qemu/target-arm/kvm64.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 64 bit specific code
   3 *
   4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
   5 * Copyright Alex Bennée 2014, Linaro
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   8 * See the COPYING file in the top-level directory.
   9 *
  10 */
  11
  12#include "qemu/osdep.h"
  13#include <sys/ioctl.h>
  14#include <sys/ptrace.h>
  15
  16#include <linux/elf.h>
  17#include <linux/kvm.h>
  18
  19#include "qemu-common.h"
  20#include "cpu.h"
  21#include "qemu/timer.h"
  22#include "qemu/error-report.h"
  23#include "qemu/host-utils.h"
  24#include "exec/gdbstub.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/kvm.h"
  27#include "kvm_arm.h"
  28#include "internals.h"
  29#include "hw/arm/arm.h"
  30
  31static bool have_guest_debug;
  32
  33/*
  34 * Although the ARM implementation of hardware assisted debugging
  35 * allows for different breakpoints per-core, the current GDB
  36 * interface treats them as a global pool of registers (which seems to
  37 * be the case for x86, ppc and s390). As a result we store one copy
  38 * of registers which is used for all active cores.
  39 *
  40 * Write access is serialised by virtue of the GDB protocol which
  41 * updates things. Read access (i.e. when the values are copied to the
  42 * vCPU) is also gated by GDB's run control.
  43 *
  44 * This is not unreasonable as most of the time debugging kernels you
  45 * never know which core will eventually execute your function.
  46 */
  47
  48typedef struct {
  49    uint64_t bcr;
  50    uint64_t bvr;
  51} HWBreakpoint;
  52
  53/* The watchpoint registers can cover more area than the requested
  54 * watchpoint so we need to store the additional information
  55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
  56 * when the watchpoint is hit.
  57 */
  58typedef struct {
  59    uint64_t wcr;
  60    uint64_t wvr;
  61    CPUWatchpoint details;
  62} HWWatchpoint;
  63
  64/* Maximum and current break/watch point counts */
  65int max_hw_bps, max_hw_wps;
  66GArray *hw_breakpoints, *hw_watchpoints;
  67
  68#define cur_hw_wps      (hw_watchpoints->len)
  69#define cur_hw_bps      (hw_breakpoints->len)
  70#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
  71#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
  72
  73/**
  74 * kvm_arm_init_debug() - check for guest debug capabilities
  75 * @cs: CPUState
  76 *
  77 * kvm_check_extension returns the number of debug registers we have
  78 * or 0 if we have none.
  79 *
  80 */
  81static void kvm_arm_init_debug(CPUState *cs)
  82{
  83    have_guest_debug = kvm_check_extension(cs->kvm_state,
  84                                           KVM_CAP_SET_GUEST_DEBUG);
  85
  86    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
  87    hw_watchpoints = g_array_sized_new(true, true,
  88                                       sizeof(HWWatchpoint), max_hw_wps);
  89
  90    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
  91    hw_breakpoints = g_array_sized_new(true, true,
  92                                       sizeof(HWBreakpoint), max_hw_bps);
  93    return;
  94}
  95
  96/**
  97 * insert_hw_breakpoint()
  98 * @addr: address of breakpoint
  99 *
 100 * See ARM ARM D2.9.1 for details but here we are only going to create
 101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 102 * together to match address and context or vmid). The hardware is
 103 * capable of fancier matching but that will require exposing that
 104 * fanciness to GDB's interface
 105 *
 106 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 107 *
 108 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 109 * +------+------+-------+-----+----+------+-----+------+-----+---+
 110 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 111 * +------+------+-------+-----+----+------+-----+------+-----+---+
 112 *
 113 * BT: Breakpoint type (0 = unlinked address match)
 114 * LBN: Linked BP number (0 = unused)
 115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 116 * BAS: Byte Address Select (RES1 for AArch64)
 117 * E: Enable bit
 118 */
 119static int insert_hw_breakpoint(target_ulong addr)
 120{
 121    HWBreakpoint brk = {
 122        .bcr = 0x1,                             /* BCR E=1, enable */
 123        .bvr = addr
 124    };
 125
 126    if (cur_hw_bps >= max_hw_bps) {
 127        return -ENOBUFS;
 128    }
 129
 130    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
 131    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
 132
 133    g_array_append_val(hw_breakpoints, brk);
 134
 135    return 0;
 136}
 137
 138/**
 139 * delete_hw_breakpoint()
 140 * @pc: address of breakpoint
 141 *
 142 * Delete a breakpoint and shuffle any above down
 143 */
 144
 145static int delete_hw_breakpoint(target_ulong pc)
 146{
 147    int i;
 148    for (i = 0; i < hw_breakpoints->len; i++) {
 149        HWBreakpoint *brk = get_hw_bp(i);
 150        if (brk->bvr == pc) {
 151            g_array_remove_index(hw_breakpoints, i);
 152            return 0;
 153        }
 154    }
 155    return -ENOENT;
 156}
 157
 158/**
 159 * insert_hw_watchpoint()
 160 * @addr: address of watch point
 161 * @len: size of area
 162 * @type: type of watch point
 163 *
 164 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 165 * stuff if we want to. The watch points can be linked with the break
 166 * points above to make them context aware. However for simplicity
 167 * currently we only deal with simple read/write watch points.
