for "registers"
1383 * which are actually used as instructions for cache maintenance and so on.)
1384 * IO indicates that this register does I/O and therefore its accesses
1385 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1386 * registers which implement clocks or timers require this.
1387 */
1388#define ARM_CP_SPECIAL 1
1389#define ARM_CP_CONST 2
1390#define ARM_CP_64BIT 4
1391#define ARM_CP_SUPPRESS_TB_END 8
1392#define ARM_CP_OVERRIDE 16
1393#define ARM_CP_ALIAS 32
1394#define ARM_CP_IO 64
1395#define ARM_CP_NO_RAW 128
1396#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1397#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1398#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1399#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1400#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1401#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1402/* Used only as a terminator for ARMCPRegInfo lists */
1403#define ARM_CP_SENTINEL 0xffff
1404/* Mask of only the flag bits in a type field */
1405#define ARM_CP_FLAG_MASK 0xff
1406
1407/* Valid values for ARMCPRegInfo state field, indicating which of
1408 * the AArch32 and AArch64 execution states this register is visible in.
1409 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1410 * If the reginfo is declared to be visible in both states then a second
1411 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1412 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1413 * Note that we rely on the values of these enums as we iterate through
1414 * the various states in some places.
1415 */
1416enum {
1417    ARM_CP_STATE_AA32 = 0,
1418    ARM_CP_STATE_AA64 = 1,
1419    ARM_CP_STATE_BOTH = 2,
1420};
1421
1422/* ARM CP register secure state flags.  These flags identify security state
1423 * attributes for a given CP register entry.
1424 * The existence of both or neither secure and non-secure flags indicates that
1425 * the register has both a secure and non-secure hash entry.  A single one of
1426 * these flags causes the register to only be hashed for the specified
1427 * security state.
1428 * Although definitions may have any combination of the S/NS bits, each
1429 * registered entry will only have one to identify whether the entry is secure
1430 * or non-secure.
1431 */
1432enum {
1433    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1434    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1435};
1436
1437/* Return true if cptype is a valid type field. This is used to try to
1438 * catch errors where the sentinel has been accidentally left off the end
1439 * of a list of registers.
1440 */
1441static inline bool cptype_valid(int cptype)
1442{
1443    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1444        || ((cptype & ARM_CP_SPECIAL) &&
1445            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1446}
1447
1448/* Access rights:
1449 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1450 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1451 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1452 * (ie any of the privileged modes in Secure state, or Monitor mode).
1453 * If a register is accessible in one privilege level it's always accessible
1454 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1455 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1456 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1457 * terminology a little and call this PL3.
1458 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1459 * with the ELx exception levels.
1460 *
1461 * If access permissions for a register are more complex than can be
1462 * described with these bits, then use a laxer set of restrictions, and
1463 * do the more restrictive/complex check inside a helper function.
1464 */
1465#define PL3_R 0x80
1466#define PL3_W 0x40
1467#define PL2_R (0x20 | PL3_R)
1468#define PL2_W (0x10 | PL3_W)
1469#define PL1_R (0x08 | PL2_R)
1470#define PL1_W (0x04 | PL2_W)
1471#define PL0_R (0x02 | PL1_R)
1472#define PL0_W (0x01 | PL1_W)
1473
1474#define PL3_RW (PL3_R | PL3_W)
1475#define PL2_RW (PL2_R | PL2_W)
1476#define PL1_RW (PL1_R | PL1_W)
1477#define PL0_RW (PL0_R | PL0_W)
1478
1479/* Return the highest implemented Exception Level */
1480static inline int arm_highest_el(CPUARMState *env)
1481{
1482    if (arm_feature(env, ARM_FEATURE_EL3)) {
1483        return 3;
1484    }
1485    if (arm_feature(env, ARM_FEATURE_EL2)) {
1486        return 2;
1487    }
1488    return 1;
1489}
1490
1491/* Return the current Exception Level (as per ARMv8; note that this differs
1492 * from the ARMv7 Privilege Level).
