qemu/target-s390x/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU S390x KVM implementation
   3 *
   4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
   5 * Copyright IBM Corp. 2012
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * Contributions after 2012-10-29 are licensed under the terms of the
  18 * GNU GPL, version 2 or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU (Lesser) General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include <sys/ioctl.h>
  26
  27#include <linux/kvm.h>
  28#include <asm/ptrace.h>
  29
  30#include "qemu-common.h"
  31#include "cpu.h"
  32#include "qemu/error-report.h"
  33#include "qemu/timer.h"
  34#include "sysemu/sysemu.h"
  35#include "sysemu/kvm.h"
  36#include "hw/hw.h"
  37#include "sysemu/device_tree.h"
  38#include "qapi/qmp/qjson.h"
  39#include "exec/gdbstub.h"
  40#include "exec/address-spaces.h"
  41#include "trace.h"
  42#include "qapi-event.h"
  43#include "hw/s390x/s390-pci-inst.h"
  44#include "hw/s390x/s390-pci-bus.h"
  45#include "hw/s390x/ipl.h"
  46#include "hw/s390x/ebcdic.h"
  47#include "exec/memattrs.h"
  48#include "hw/s390x/s390-virtio-ccw.h"
  49
  50/* #define DEBUG_KVM */
  51
  52#ifdef DEBUG_KVM
  53#define DPRINTF(fmt, ...) \
  54    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  55#else
  56#define DPRINTF(fmt, ...) \
  57    do { } while (0)
  58#endif
  59
  60#define kvm_vm_check_mem_attr(s, attr) \
  61    kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
  62
  63#define IPA0_DIAG                       0x8300
  64#define IPA0_SIGP                       0xae00
  65#define IPA0_B2                         0xb200
  66#define IPA0_B9                         0xb900
  67#define IPA0_EB                         0xeb00
  68#define IPA0_E3                         0xe300
  69
  70#define PRIV_B2_SCLP_CALL               0x20
  71#define PRIV_B2_CSCH                    0x30
  72#define PRIV_B2_HSCH                    0x31
  73#define PRIV_B2_MSCH                    0x32
  74#define PRIV_B2_SSCH                    0x33
  75#define PRIV_B2_STSCH                   0x34
  76#define PRIV_B2_TSCH                    0x35
  77#define PRIV_B2_TPI                     0x36
  78#define PRIV_B2_SAL                     0x37
  79#define PRIV_B2_RSCH                    0x38
  80#define PRIV_B2_STCRW                   0x39
  81#define PRIV_B2_STCPS                   0x3a
  82#define PRIV_B2_RCHP                    0x3b
  83#define PRIV_B2_SCHM                    0x3c
  84#define PRIV_B2_CHSC                    0x5f
  85#define PRIV_B2_SIGA                    0x74
  86#define PRIV_B2_XSCH                    0x76
  87
  88#define PRIV_EB_SQBS                    0x8a
  89#define PRIV_EB_PCISTB                  0xd0
  90#define PRIV_EB_SIC                     0xd1
  91
  92#define PRIV_B9_EQBS                    0x9c
  93#define PRIV_B9_CLP                     0xa0
  94#define PRIV_B9_PCISTG                  0xd0
  95#define PRIV_B9_PCILG                   0xd2
  96#define PRIV_B9_RPCIT                   0xd3
  97
  98#define PRIV_E3_MPCIFC                  0xd0
  99#define PRIV_E3_STPCIFC                 0xd4
 100
 101#define DIAG_TIMEREVENT                 0x288
 102#define DIAG_IPL                        0x308
 103#define DIAG_KVM_HYPERCALL              0x500
 104#define DIAG_KVM_BREAKPOINT             0x501
 105
 106#define ICPT_INSTRUCTION                0x04
 107#define ICPT_PROGRAM                    0x08
 108#define ICPT_EXT_INT                    0x14
 109#define ICPT_WAITPSW                    0x1c
 110#define ICPT_SOFT_INTERCEPT             0x24
 111#define ICPT_CPU_STOP                   0x28
 112#define ICPT_OPEREXC                    0x2c
 113#define ICPT_IO                         0x40
 114
 115#define NR_LOCAL_IRQS 32
 116/*
 117 * Needs to be big enough to contain max_cpus emergency signals
 118 * and in addition NR_LOCAL_IRQS interrupts
 119 */
 120#define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
 121                           (max_cpus + NR_LOCAL_IRQS))
 122
 123static CPUWatchpoint hw_watchpoint;
 124/*
 125 * We don't use a list because this structure is also used to transmit the
 126 * hardware breakpoints to the kernel.
