qemu/target-arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target-arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28/* register banks for CPU modes */
  29#define BANK_USRSYS 0
  30#define BANK_SVC    1
  31#define BANK_ABT    2
  32#define BANK_UND    3
  33#define BANK_IRQ    4
  34#define BANK_FIQ    5
  35#define BANK_HYP    6
  36#define BANK_MON    7
  37
  38static inline bool excp_is_internal(int excp)
  39{
  40    /* Return true if this exception number represents a QEMU-internal
  41     * exception that will not be passed to the guest.
  42     */
  43    return excp == EXCP_INTERRUPT
  44        || excp == EXCP_HLT
  45        || excp == EXCP_DEBUG
  46        || excp == EXCP_HALTED
  47        || excp == EXCP_EXCEPTION_EXIT
  48        || excp == EXCP_KERNEL_TRAP
  49        || excp == EXCP_SEMIHOST;
  50}
  51
  52/* Exception names for debug logging; note that not all of these
  53 * precisely correspond to architectural exceptions.
  54 */
  55static const char * const excnames[] = {
  56    [EXCP_UDEF] = "Undefined Instruction",
  57    [EXCP_SWI] = "SVC",
  58    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
  59    [EXCP_DATA_ABORT] = "Data Abort",
  60    [EXCP_IRQ] = "IRQ",
  61    [EXCP_FIQ] = "FIQ",
  62    [EXCP_BKPT] = "Breakpoint",
  63    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
  64    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
  65    [EXCP_HVC] = "Hypervisor Call",
  66    [EXCP_HYP_TRAP] = "Hypervisor Trap",
  67    [EXCP_SMC] = "Secure Monitor Call",
  68    [EXCP_VIRQ] = "Virtual IRQ",
  69    [EXCP_VFIQ] = "Virtual FIQ",
  70    [EXCP_SEMIHOST] = "Semihosting call",
  71};
  72
  73/* Scale factor for generic timers, ie number of ns per tick.
  74 * This gives a 62.5MHz timer.
  75 */
  76#define GTIMER_SCALE 16
  77
  78/*
  79 * For AArch64, map a given EL to an index in the banked_spsr array.
  80 * Note that this mapping and the AArch32 mapping defined in bank_number()
  81 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
  82 * mandated mapping between each other.
  83 */
  84static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
  85{
  86    static const unsigned int map[4] = {
  87        [1] = BANK_SVC, /* EL1.  */
  88        [2] = BANK_HYP, /* EL2.  */
  89        [3] = BANK_MON, /* EL3.  */
  90    };
  91    assert(el >= 1 && el <= 3);
  92    return map[el];
  93}
  94
  95/* Map CPU modes onto saved register banks.  */
  96static inline int bank_number(int mode)
  97{
  98    switch (mode) {
  99    case ARM_CPU_MODE_USR:
 100    case ARM_CPU_MODE_SYS:
 101        return BANK_USRSYS;
 102    case ARM_CPU_MODE_SVC:
 103        return BANK_SVC;
 104    case ARM_CPU_MODE_ABT:
 105        return BANK_ABT;
 106    case ARM_CPU_MODE_UND:
 107        return BANK_UND;
 108    case ARM_CPU_MODE_IRQ:
 109        return BANK_IRQ;
 110    case ARM_CPU_MODE_FIQ:
 111        return BANK_FIQ;
 112    case ARM_CPU_MODE_HYP:
 113        return BANK_HYP;
 114    case ARM_CPU_MODE_MON:
 115        return BANK_MON;
 116    }
 117    g_assert_not_reached();
 118}
 119
 120void switch_mode(CPUARMState *, int);
 121void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 122void arm_translate_init(void);
 123
 124enum arm_fprounding {
 125    FPROUNDING_TIEEVEN,
 126    FPROUNDING_POSINF,
 127    FPROUNDING_NEGINF,
 128    FPROUNDING_ZERO,
 129    FPROUNDING_TIEAWAY,
 130    FPROUNDING_ODD
 131};
 132
 133int arm_rmode_to_sf(int rmode);
 134
 135static inline void aarch64_save_sp(CPUARMState *env, int el)
 136{
 137    if (env->pstate & PSTATE_SP) {
 138        env->sp_el[el] = env->xregs[31];
 139    } else {
 140        env->sp_el[0] = env->xregs[31];
 141    }
 142}
 143
 144static inline void aarch64_restore_sp(CPUARMState *env, int el)
 145{
 146    if (env->pstate & PSTATE_SP) {
 147        env->xregs[31] = env->sp_el[el];
 148    } else {
 149        env->xregs[31] = env->sp_el[0];
 150    }
 151}
 152
 153static inline void update_spsel(CPUARMState *env, uint32_t imm)
 154{
 155    unsigned int cur_el = arm_current_el(env);
 156    /* Update PSTATE SPSel bit; this requires us to update the
 157     * working stack pointer in xregs[31].