 168 *
 169 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 170 *
 171 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 172 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 173 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 174 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 175 *
 176 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 177 * WT: 0 - unlinked, 1 - linked (not currently used)
 178 * LBN: Linked BP number (not currently used)
 179 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 180 * BAS: Byte Address Select
 181 * LSC: Load/Store control (01: load, 10: store, 11: both)
 182 * E: Enable
 183 *
 184 * The bottom 2 bits of the value register are masked. Therefore to
 185 * break on any sizes smaller than an unaligned word you need to set
 186 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 187 * need to ensure you mask the address as required and set BAS=0xff
 188 */
 189
 190static int insert_hw_watchpoint(target_ulong addr,
 191                                target_ulong len, int type)
 192{
 193    HWWatchpoint wp = {
 194        .wcr = 1, /* E=1, enable */
 195        .wvr = addr & (~0x7ULL),
 196        .details = { .vaddr = addr, .len = len }
 197    };
 198
 199    if (cur_hw_wps >= max_hw_wps) {
 200        return -ENOBUFS;
 201    }
 202
 203    /*
 204     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
 205     * valid whether EL3 is implemented or not
 206     */
 207    wp.wcr = deposit32(wp.wcr, 1, 2, 3);
 208
 209    switch (type) {
 210    case GDB_WATCHPOINT_READ:
 211        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
 212        wp.details.flags = BP_MEM_READ;
 213        break;
 214    case GDB_WATCHPOINT_WRITE:
 215        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
 216        wp.details.flags = BP_MEM_WRITE;
 217        break;
 218    case GDB_WATCHPOINT_ACCESS:
 219        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
 220        wp.details.flags = BP_MEM_ACCESS;
 221        break;
 222    default:
 223        g_assert_not_reached();
 224        break;
 225    }
 226    if (len <= 8) {
 227        /* we align the address and set the bits in BAS */
 228        int off = addr & 0x7;
 229        int bas = (1 << len) - 1;
 230
 231        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
 232    } else {
 233        /* For ranges above 8 bytes we need to be a power of 2 */
 234        if (is_power_of_2(len)) {
 235            int bits = ctz64(len);
 236
 237            wp.wvr &= ~((1 << bits) - 1);
 238            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
 239            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
 240        } else {
 241            return -ENOBUFS;
 242        }
 243    }
 244
 245    g_array_append_val(hw_watchpoints, wp);
 246    return 0;
 247}
 248
 249
 250static bool check_watchpoint_in_range(int i, target_ulong addr)
 251{
 252    HWWatchpoint *wp = get_hw_wp(i);
 253    uint64_t addr_top, addr_bottom = wp->wvr;
 254    int bas = extract32(wp->wcr, 5, 8);
 255    int mask = extract32(wp->wcr, 24, 4);
 256
 257    if (mask) {
 258        addr_top = addr_bottom + (1 << mask);
 259    } else {
 260        /* BAS must be contiguous but can offset against the base
 261         * address in DBGWVR */
 262        addr_bottom = addr_bottom + ctz32(bas);
 263        addr_top = addr_bottom + clo32(bas);
 264    }
 265
 266    if (addr >= addr_bottom && addr <= addr_top) {
 267        return true;
 268    }
 269
 270    return false;
 271}
 272
 273/**
 274 * delete_hw_watchpoint()
 275 * @addr: address of breakpoint
 276 *
 277 * Delete a breakpoint and shuffle any above down
 278 */
 279
 280static int delete_hw_watchpoint(target_ulong addr,
 281                                target_ulong len, int type)
 282{
 283    int i;
 284    for (i = 0; i < cur_hw_wps; i++) {
 285        if (check_watchpoint_in_range(i, addr)) {
 286            g_array_remove_index(hw_watchpoints, i);
 287            return 0;
 288        }
 289    }
 290    return -ENOENT;
 291}
 292
 293
 294int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 295                                  target_ulong len, int type)