1493 */
1494static inline int arm_current_el(CPUARMState *env)
1495{
1496    if (arm_feature(env, ARM_FEATURE_M)) {
1497        return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1498    }
1499
1500    if (is_a64(env)) {
1501        return extract32(env->pstate, 2, 2);
1502    }
1503
1504    switch (env->uncached_cpsr & 0x1f) {
1505    case ARM_CPU_MODE_USR:
1506        return 0;
1507    case ARM_CPU_MODE_HYP:
1508        return 2;
1509    case ARM_CPU_MODE_MON:
1510        return 3;
1511    default:
1512        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1513            /* If EL3 is 32-bit then all secure privileged modes run in
1514             * EL3
1515             */
1516            return 3;
1517        }
1518
1519        return 1;
1520    }
1521}
1522
1523typedef struct ARMCPRegInfo ARMCPRegInfo;
1524
1525typedef enum CPAccessResult {
1526    /* Access is permitted */
1527    CP_ACCESS_OK = 0,
1528    /* Access fails due to a configurable trap or enable which would
1529     * result in a categorized exception syndrome giving information about
1530     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1531     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1532     * PL1 if in EL0, otherwise to the current EL).
1533     */
1534    CP_ACCESS_TRAP = 1,
1535    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1536     * Note that this is not a catch-all case -- the set of cases which may
1537     * result in this failure is specifically defined by the architecture.
1538     */
1539    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1540    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1541    CP_ACCESS_TRAP_EL2 = 3,
1542    CP_ACCESS_TRAP_EL3 = 4,
1543    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1544    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1545    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1546    /* Access fails and results in an exception syndrome for an FP access,
1547     * trapped directly to EL2 or EL3
1548     */
1549    CP_ACCESS_TRAP_FP_EL2 = 7,
1550    CP_ACCESS_TRAP_FP_EL3 = 8,
1551} CPAccessResult;
1552
1553/* Access functions for coprocessor registers. These cannot fail and
1554 * may not raise exceptions.
1555 */
1556typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1557typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1558                       uint64_t value);
1559/* Access permission check functions for coprocessor registers. */
1560typedef CPAccessResult CPAccessFn(CPUARMState *env,
1561                                  const ARMCPRegInfo *opaque,
1562                                  bool isread);
1563/* Hook function for register reset */
1564typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1565
1566#define CP_ANY 0xff
1567
1568/* Definition of an ARM coprocessor register */
1569struct ARMCPRegInfo {
1570    /* Name of register (useful mainly for debugging, need not be unique) */
1571    const char *name;
1572    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1573     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1574     * 'wildcard' field -- any value of that field in the MRC/MCR insn
1575     * will be decoded to this register. The register read and write
1576     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1577     * used by the program, so it is possible to register a wildcard and
1578     * then behave differently on read/write if necessary.
1579     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1580     * must both be zero.
1581     * For AArch64-visible registers, opc0 is also used.
1582     * Since there are no "coprocessors" in AArch64, cp is purely used as a
1583     * way to distinguish (for KVM's benefit) guest-visible system registers
1584     * from demuxed ones provided to preserve the "no side effects on
1585     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1586     * visible (to match KVM's encoding); cp==0 will be converted to
1587     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1588     */
1589    uint8_t cp;
1590    uint8_t crn;
1591    uint8_t crm;
1592    uint8_t opc0;
1593    uint8_t opc1;
1594    uint8_t opc2;
1595    /* Execution state in which this register is visible: ARM_CP_STATE_* */
1596    int state;
1597    /* Register type: ARM_CP_* bits/values */
1598    int type;
1599    /* Access rights: PL*_[RW] */
1600    int access;
1601    /* Security state: ARM_CP_SECSTATE_* bits/values */
1602    int secure;
1603    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1604     * this register was defined: can be used to hand data through to the
1605     * register read/write functions, since they are passed the ARMCPRegInfo*.
1606     */
1607    void *opaque;
1608    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1609     * fieldoffset is non-zero, the reset value of the register.
1610     */
1611    uint64_t resetvalue;
1612    /* Offset of the field in CPUARMState for this register.
1613     *
1614     * This is not needed if either:
1615     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1616     *  2. both readfn and writefn are specified
1617     */
1618    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1619
1620    /* Offsets of the secure and non-secure fields in CPUARMState for the
1621     * register if it is banked.  These fields are only used during the static
1622     * registration of a register.  During hashing the bank associated
1623     * with a given security state is copied to fieldoffset which is used from
1624     * there on out.
1625     *
1626     * It is expected that register definitions use either fieldoffset or
1627     * bank_fieldoffsets in the definition but not both.  It is also expected
1628     * that both bank offsets are set when defining a banked register.  This
1629     * use indicates that a register is banked.
1630     */
1631    ptrdiff_t bank_fieldoffsets[2];
1632
1633    /* Function for making any access checks for this register in addition to
1634     * those specified by the 'access' permissions bits. If NULL, no extra
1635     * checks required. The access check is performed at runtime, not at
1636     * translate time.