 158     */
 159    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 160        return;
 161    }
 162    aarch64_save_sp(env, cur_el);
 163    env->pstate = deposit32(env->pstate, 0, 1, imm);
 164
 165    /* We rely on illegal updates to SPsel from EL0 to get trapped
 166     * at translation time.
 167     */
 168    assert(cur_el >= 1 && cur_el <= 3);
 169    aarch64_restore_sp(env, cur_el);
 170}
 171
 172/*
 173 * arm_pamax
 174 * @cpu: ARMCPU
 175 *
 176 * Returns the implementation defined bit-width of physical addresses.
 177 * The ARMv8 reference manuals refer to this as PAMax().
 178 */
 179static inline unsigned int arm_pamax(ARMCPU *cpu)
 180{
 181    static const unsigned int pamax_map[] = {
 182        [0] = 32,
 183        [1] = 36,
 184        [2] = 40,
 185        [3] = 42,
 186        [4] = 44,
 187        [5] = 48,
 188    };
 189    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 190
 191    /* id_aa64mmfr0 is a read-only register so values outside of the
 192     * supported mappings can be considered an implementation error.  */
 193    assert(parange < ARRAY_SIZE(pamax_map));
 194    return pamax_map[parange];
 195}
 196
 197/* Return true if extended addresses are enabled.
 198 * This is always the case if our translation regime is 64 bit,
 199 * but depends on TTBCR.EAE for 32 bit.
 200 */
 201static inline bool extended_addresses_enabled(CPUARMState *env)
 202{
 203    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 204    return arm_el_is_aa64(env, 1) ||
 205           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 206}
 207
 208/* Valid Syndrome Register EC field values */
 209enum arm_exception_class {
 210    EC_UNCATEGORIZED          = 0x00,
 211    EC_WFX_TRAP               = 0x01,
 212    EC_CP15RTTRAP             = 0x03,
 213    EC_CP15RRTTRAP            = 0x04,
 214    EC_CP14RTTRAP             = 0x05,
 215    EC_CP14DTTRAP             = 0x06,
 216    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 217    EC_FPIDTRAP               = 0x08,
 218    EC_CP14RRTTRAP            = 0x0c,
 219    EC_ILLEGALSTATE           = 0x0e,
 220    EC_AA32_SVC               = 0x11,
 221    EC_AA32_HVC               = 0x12,
 222    EC_AA32_SMC               = 0x13,
 223    EC_AA64_SVC               = 0x15,
 224    EC_AA64_HVC               = 0x16,
 225    EC_AA64_SMC               = 0x17,
 226    EC_SYSTEMREGISTERTRAP     = 0x18,
 227    EC_INSNABORT              = 0x20,
 228    EC_INSNABORT_SAME_EL      = 0x21,
 229    EC_PCALIGNMENT            = 0x22,
 230    EC_DATAABORT              = 0x24,
 231    EC_DATAABORT_SAME_EL      = 0x25,
 232    EC_SPALIGNMENT            = 0x26,
 233    EC_AA32_FPTRAP            = 0x28,
 234    EC_AA64_FPTRAP            = 0x2c,
 235    EC_SERROR                 = 0x2f,
 236    EC_BREAKPOINT             = 0x30,
 237    EC_BREAKPOINT_SAME_EL     = 0x31,
 238    EC_SOFTWARESTEP           = 0x32,
 239    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 240    EC_WATCHPOINT             = 0x34,
 241    EC_WATCHPOINT_SAME_EL     = 0x35,
 242    EC_AA32_BKPT              = 0x38,
 243    EC_VECTORCATCH            = 0x3a,
 244    EC_AA64_BKPT              = 0x3c,
 245};
 246
 247#define ARM_EL_EC_SHIFT 26
 248#define ARM_EL_IL_SHIFT 25
 249#define ARM_EL_ISV_SHIFT 24
 250#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 251#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 252
 253/* Utility functions for constructing various kinds of syndrome value.
 254 * Note that in general we follow the AArch64 syndrome values; in a
 255 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 256 * mode differs slightly, so if we ever implemented Hyp mode then the
 257 * syndrome value would need some massaging on exception entry.