 296{
 297    switch (type) {
 298    case GDB_BREAKPOINT_HW:
 299        return insert_hw_breakpoint(addr);
 300        break;
 301    case GDB_WATCHPOINT_READ:
 302    case GDB_WATCHPOINT_WRITE:
 303    case GDB_WATCHPOINT_ACCESS:
 304        return insert_hw_watchpoint(addr, len, type);
 305    default:
 306        return -ENOSYS;
 307    }
 308}
 309
 310int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 311                                  target_ulong len, int type)
 312{
 313    switch (type) {
 314    case GDB_BREAKPOINT_HW:
 315        return delete_hw_breakpoint(addr);
 316        break;
 317    case GDB_WATCHPOINT_READ:
 318    case GDB_WATCHPOINT_WRITE:
 319    case GDB_WATCHPOINT_ACCESS:
 320        return delete_hw_watchpoint(addr, len, type);
 321    default:
 322        return -ENOSYS;
 323    }
 324}
 325
 326
 327void kvm_arch_remove_all_hw_breakpoints(void)
 328{
 329    if (cur_hw_wps > 0) {
 330        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
 331    }
 332    if (cur_hw_bps > 0) {
 333        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
 334    }
 335}
 336
 337void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 338{
 339    int i;
 340    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
 341
 342    for (i = 0; i < max_hw_wps; i++) {
 343        HWWatchpoint *wp = get_hw_wp(i);
 344        ptr->dbg_wcr[i] = wp->wcr;
 345        ptr->dbg_wvr[i] = wp->wvr;
 346    }
 347    for (i = 0; i < max_hw_bps; i++) {
 348        HWBreakpoint *bp = get_hw_bp(i);
 349        ptr->dbg_bcr[i] = bp->bcr;
 350        ptr->dbg_bvr[i] = bp->bvr;
 351    }
 352}
 353
 354bool kvm_arm_hw_debug_active(CPUState *cs)
 355{
 356    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 357}
 358
 359static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
 360{
 361    int i;
 362
 363    for (i = 0; i < cur_hw_bps; i++) {
 364        HWBreakpoint *bp = get_hw_bp(i);
 365        if (bp->bvr == pc) {
 366            return true;
 367        }
 368    }
 369    return false;
 370}
 371
 372static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
 373{
 374    int i;
 375
 376    for (i = 0; i < cur_hw_wps; i++) {
 377        if (check_watchpoint_in_range(i, addr)) {
 378            return &get_hw_wp(i)->details;
 379        }
 380    }
 381    return NULL;
 382}
 383
 384static bool kvm_arm_pmu_support_ctrl(CPUState *cs, struct kvm_device_attr *attr)
 385{
 386    return kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr) == 0;
 387}
 388
 389int kvm_arm_pmu_create(CPUState *cs, int irq)
 390{
 391    int err;
 392
 393    struct kvm_device_attr attr = {
 394        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
 395        .addr = (intptr_t)&irq,
 396        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
 397        .flags = 0,
 398    };
 399
 400    if (!kvm_arm_pmu_support_ctrl(cs, &attr)) {
 401        return 0;
 402    }
 403
 404    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
 405    if (err < 0) {
 406        fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
 407                strerror(-err));
 408        abort();
 409    }
 410
 411    attr.group = KVM_ARM_VCPU_PMU_V3_CTRL;
 412    attr.attr = KVM_ARM_VCPU_PMU_V3_INIT;
 413    attr.addr = 0;
 414    attr.flags = 0;
 415
 416    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
 417    if (err < 0) {
 418        fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
 419                strerror(-err));
 420        abort();
 421    }
 422
 423    return 1;
 424}
 425
 426static inline void set_feature(uint64_t *features, int feature)
 427{
 428    *features |= 1ULL << feature;
 429}
 430
 431static inline void unset_feature(uint64_t *features, int feature)
 432{
 433    *features &= ~(1ULL << feature);
 434}
 435
 436bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 437{
 438    /* Identify the feature bits corresponding to the host CPU, and
 439     * fill out the ARMHostCPUClass fields accordingly. To do this
 440     * we have to create a scratch VM, create a single CPU inside it,
 441     * and then query that CPU for the relevant ID registers.