1637     */
1638    CPAccessFn *accessfn;
1639    /* Function for handling reads of this register. If NULL, then reads
1640     * will be done by loading from the offset into CPUARMState specified
1641     * by fieldoffset.
1642     */
1643    CPReadFn *readfn;
1644    /* Function for handling writes of this register. If NULL, then writes
1645     * will be done by writing to the offset into CPUARMState specified
1646     * by fieldoffset.
1647     */
1648    CPWriteFn *writefn;
1649    /* Function for doing a "raw" read; used when we need to copy
1650     * coprocessor state to the kernel for KVM or out for
1651     * migration. This only needs to be provided if there is also a
1652     * readfn and it has side effects (for instance clear-on-read bits).
1653     */
1654    CPReadFn *raw_readfn;
1655    /* Function for doing a "raw" write; used when we need to copy KVM
1656     * kernel coprocessor state into userspace, or for inbound
1657     * migration. This only needs to be provided if there is also a
1658     * writefn and it masks out "unwritable" bits or has write-one-to-clear
1659     * or similar behaviour.
1660     */
1661    CPWriteFn *raw_writefn;
1662    /* Function for resetting the register. If NULL, then reset will be done
1663     * by writing resetvalue to the field specified in fieldoffset. If
1664     * fieldoffset is 0 then no reset will be done.
1665     */
1666    CPResetFn *resetfn;
1667};
1668
1669/* Macros which are lvalues for the field in CPUARMState for the
1670 * ARMCPRegInfo *ri.
1671 */
1672#define CPREG_FIELD32(env, ri) \
1673    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1674#define CPREG_FIELD64(env, ri) \
1675    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1676
1677#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1678
1679void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1680                                    const ARMCPRegInfo *regs, void *opaque);
1681void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1682                                       const ARMCPRegInfo *regs, void *opaque);
1683static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1684{
1685    define_arm_cp_regs_with_opaque(cpu, regs, 0);
1686}
1687static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1688{
1689    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1690}
1691const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1692
1693/* CPWriteFn that can be used to implement writes-ignored behaviour */
1694void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1695                         uint64_t value);
1696/* CPReadFn that can be used for read-as-zero behaviour */
1697uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1698
1699/* CPResetFn that does nothing, for use if no reset is required even
1700 * if fieldoffset is non zero.
1701 */
1702void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1703
1704/* Return true if this reginfo struct's field in the cpu state struct
1705 * is 64 bits wide.
1706 */
1707static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1708{
1709    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1710}
1711
1712static inline bool cp_access_ok(int current_el,
1713                                const ARMCPRegInfo *ri, int isread)
1714{
1715    return (ri->access >> ((current_el * 2) + isread)) & 1;
1716}
1717
1718/* Raw read of a coprocessor register (as needed for migration, etc) */
1719uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1720
1721/**
1722 * write_list_to_cpustate
1723 * @cpu: ARMCPU
1724 *
1725 * For each register listed in the ARMCPU cpreg_indexes list, write
1726 * its value from the cpreg_values list into the ARMCPUState structure.
1727 * This updates TCG's working data structures from KVM data or
1728 * from incoming migration state.
1729 *
1730 * Returns: true if all register values were updated correctly,
1731 * false if some register was unknown or could not be written.
1732 * Note that we do not stop early on failure -- we will attempt
1733 * writing all registers in the list.
1734 */
1735bool write_list_to_cpustate(ARMCPU *cpu);
1736
1737/**
1738 * write_cpustate_to_list:
1739 * @cpu: ARMCPU
1740 *
1741 * For each register listed in the ARMCPU cpreg_indexes list, write
1742 * its value from the ARMCPUState structure into the cpreg_values list.
1743 * This is used to copy info from TCG's working data structures into
1744 * KVM or for outbound migration.
1745 *
1746 * Returns: true if all register values were read correctly,
1747 * false if some register was unknown or could not be read.
1748 * Note that we do not stop early on failure -- we will attempt
1749 * reading all registers in the list.
1750 */
1751bool write_cpustate_to_list(ARMCPU *cpu);
1752
1753/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1754   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1755   conventional cores (ie. Application or Realtime profile).  */
1756
1757#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1758
1759#define ARM_CPUID_TI915T      0x54029152
1760#define ARM_CPUID_TI925T      0x54029252
1761
1762#if defined(CONFIG_USER_ONLY)
1763#define TARGET_PAGE_BITS 12
1764#else
1765/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1766 * have to support 1K tiny pages.