 258 * (One example of this is that AArch64 defaults to IL bit set for
 259 * exceptions which don't specifically indicate information about the
 260 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 261 */
 262static inline uint32_t syn_uncategorized(void)
 263{
 264    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 265}
 266
 267static inline uint32_t syn_aa64_svc(uint32_t imm16)
 268{
 269    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 270}
 271
 272static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 273{
 274    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 275}
 276
 277static inline uint32_t syn_aa64_smc(uint32_t imm16)
 278{
 279    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 280}
 281
 282static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 283{
 284    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 285        | (is_16bit ? 0 : ARM_EL_IL);
 286}
 287
 288static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 289{
 290    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 291}
 292
 293static inline uint32_t syn_aa32_smc(void)
 294{
 295    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 296}
 297
 298static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 299{
 300    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 301}
 302
 303static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 304{
 305    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 306        | (is_16bit ? 0 : ARM_EL_IL);
 307}
 308
 309static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 310                                           int crn, int crm, int rt,
 311                                           int isread)
 312{
 313    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 314        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 315        | (crm << 1) | isread;
 316}
 317
 318static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 319                                        int crn, int crm, int rt, int isread,
 320                                        bool is_16bit)
 321{
 322    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 323        | (is_16bit ? 0 : ARM_EL_IL)
 324        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 325        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 326}
 327
 328static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 329                                        int crn, int crm, int rt, int isread,
 330                                        bool is_16bit)
 331{
 332    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 333        | (is_16bit ? 0 : ARM_EL_IL)
 334        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 335        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 336}
 337
 338static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 339                                         int rt, int rt2, int isread,
 340                                         bool is_16bit)
 341{
 342    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 343        | (is_16bit ? 0 : ARM_EL_IL)
 344        | (cv << 24) | (cond << 20) | (opc1 << 16)
 345        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 346}
 347
 348static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 349                                         int rt, int rt2, int isread,
 350                                         bool is_16bit)
 351{
 352    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 353        | (is_16bit ? 0 : ARM_EL_IL)
 354        | (cv << 24) | (cond << 20) | (opc1 << 16)
 355        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 356}
 357
 358static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 359{
 360    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 361        | (is_16bit ? 0 : ARM_EL_IL)
 362        | (cv << 24) | (cond << 20);
 363}
 364
 365static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 366{
 367    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 368        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 369}
 370
 371static inline uint32_t syn_data_abort_no_iss(int same_el,
 372                                             int ea, int cm, int s1ptw,
 373                                             int wnr, int fsc)
 374{
 375    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 376           | ARM_EL_IL
 377           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 378}
 379
 380static inline uint32_t syn_data_abort_with_iss(int same_el,
 381                                               int sas, int sse, int srt,
 382                                               int sf, int ar,
 383                                               int ea, int cm, int s1ptw,
 384                                               int wnr, int fsc,
 385                                               bool is_16bit)
 386{
 387    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 388           | (is_16bit ? 0 : ARM_EL_IL)
 389           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 390           | (sf << 15) | (ar << 14)
 391           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 392}
 393
 394static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 395{
 396    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 397        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 398}
 399
 400static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 401{
 402    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 403        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 404}
 405
 406static inline uint32_t syn_breakpoint(int same_el)
 407{
 408    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 409        | ARM_EL_IL | 0x22;
 410}
 411
 412static inline uint32_t syn_wfx(int cv, int cond, int ti)
 413{
 414    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 415           (cv << 24) | (cond << 20) | ti;
 416}
 417
 418/* Update a QEMU watchpoint based on the information the guest has set in the
 419 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 420 */
 421void hw_watchpoint_update(ARMCPU *cpu, int n);
 422/* Update the QEMU watchpoints for every guest watchpoint. This does a
 423 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 424 * suitable for use after migration or on reset.
 425 */
 426void hw_watchpoint_update_all(ARMCPU *cpu);
 427/* Update a QEMU breakpoint based on the information the guest has set in the
 428 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 429 */
 430void hw_breakpoint_update(ARMCPU *cpu, int n);
 431/* Update the QEMU breakpoints for every guest breakpoint. This does a
 432 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 433 * suitable for use after migration or on reset.
 434 */
 435void hw_breakpoint_update_all(ARMCPU *cpu);
 436
 437/* Callback function for checking if a watchpoint should trigger. */
 438bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 439
 440/* Callback function for when a watchpoint or breakpoint triggers. */
 441void arm_debug_excp_handler(CPUState *cs);
 442
 443#ifdef CONFIG_USER_ONLY
 444static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 445{
 446    return false;
 447}
 448#else
 449/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 450bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 451/* Actually handle a PSCI call */
 452void arm_handle_psci_call(ARMCPU *cpu);
 453#endif
 454
 455/**
 456 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 457 * @s2addr: Address that caused a fault at stage 2
 458 * @stage2: True if we faulted at stage 2
 459 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 460 */
 461typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 462struct ARMMMUFaultInfo {
 463    target_ulong s2addr;
 464    bool stage2;
 465    bool s1ptw;
 466};
 467
 468/* Do a page table walk and add page to TLB if possible */
 469bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
 470                  uint32_t *fsr, ARMMMUFaultInfo *fi);
 471
 472/* Return true if the stage 1 translation regime is using LPAE format page
 473 * tables */
 474bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 475
 476/* Raise a data fault alignment exception for the specified virtual address */
 477void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 478                                 MMUAccessType access_type,
 479                                 int mmu_idx, uintptr_t retaddr);
 480
 481/* Call the EL change hook if one has been registered */
 482static inline void arm_call_el_change_hook(ARMCPU *cpu)
 483{
 484    if (cpu->el_change_hook) {
 485        cpu->el_change_hook(cpu, cpu->el_change_hook_opaque);
 486    }
 487}
 488
 489#endif
 490