 442     * For AArch64 we currently don't care about ID registers at
 443     * all; we just want to know the CPU type.
 444     */
 445    int fdarray[3];
 446    uint64_t features = 0;
 447    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 448     * we know these will only support creating one kind of guest CPU,
 449     * which is its preferred CPU type. Fortunately these old kernels
 450     * support only a very limited number of CPUs.
 451     */
 452    static const uint32_t cpus_to_try[] = {
 453        KVM_ARM_TARGET_AEM_V8,
 454        KVM_ARM_TARGET_FOUNDATION_V8,
 455        KVM_ARM_TARGET_CORTEX_A57,
 456        QEMU_KVM_ARM_TARGET_NONE
 457    };
 458    struct kvm_vcpu_init init;
 459
 460    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 461        return false;
 462    }
 463
 464    ahcc->target = init.target;
 465    ahcc->dtb_compatible = "arm,arm-v8";
 466
 467    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 468
 469   /* We can assume any KVM supporting CPU is at least a v8
 470     * with VFPv4+Neon; this in turn implies most of the other
 471     * feature bits.
 472     */
 473    set_feature(&features, ARM_FEATURE_V8);
 474    set_feature(&features, ARM_FEATURE_VFP4);
 475    set_feature(&features, ARM_FEATURE_NEON);
 476    set_feature(&features, ARM_FEATURE_AARCH64);
 477    set_feature(&features, ARM_FEATURE_PMU);
 478
 479    ahcc->features = features;
 480
 481    return true;
 482}
 483
 484#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 485
 486int kvm_arch_init_vcpu(CPUState *cs)
 487{
 488    int ret;
 489    uint64_t mpidr;
 490    ARMCPU *cpu = ARM_CPU(cs);
 491    CPUARMState *env = &cpu->env;
 492
 493    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 494        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 495        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 496        return -EINVAL;
 497    }
 498
 499    /* Determine init features for this CPU */
 500    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 501    if (cpu->start_powered_off) {
 502        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 503    }
 504    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 505        cpu->psci_version = 2;
 506        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 507    }
 508    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 509        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 510    }
 511    if (!kvm_irqchip_in_kernel() ||
 512        !kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
 513            cpu->has_pmu = false;
 514    }
 515    if (cpu->has_pmu) {
 516        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
 517    } else {
 518        unset_feature(&env->features, ARM_FEATURE_PMU);
 519    }
 520
 521    /* Do KVM_ARM_VCPU_INIT ioctl */
 522    ret = kvm_arm_vcpu_init(cs);
 523    if (ret) {
 524        return ret;
 525    }
 526
 527    /*
 528     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 529     * Currently KVM has its own idea about MPIDR assignment, so we
 530     * override our defaults with what we get from KVM.