1767 */
1768#define TARGET_PAGE_BITS_VARY
1769#define TARGET_PAGE_BITS_MIN 10
1770#endif
1771
1772#if defined(TARGET_AARCH64)
1773#  define TARGET_PHYS_ADDR_SPACE_BITS 48
1774#  define TARGET_VIRT_ADDR_SPACE_BITS 64
1775#else
1776#  define TARGET_PHYS_ADDR_SPACE_BITS 40
1777#  define TARGET_VIRT_ADDR_SPACE_BITS 32
1778#endif
1779
1780static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1781                                     unsigned int target_el)
1782{
1783    CPUARMState *env = cs->env_ptr;
1784    unsigned int cur_el = arm_current_el(env);
1785    bool secure = arm_is_secure(env);
1786    bool pstate_unmasked;
1787    int8_t unmasked = 0;
1788
1789    /* Don't take exceptions if they target a lower EL.
1790     * This check should catch any exceptions that would not be taken but left
1791     * pending.
1792     */
1793    if (cur_el > target_el) {
1794        return false;
1795    }
1796
1797    switch (excp_idx) {
1798    case EXCP_FIQ:
1799        pstate_unmasked = !(env->daif & PSTATE_F);
1800        break;
1801
1802    case EXCP_IRQ:
1803        pstate_unmasked = !(env->daif & PSTATE_I);
1804        break;
1805
1806    case EXCP_VFIQ:
1807        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1808            /* VFIQs are only taken when hypervized and non-secure.  */
1809            return false;
1810        }
1811        return !(env->daif & PSTATE_F);
1812    case EXCP_VIRQ:
1813        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1814            /* VIRQs are only taken when hypervized and non-secure.  */
1815            return false;
1816        }
1817        return !(env->daif & PSTATE_I);
1818    default:
1819        g_assert_not_reached();
1820    }
1821
1822    /* Use the target EL, current execution state and SCR/HCR settings to
1823     * determine whether the corresponding CPSR bit is used to mask the
1824     * interrupt.
1825     */
1826    if ((target_el > cur_el) && (target_el != 1)) {
1827        /* Exceptions targeting a higher EL may not be maskable */
1828        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1829            /* 64-bit masking rules are simple: exceptions to EL3
1830             * can't be masked, and exceptions to EL2 can only be
1831             * masked from Secure state. The HCR and SCR settings
1832             * don't affect the masking logic, only the interrupt routing.
1833             */
1834            if (target_el == 3 || !secure) {
1835                unmasked = 1;
1836            }
1837        } else {
1838            /* The old 32-bit-only environment has a more complicated
1839             * masking setup. HCR and SCR bits not only affect interrupt
1840             * routing but also change the behaviour of masking.
1841             */
1842            bool hcr, scr;
1843
1844            switch (excp_idx) {
1845            case EXCP_FIQ:
1846                /* If FIQs are routed to EL3 or EL2 then there are cases where
1847                 * we override the CPSR.F in determining if the exception is
1848                 * masked or not. If neither of these are set then we fall back
1849                 * to the CPSR.F setting otherwise we further assess the state
1850                 * below.
1851                 */
1852                hcr = (env->cp15.hcr_el2 & HCR_FMO);
1853                scr = (env->cp15.scr_el3 & SCR_FIQ);
1854
1855                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1856                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1857                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1858                 * when non-secure but only when FIQs are only routed to EL3.
1859                 */
1860                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1861                break;
1862            case EXCP_IRQ:
1863                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1864                 * we may override the CPSR.I masking when in non-secure state.
1865                 * The SCR.IRQ setting has already been taken into consideration
1866                 * when setting the target EL, so it does not have a further
1867                 * affect here.
1868                 */
1869                hcr = (env->cp15.hcr_el2 & HCR_IMO);
1870                scr = false;
1871                break;
1872            default:
1873                g_assert_not_reached();
1874            }
1875
1876            if ((scr || hcr) && !secure) {
1877                unmasked = 1;
1878            }
1879        }
1880    }
1881
1882    /* The PSTATE bits only mask the interrupt if we have not overriden the
1883     * ability above.
1884     */
1885    return unmasked || pstate_unmasked;
1886}
1887
1888#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1889
1890#define cpu_signal_handler cpu_arm_signal_handler
1891#define cpu_list arm_cpu_list
1892
1893/* ARM has the following "translation regimes" (as the ARM ARM calls them):
1894 *
1895 * If EL3 is 64-bit:
1896 *  + NonSecure EL1 & 0 stage 1
1897 *  + NonSecure EL1 & 0 stage 2
1898 *  + NonSecure EL2
1899 *  + Secure EL1 & EL0
1900 *  + Secure EL3
1901 * If EL3 is 32-bit:
1902 *  + NonSecure PL1 & 0 stage 1
1903 *  + NonSecure PL1 & 0 stage 2
1904 *  + NonSecure PL2
1905 *  + Secure PL0 & PL1
1906 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1907 *
1908 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1909 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1910 *     may differ in access permissions even if the VA->PA map is the same
1911 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1912 *     translation, which means that we have one mmu_idx that deals with two
1913 *     concatenated translation regimes [this sort of combined s1+2 TLB is
1914 *     architecturally permitted]
1915 *  3. we don't need to allocate an mmu_idx to translations that we won't be
1916 *     handling via the TLB. The only way to do a stage 1 translation without
1917 *     the immediate stage 2 translation is via the ATS or AT system insns,
1918 *     which can be slow-pathed and always do a page table walk.
1919 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1920 *     translation regimes, because they map reasonably well to each other
1921 *     and they can't both be active at the same time.
1922 * This gives us the following list of mmu_idx values:
1923 *
1924 * NS EL0 (aka NS PL0) stage 1+2
1925 * NS EL1 (aka NS PL1) stage 1+2
1926 * NS EL2 (aka NS PL2)
1927 * S EL3 (aka S PL1)
1928 * S EL0 (aka S PL0)
1929 * S EL1 (not used if EL3 is 32 bit)
1930 * NS EL0+1 stage 2
1931 *
1932 * (The last of these is an mmu_idx because we want to be able to use the TLB
1933 * for the accesses done as part of a stage 1 page table walk, rather than
1934 * having to walk the stage 2 page table over and over.)
1935 *
1936 * Our enumeration includes at the end some entries which are not "true"
1937 * mmu_idx values in that they don't have corresponding TLBs and are only
1938 * valid for doing slow path page table walks.
1939 *
1940 * The constant names here are patterned after the general style of the names
1941 * of the AT/ATS operations.
1942 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1943 */
1944typedef enum ARMMMUIdx {
1945    ARMMMUIdx_S12NSE0 = 0,
1946    ARMMMUIdx_S12NSE1 = 1,
1947    ARMMMUIdx_S1E2 = 2,
1948    ARMMMUIdx_S1E3 = 3,
1949    ARMMMUIdx_S1SE0 = 4,
1950    ARMMMUIdx_S1SE1 = 5,
1951    ARMMMUIdx_S2NS = 6,
1952    /* Indexes below here don't have TLBs and are used only for AT system
1953     * instructions or for the first stage of an S12 page table walk.
1954     */
1955    ARMMMUIdx_S1NSE0 = 7,
1956    ARMMMUIdx_S1NSE1 = 8,
1957} ARMMMUIdx;
1958
1959#define MMU_USER_IDX 0
1960
1961/* Return the exception level we're running at if this is our mmu_idx */
1962static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1963{
1964    assert(mmu_idx < ARMMMUIdx_S2NS);
1965    return mmu_idx & 3;
1966}
1967
1968/* Determine the current mmu_idx to use for normal loads/stores */
1969static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
1970{
1971    int el = arm_current_el(env);
1972
1973    if (el < 2 && arm_is_secure_below_el3(env)) {
1974        return ARMMMUIdx_S1SE0 + el;
1975    }
1976    return el;
1977}
1978
1979/* Indexes used when registering address spaces with cpu_address_space_init */
1980typedef enum ARMASIdx {
1981    ARMASIdx_NS = 0,
1982    ARMASIdx_S = 1,
1983} ARMASIdx;
1984
1985/* Return the Exception Level targeted by debug exceptions. */
1986static inline int arm_debug_target_el(CPUARMState *env)
1987{
1988    bool secure = arm_is_secure(env);
1989    bool route_to_el2 = false;
1990
1991    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
1992        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
1993                       env->cp15.mdcr_el2 & (1 << 8);
1994    }
1995
1996    if (route_to_el2) {
1997        return 2;
1998    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
1999               !arm_el_is_aa64(env, 3) && secure) {
2000        return 3;
2001    } else {
2002        return 1;
2003    }
2004}
2005
2006static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2007{
2008    if (arm_is_secure(env)) {
2009        /* MDCR_EL3.SDD disables debug events from Secure state */
2010        if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2011            || arm_current_el(env) == 3) {
2012            return false;
2013        }
2014    }
2015
2016    if (arm_current_el(env) == arm_debug_target_el(env)) {
2017        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2018            || (env->daif & PSTATE_D)) {
2019            return false;
2020        }
2021    }
2022    return true;
2023}
2024
2025static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2026{
2027    int el = arm_current_el(env);
2028
2029    if (el == 0 && arm_el_is_aa64(env, 1)) {
2030        return aa64_generate_debug_exceptions(env);
2031    }
2032
2033    if (arm_is_secure(env)) {
2034        int spd;
2035
2036        if (el == 0 && (env->cp15.sder & 1)) {
2037            /* SDER.SUIDEN means debug exceptions from Secure EL0
2038             * are always enabled. Otherwise they are controlled by
2039             * SDCR.SPD like those from other Secure ELs.