 531     */
 532    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 533    if (ret) {
 534        return ret;
 535    }
 536    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 537
 538    kvm_arm_init_debug(cs);
 539
 540    return kvm_arm_init_cpreg_list(cpu);
 541}
 542
 543bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 544{
 545    /* Return true if the regidx is a register we should synchronize
 546     * via the cpreg_tuples array (ie is not a core reg we sync by
 547     * hand in kvm_arch_get/put_registers())
 548     */
 549    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 550    case KVM_REG_ARM_CORE:
 551        return false;
 552    default:
 553        return true;
 554    }
 555}
 556
 557typedef struct CPRegStateLevel {
 558    uint64_t regidx;
 559    int level;
 560} CPRegStateLevel;
 561
 562/* All system registers not listed in the following table are assumed to be
 563 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 564 * often, you must add it to this table with a state of either
 565 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 566 */
 567static const CPRegStateLevel non_runtime_cpregs[] = {
 568    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 569};
 570
 571int kvm_arm_cpreg_level(uint64_t regidx)
 572{
 573    int i;
 574
 575    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 576        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 577        if (l->regidx == regidx) {
 578            return l->level;
 579        }
 580    }
 581
 582    return KVM_PUT_RUNTIME_STATE;
 583}
 584
 585#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 586                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 587
 588#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 589                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 590
 591#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 592                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 593
 594int kvm_arch_put_registers(CPUState *cs, int level)
 595{
 596    struct kvm_one_reg reg;
 597    uint32_t fpr;
 598    uint64_t val;
 599    int i;
 600    int ret;
 601    unsigned int el;
 602
 603    ARMCPU *cpu = ARM_CPU(cs);
 604    CPUARMState *env = &cpu->env;
 605
 606    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 607     * AArch64 registers before pushing them out to 64-bit KVM.
 608     */
 609    if (!is_a64(env)) {
 610        aarch64_sync_32_to_64(env);
 611    }
 612
 613    for (i = 0; i < 31; i++) {
 614        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 615        reg.addr = (uintptr_t) &env->xregs[i];
 616        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 617        if (ret) {
 618            return ret;
 619        }
 620    }
 621
 622    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 623     * QEMU side we keep the current SP in xregs[31] as well.
 624     */
 625    aarch64_save_sp(env, 1);
 626
 627    reg.id = AARCH64_CORE_REG(regs.sp);
 628    reg.addr = (uintptr_t) &env->sp_el[0];
 629    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 630    if (ret) {
 631        return ret;
 632    }
 633
 634    reg.id = AARCH64_CORE_REG(sp_el1);
 635    reg.addr = (uintptr_t) &env->sp_el[1];
 636    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 637    if (ret) {
 638        return ret;
 639    }
 640
 641    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 642    if (is_a64(env)) {
 643        val = pstate_read(env);
 644    } else {
 645        val = cpsr_read(env);
 646    }
 647    reg.id = AARCH64_CORE_REG(regs.pstate);
 648    reg.addr = (uintptr_t) &val;
 649    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 650    if (ret) {
 651        return ret;
 652    }
 653
 654    reg.id = AARCH64_CORE_REG(regs.pc);
 655    reg.addr = (uintptr_t) &env->pc;
 656    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 657    if (ret) {
 658        return ret;
 659    }
 660
 661    reg.id = AARCH64_CORE_REG(elr_el1);
 662    reg.addr = (uintptr_t) &env->elr_el[1];
 663    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 664    if (ret) {
 665        return ret;
 666    }
 667
 668    /* Saved Program State Registers
 669     *
 670     * Before we restore from the banked_spsr[] array we need to
 671     * ensure that any modifications to env->spsr are correctly
 672     * reflected in the banks.