2040             */
2041            return true;
2042        }
2043
2044        spd = extract32(env->cp15.mdcr_el3, 14, 2);
2045        switch (spd) {
2046        case 1:
2047            /* SPD == 0b01 is reserved, but behaves as 0b00. */
2048        case 0:
2049            /* For 0b00 we return true if external secure invasive debug
2050             * is enabled. On real hardware this is controlled by external
2051             * signals to the core. QEMU always permits debug, and behaves
2052             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2053             */
2054            return true;
2055        case 2:
2056            return false;
2057        case 3:
2058            return true;
2059        }
2060    }
2061
2062    return el != 2;
2063}
2064
2065/* Return true if debugging exceptions are currently enabled.
2066 * This corresponds to what in ARM ARM pseudocode would be
2067 *    if UsingAArch32() then
2068 *        return AArch32.GenerateDebugExceptions()
2069 *    else
2070 *        return AArch64.GenerateDebugExceptions()
2071 * We choose to push the if() down into this function for clarity,
2072 * since the pseudocode has it at all callsites except for the one in
2073 * CheckSoftwareStep(), where it is elided because both branches would
2074 * always return the same value.
2075 *
2076 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2077 * don't yet implement those exception levels or their associated trap bits.
2078 */
2079static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2080{
2081    if (env->aarch64) {
2082        return aa64_generate_debug_exceptions(env);
2083    } else {
2084        return aa32_generate_debug_exceptions(env);
2085    }
2086}
2087
2088/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2089 * implicitly means this always returns false in pre-v8 CPUs.)
2090 */
2091static inline bool arm_singlestep_active(CPUARMState *env)
2092{
2093    return extract32(env->cp15.mdscr_el1, 0, 1)
2094        && arm_el_is_aa64(env, arm_debug_target_el(env))
2095        && arm_generate_debug_exceptions(env);
2096}
2097
2098static inline bool arm_sctlr_b(CPUARMState *env)
2099{
2100    return
2101        /* We need not implement SCTLR.ITD in user-mode emulation, so
2102         * let linux-user ignore the fact that it conflicts with SCTLR_B.
2103         * This lets people run BE32 binaries with "-cpu any".
2104         */
2105#ifndef CONFIG_USER_ONLY
2106        !arm_feature(env, ARM_FEATURE_V7) &&
2107#endif
2108        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2109}
2110
2111/* Return true if the processor is in big-endian mode. */
2112static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2113{
2114    int cur_el;
2115
2116    /* In 32bit endianness is determined by looking at CPSR's E bit */
2117    if (!is_a64(env)) {
2118        return
2119#ifdef CONFIG_USER_ONLY
2120            /* In system mode, BE32 is modelled in line with the
2121             * architecture (as word-invariant big-endianness), where loads
2122             * and stores are done little endian but from addresses which
2123             * are adjusted by XORing with the appropriate constant. So the
2124             * endianness to use for the raw data access is not affected by
2125             * SCTLR.B.
2126             * In user mode, however, we model BE32 as byte-invariant
2127             * big-endianness (because user-only code cannot tell the
2128             * difference), and so we need to use a data access endianness
2129             * that depends on SCTLR.B.
2130             */
2131            arm_sctlr_b(env) ||
2132#endif
2133                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2134    }
2135
2136    cur_el = arm_current_el(env);
2137
2138    if (cur_el == 0) {
2139        return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2140    }
2141
2142    return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2143}
2144
2145#include "exec/cpu-all.h"
2146
2147/* Bit usage in the TB flags field: bit 31 indicates whether we are
2148 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2149 * We put flags which are shared between 32 and 64 bit mode at the top
2150 * of the word, and flags which apply to only one mode at the bottom.
2151 */
2152#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2153#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2154#define ARM_TBFLAG_MMUIDX_SHIFT 28
2155#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2156#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2157#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2158#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2159#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2160/* Target EL if we take a floating-point-disabled exception */
2161#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2162#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2163
2164/* Bit usage when in AArch32 state: */
2165#define ARM_TBFLAG_THUMB_SHIFT      0
2166#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2167#define ARM_TBFLAG_VECLEN_SHIFT     1
2168#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2169#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2170#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2171#define ARM_TBFLAG_VFPEN_SHIFT      7
2172#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2173#define ARM_TBFLAG_CONDEXEC_SHIFT   8
2174#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2175#define ARM_TBFLAG_SCTLR_B_SHIFT    16
2176#define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2177/* We store the bottom two bits of the CPAR as TB flags and handle
2178 * checks on the other bits at runtime
2179 */
2180#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2181#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2182/* Indicates whether cp register reads and writes by guest code should access
2183 * the secure or nonsecure bank of banked registers; note that this is not
2184 * the same thing as the current security state of the processor!
2185 */
2186#define ARM_TBFLAG_NS_SHIFT         19
2187#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2188#define ARM_TBFLAG_BE_DATA_SHIFT    20
2189#define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2190
2191/* Bit usage when in AArch64 state */
2192#define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2193#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2194#define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2195#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2196
2197/* some convenience accessor macros */
2198#define ARM_TBFLAG_AARCH64_STATE(F) \
2199    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2200#define ARM_TBFLAG_MMUIDX(F) \
2201    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2202#define ARM_TBFLAG_SS_ACTIVE(F) \
2203    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2204#define ARM_TBFLAG_PSTATE_SS(F) \
2205    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2206#define ARM_TBFLAG_FPEXC_EL(F) \
2207    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2208#define ARM_TBFLAG_THUMB(F) \
2209    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2210#define ARM_TBFLAG_VECLEN(F) \
2211    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2212#define ARM_TBFLAG_VECSTRIDE(F) \
2213    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2214#define ARM_TBFLAG_VFPEN(F) \
2215    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2216#define ARM_TBFLAG_CONDEXEC(F) \
2217    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2218#define ARM_TBFLAG_SCTLR_B(F) \
2219    (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2220#define ARM_TBFLAG_XSCALE_CPAR(F) \
2221    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2222#define ARM_TBFLAG_NS(F) \
2223    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2224#define ARM_TBFLAG_BE_DATA(F) \
2225    (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2226#define ARM_TBFLAG_TBI0(F) \
2227    (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2228#define ARM_TBFLAG_TBI1(F) \
2229    (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2230
2231static inline bool bswap_code(bool sctlr_b)
2232{
2233#ifdef CONFIG_USER_ONLY
2234    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2235     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2236     * would also end up as a mixed-endian mode with BE code, LE data.
2237     */
2238    return
2239#ifdef TARGET_WORDS_BIGENDIAN
2240        1 ^
2241#endif
2242        sctlr_b;
2243#else
2244    /* All code access in ARM is little endian, and there are no loaders
2245     * doing swaps that need to be reversed
2246     */
2247    return 0;
2248#endif
2249}
2250
2251/* Return the exception level to which FP-disabled exceptions should
2252 * be taken, or 0 if FP is enabled.
2253 */
2254static inline int fp_exception_el(CPUARMState *env)
2255{
2256    int fpen;
2257    int cur_el = arm_current_el(env);
2258
2259    /* CPACR and the CPTR registers don't exist before v6, so FP is
2260     * always accessible
2261     */
2262    if (!arm_feature(env, ARM_FEATURE_V6)) {
2263        return 0;
2264    }
2265
2266    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2267     * 0, 2 : trap EL0 and EL1/PL1 accesses
2268     * 1    : trap only EL0 accesses
2269     * 3    : trap no accesses
2270     */
2271    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2272    switch (fpen) {
2273    case 0:
2274    case 2:
2275        if (cur_el == 0 || cur_el == 1) {
2276            /* Trap to PL1, which might be EL1 or EL3 */
2277            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2278                return 3;
2279            }
2280            return 1;
2281        }
2282        if (cur_el == 3 && !is_a64(env)) {
2283            /* Secure PL1 running at EL3 */
2284            return 3;
2285        }
2286        break;
2287    case 1:
2288        if (cur_el == 0) {
2289            return 1;
2290        }
2291        break;
2292    case 3:
2293        break;
2294    }
2295
2296    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2297     * check because zero bits in the registers mean "don't trap".