 673     */
 674    el = arm_current_el(env);
 675    if (el > 0 && !is_a64(env)) {
 676        i = bank_number(env->uncached_cpsr & CPSR_M);
 677        env->banked_spsr[i] = env->spsr;
 678    }
 679
 680    /* KVM 0-4 map to QEMU banks 1-5 */
 681    for (i = 0; i < KVM_NR_SPSR; i++) {
 682        reg.id = AARCH64_CORE_REG(spsr[i]);
 683        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 684        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 685        if (ret) {
 686            return ret;
 687        }
 688    }
 689
 690    /* Advanced SIMD and FP registers
 691     * We map Qn = regs[2n+1]:regs[2n]
 692     */
 693    for (i = 0; i < 32; i++) {
 694        int rd = i << 1;
 695        uint64_t fp_val[2];
 696#ifdef HOST_WORDS_BIGENDIAN
 697        fp_val[0] = env->vfp.regs[rd + 1];
 698        fp_val[1] = env->vfp.regs[rd];
 699#else
 700        fp_val[1] = env->vfp.regs[rd + 1];
 701        fp_val[0] = env->vfp.regs[rd];
 702#endif
 703        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 704        reg.addr = (uintptr_t)(&fp_val);
 705        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 706        if (ret) {
 707            return ret;
 708        }
 709    }
 710
 711    reg.addr = (uintptr_t)(&fpr);
 712    fpr = vfp_get_fpsr(env);
 713    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 714    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 715    if (ret) {
 716        return ret;
 717    }
 718
 719    fpr = vfp_get_fpcr(env);
 720    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 721    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 722    if (ret) {
 723        return ret;
 724    }
 725
 726    if (!write_list_to_kvmstate(cpu, level)) {
 727        return EINVAL;
 728    }
 729
 730    kvm_arm_sync_mpstate_to_kvm(cpu);
 731
 732    return ret;
 733}
 734
 735int kvm_arch_get_registers(CPUState *cs)
 736{
 737    struct kvm_one_reg reg;
 738    uint64_t val;
 739    uint32_t fpr;
 740    unsigned int el;
 741    int i;
 742    int ret;
 743
 744    ARMCPU *cpu = ARM_CPU(cs);
 745    CPUARMState *env = &cpu->env;
 746
 747    for (i = 0; i < 31; i++) {
 748        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 749        reg.addr = (uintptr_t) &env->xregs[i];
 750        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 751        if (ret) {
 752            return ret;
 753        }
 754    }
 755
 756    reg.id = AARCH64_CORE_REG(regs.sp);
 757    reg.addr = (uintptr_t) &env->sp_el[0];
 758    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 759    if (ret) {
 760        return ret;
 761    }
 762
 763    reg.id = AARCH64_CORE_REG(sp_el1);
 764    reg.addr = (uintptr_t) &env->sp_el[1];
 765    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 766    if (ret) {
 767        return ret;
 768    }
 769
 770    reg.id = AARCH64_CORE_REG(regs.pstate);
 771    reg.addr = (uintptr_t) &val;
 772    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 773    if (ret) {
 774        return ret;
 775    }
 776
 777    env->aarch64 = ((val & PSTATE_nRW) == 0);
 778    if (is_a64(env)) {
 779        pstate_write(env, val);
 780    } else {
 781        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
 782    }
 783
 784    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 785     * QEMU side we keep the current SP in xregs[31] as well.
 786     */
 787    aarch64_restore_sp(env, 1);
 788
 789    reg.id = AARCH64_CORE_REG(regs.pc);
 790    reg.addr = (uintptr_t) &env->pc;
 791    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 792    if (ret) {
 793        return ret;
 794    }
 795
 796    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 797     * incoming AArch64 regs received from 64-bit KVM.
 798     * We must perform this after all of the registers have been acquired from
 799     * the kernel.
 800     */
 801    if (!is_a64(env)) {
 802        aarch64_sync_64_to_32(env);
 803    }
 804
 805    reg.id = AARCH64_CORE_REG(elr_el1);
 806    reg.addr = (uintptr_t) &env->elr_el[1];
 807    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 808    if (ret) {
 809        return ret;
 810    }
 811
 812    /* Fetch the SPSR registers
 813     *
 814     * KVM SPSRs 0-4 map to QEMU banks 1-5
 815     */
 816    for (i = 0; i < KVM_NR_SPSR; i++) {
 817        reg.id = AARCH64_CORE_REG(spsr[i]);
 818        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 819        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 820        if (ret) {
 821            return ret;
 822        }
 823    }
 824
 825    el = arm_current_el(env);
 826    if (el > 0 && !is_a64(env)) {
 827        i = bank_number(env->uncached_cpsr & CPSR_M);
 828        env->spsr = env->banked_spsr[i];
 829    }
 830
 831    /* Advanced SIMD and FP registers
 832     * We map Qn = regs[2n+1]:regs[2n]
 833     */
 834    for (i = 0; i < 32; i++) {
 835        uint64_t fp_val[2];
 836        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 837        reg.addr = (uintptr_t)(&fp_val);
 838        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 839        if (ret) {
 840            return ret;
 841        } else {
 842            int rd = i << 1;
 843#ifdef HOST_WORDS_BIGENDIAN
 844            env->vfp.regs[rd + 1] = fp_val[0];
 845            env->vfp.regs[rd] = fp_val[1];
 846#else
 847            env->vfp.regs[rd + 1] = fp_val[1];
 848            env->vfp.regs[rd] = fp_val[0];
 849#endif
 850        }
 851    }
 852
 853    reg.addr = (uintptr_t)(&fpr);
 854    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 855    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 856    if (ret) {
 857        return ret;
 858    }
 859    vfp_set_fpsr(env, fpr);
 860
 861    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 862    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 863    if (ret) {
 864        return ret;
 865    }
 866    vfp_set_fpcr(env, fpr);
 867
 868    if (!write_kvmstate_to_list(cpu)) {
 869        return EINVAL;
 870    }
 871    /* Note that it's OK to have registers which aren't in CPUState,
 872     * so we can ignore a failure return here.