2298     */
2299
2300    /* CPTR_EL2 : present in v7VE or v8 */
2301    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2302        && !arm_is_secure_below_el3(env)) {
2303        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2304        return 2;
2305    }
2306
2307    /* CPTR_EL3 : present in v8 */
2308    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2309        /* Trap all FP ops to EL3 */
2310        return 3;
2311    }
2312
2313    return 0;
2314}
2315
2316#ifdef CONFIG_USER_ONLY
2317static inline bool arm_cpu_bswap_data(CPUARMState *env)
2318{
2319    return
2320#ifdef TARGET_WORDS_BIGENDIAN
2321       1 ^
2322#endif
2323       arm_cpu_data_is_big_endian(env);
2324}
2325#endif
2326
2327#ifndef CONFIG_USER_ONLY
2328/**
2329 * arm_regime_tbi0:
2330 * @env: CPUARMState
2331 * @mmu_idx: MMU index indicating required translation regime
2332 *
2333 * Extracts the TBI0 value from the appropriate TCR for the current EL
2334 *
2335 * Returns: the TBI0 value.
2336 */
2337uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2338
2339/**
2340 * arm_regime_tbi1:
2341 * @env: CPUARMState
2342 * @mmu_idx: MMU index indicating required translation regime
2343 *
2344 * Extracts the TBI1 value from the appropriate TCR for the current EL
2345 *
2346 * Returns: the TBI1 value.
2347 */
2348uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2349#else
2350/* We can't handle tagged addresses properly in user-only mode */
2351static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2352{
2353    return 0;
2354}
2355
2356static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2357{
2358    return 0;
2359}
2360#endif
2361
2362static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2363                                        target_ulong *cs_base, uint32_t *flags)
2364{
2365    ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2366    if (is_a64(env)) {
2367        *pc = env->pc;
2368        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2369        /* Get control bits for tagged addresses */
2370        *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2371        *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2372    } else {
2373        *pc = env->regs[15];
2374        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2375            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2376            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2377            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2378            | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2379        if (!(access_secure_reg(env))) {
2380            *flags |= ARM_TBFLAG_NS_MASK;
2381        }
2382        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2383            || arm_el_is_aa64(env, 1)) {
2384            *flags |= ARM_TBFLAG_VFPEN_MASK;
2385        }
2386        *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2387                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2388    }
2389
2390    *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2391
2392    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2393     * states defined in the ARM ARM for software singlestep:
2394     *  SS_ACTIVE   PSTATE.SS   State
2395     *     0            x       Inactive (the TB flag for SS is always 0)
2396     *     1            0       Active-pending
2397     *     1            1       Active-not-pending
2398     */
2399    if (arm_singlestep_active(env)) {
2400        *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2401        if (is_a64(env)) {
2402            if (env->pstate & PSTATE_SS) {
2403                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2404            }
2405        } else {
2406            if (env->uncached_cpsr & PSTATE_SS) {
2407                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2408            }
2409        }
2410    }
2411    if (arm_cpu_data_is_big_endian(env)) {
2412        *flags |= ARM_TBFLAG_BE_DATA_MASK;
2413    }
2414    *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2415
2416    *cs_base = 0;
2417}
2418
2419enum {
2420    QEMU_PSCI_CONDUIT_DISABLED = 0,
2421    QEMU_PSCI_CONDUIT_SMC = 1,
2422    QEMU_PSCI_CONDUIT_HVC = 2,
2423};
2424
2425#ifndef CONFIG_USER_ONLY
2426/* Return the address space index to use for a memory access */
2427static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2428{
2429    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2430}
2431
2432/* Return the AddressSpace to use for a memory access
2433 * (which depends on whether the access is S or NS, and whether
2434 * the board gave us a separate AddressSpace for S accesses).
2435 */
2436static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2437{
2438    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2439}
2440#endif
2441
2442/**
2443 * arm_register_el_change_hook:
2444 * Register a hook function which will be called back whenever this
2445 * CPU changes exception level or mode. The hook function will be
2446 * passed a pointer to the ARMCPU and the opaque data pointer passed
2447 * to this function when the hook was registered.
2448 *
2449 * Note that we currently only support registering a single hook function,
2450 * and will assert if this function is called twice.
2451 * This facility is intended for the use of the GICv3 emulation.
2452 */
2453void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2454                                 void *opaque);
2455
2456/**
2457 * arm_get_el_change_hook_opaque:
2458 * Return the opaque data that will be used by the el_change_hook
2459 * for this CPU.
2460 */
2461static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2462{
2463    return cpu->el_change_hook_opaque;
2464}
2465
2466#endif
2467