 873     */
 874    write_list_to_cpustate(cpu);
 875
 876    kvm_arm_sync_mpstate_to_qemu(cpu);
 877
 878    /* TODO: other registers */
 879    return ret;
 880}
 881
 882/* C6.6.29 BRK instruction */
 883static const uint32_t brk_insn = 0xd4200000;
 884
 885int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 886{
 887    if (have_guest_debug) {
 888        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
 889            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
 890            return -EINVAL;
 891        }
 892        return 0;
 893    } else {
 894        error_report("guest debug not supported on this kernel");
 895        return -EINVAL;
 896    }
 897}
 898
 899int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 900{
 901    static uint32_t brk;
 902
 903    if (have_guest_debug) {
 904        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
 905            brk != brk_insn ||
 906            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
 907            return -EINVAL;
 908        }
 909        return 0;
 910    } else {
 911        error_report("guest debug not supported on this kernel");
 912        return -EINVAL;
 913    }
 914}
 915
 916/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 917 *
 918 * To minimise translating between kernel and user-space the kernel
 919 * ABI just provides user-space with the full exception syndrome
 920 * register value to be decoded in QEMU.
 921 */
 922
 923bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 924{
 925    int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
 926    ARMCPU *cpu = ARM_CPU(cs);
 927    CPUClass *cc = CPU_GET_CLASS(cs);
 928    CPUARMState *env = &cpu->env;
 929
 930    /* Ensure PC is synchronised */
 931    kvm_cpu_synchronize_state(cs);
 932
 933    switch (hsr_ec) {
 934    case EC_SOFTWARESTEP:
 935        if (cs->singlestep_enabled) {
 936            return true;
 937        } else {
 938            /*
 939             * The kernel should have suppressed the guest's ability to
 940             * single step at this point so something has gone wrong.
 941             */
 942            error_report("%s: guest single-step while debugging unsupported"
 943                         " (%"PRIx64", %"PRIx32")\n",
 944                         __func__, env->pc, debug_exit->hsr);
 945            return false;
 946        }
 947        break;
 948    case EC_AA64_BKPT:
 949        if (kvm_find_sw_breakpoint(cs, env->pc)) {
 950            return true;
 951        }
 952        break;
 953    case EC_BREAKPOINT:
 954        if (find_hw_breakpoint(cs, env->pc)) {
 955            return true;
 956        }
 957        break;
 958    case EC_WATCHPOINT:
 959    {
 960        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
 961        if (wp) {
 962            cs->watchpoint_hit = wp;
 963            return true;
 964        }
 965        break;
 966    }
 967    default:
 968        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
 969                     __func__, debug_exit->hsr, env->pc);
 970    }
 971
 972    /* If we are not handling the debug exception it must belong to
 973     * the guest. Let's re-use the existing TCG interrupt code to set
 974     * everything up properly.
 975     */
 976    cs->exception_index = EXCP_BKPT;
 977    env->exception.syndrome = debug_exit->hsr;
 978    env->exception.vaddress = debug_exit->far;
 979    cc->do_interrupt(cs);
 980
 981    return false;
 982}
 983