 127 */
 128static struct kvm_hw_breakpoint *hw_breakpoints;
 129static int nb_hw_breakpoints;
 130
 131const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 132    KVM_CAP_LAST_INFO
 133};
 134
 135static QemuMutex qemu_sigp_mutex;
 136
 137static int cap_sync_regs;
 138static int cap_async_pf;
 139static int cap_mem_op;
 140static int cap_s390_irq;
 141static int cap_ri;
 142
 143static void *legacy_s390_alloc(size_t size, uint64_t *align);
 144
 145static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit)
 146{
 147    struct kvm_device_attr attr = {
 148        .group = KVM_S390_VM_MEM_CTRL,
 149        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 150        .addr = (uint64_t) memory_limit,
 151    };
 152
 153    return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 154}
 155
 156int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit)
 157{
 158    int rc;
 159
 160    struct kvm_device_attr attr = {
 161        .group = KVM_S390_VM_MEM_CTRL,
 162        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 163        .addr = (uint64_t) &new_limit,
 164    };
 165
 166    if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) {
 167        return 0;
 168    }
 169
 170    rc = kvm_s390_query_mem_limit(s, hw_limit);
 171    if (rc) {
 172        return rc;
 173    } else if (*hw_limit < new_limit) {
 174        return -E2BIG;
 175    }
 176
 177    return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr);
 178}
 179
 180static bool kvm_s390_cmma_available(void)
 181{
 182    static bool initialized, value;
 183
 184    if (!initialized) {
 185        initialized = true;
 186        value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
 187                kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
 188    }
 189    return value;
 190}
 191
 192void kvm_s390_cmma_reset(void)
 193{
 194    int rc;
 195    struct kvm_device_attr attr = {
 196        .group = KVM_S390_VM_MEM_CTRL,
 197        .attr = KVM_S390_VM_MEM_CLR_CMMA,
 198    };
 199
 200    if (mem_path || !kvm_s390_cmma_available()) {
 201        return;
 202    }
 203
 204    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 205    trace_kvm_clear_cmma(rc);
 206}
 207
 208static void kvm_s390_enable_cmma(void)
 209{
 210    int rc;
 211    struct kvm_device_attr attr = {
 212        .group = KVM_S390_VM_MEM_CTRL,
 213        .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
 214    };
 215
 216    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 217    trace_kvm_enable_cmma(rc);
 218}
 219
 220static void kvm_s390_set_attr(uint64_t attr)
 221{
 222    struct kvm_device_attr attribute = {
 223        .group = KVM_S390_VM_CRYPTO,
 224        .attr  = attr,
 225    };
 226
 227    int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
 228
 229    if (ret) {
 230        error_report("Failed to set crypto device attribute %lu: %s",
 231                     attr, strerror(-ret));
 232    }
 233}
 234
 235static void kvm_s390_init_aes_kw(void)
 236{
 237    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
 238
 239    if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
 240                                 NULL)) {
 241            attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
 242    }
 243
 244    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 245            kvm_s390_set_attr(attr);
 246    }
 247}
 248
 249static void kvm_s390_init_dea_kw(void)
 250{
 251    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
 252
 253    if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
 254                                 NULL)) {
 255            attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
 256    }
 257
 258    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 259            kvm_s390_set_attr(attr);
 260    }
 261}
 262
 263void kvm_s390_crypto_reset(void)
 264{
 265    if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
 266        kvm_s390_init_aes_kw();
 267        kvm_s390_init_dea_kw();
 268    }
 269}
 270
 271int kvm_arch_init(MachineState *ms, KVMState *s)
 272{
 273    cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
 274    cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
 275    cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
 276    cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
 277
 278    if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
 279        || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
 280        phys_mem_set_alloc(legacy_s390_alloc);
 281    }
 282
 283    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
 284    kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
 285    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
 286    if (ri_allowed()) {
 287        if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
 288            cap_ri = 1;
 289        }
 290    }
 291
 292    qemu_mutex_init(&qemu_sigp_mutex);
 293
 294    return 0;
 295}
 296
 297unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 298{
 299    return cpu->cpu_index;
 300}
 301
 302int kvm_arch_init_vcpu(CPUState *cs)
 303{
 304    S390CPU *cpu = S390_CPU(cs);
 305    kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
 306    cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
 307    return 0;
 308}
 309
 310void kvm_s390_reset_vcpu(S390CPU *cpu)
 311{
 312    CPUState *cs = CPU(cpu);
 313
 314    /* The initial reset call is needed here to reset in-kernel
 315     * vcpu data that we can't access directly from QEMU
 316     * (i.e. with older kernels which don't support sync_regs/ONE_REG).
 317     * Before this ioctl cpu_synchronize_state() is called in common kvm
 318     * code (kvm-all) */
 319    if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
 320        error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
 321    }
 322}
 323
 324static int can_sync_regs(CPUState *cs, int regs)
 325{
 326    return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
 327}
 328
 329int kvm_arch_put_registers(CPUState *cs, int level)
 330{
 331    S390CPU *cpu = S390_CPU(cs);
 332    CPUS390XState *env = &cpu->env;
 333    struct kvm_sregs sregs;
 334    struct kvm_regs regs;
 335    struct kvm_fpu fpu = {};
 336    int r;
 337    int i;
 338
 339    /* always save the PSW  and the GPRS*/
 340    cs->kvm_run->psw_addr = env->psw.addr;
 341    cs->kvm_run->psw_mask = env->psw.mask;
 342
 343    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 344        for (i = 0; i < 16; i++) {
 345            cs->kvm_run->s.regs.gprs[i] = env->regs[i];
 346            cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
 347        }
 348    } else {
 349        for (i = 0; i < 16; i++) {
 350            regs.gprs[i] = env->regs[i];
 351        }
 352        r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 353        if (r < 0) {
 354            return r;
 355        }
 356    }
 357
 358    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 359        for (i = 0; i < 32; i++) {
 360            cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
 361            cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
 362        }
 363        cs->kvm_run->s.regs.fpc = env->fpc;
 364        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
 365    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 366        for (i = 0; i < 16; i++) {
 367            cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
 368        }
 369        cs->kvm_run->s.regs.fpc = env->fpc;
 370        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
 371    } else {
 372        /* Floating point */
 373        for (i = 0; i < 16; i++) {
 374            fpu.fprs[i] = get_freg(env, i)->ll;
 375        }
 376        fpu.fpc = env->fpc;
 377
 378        r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
 379        if (r < 0) {
 380            return r;
 381        }
 382    }
 383
 384    /* Do we need to save more than that? */
 385    if (level == KVM_PUT_RUNTIME_STATE) {
 386        return 0;
 387    }
 388
 389    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 390        cs->kvm_run->s.regs.cputm = env->cputm;
 391        cs->kvm_run->s.regs.ckc = env->ckc;
 392        cs->kvm_run->s.regs.todpr = env->todpr;
 393        cs->kvm_run->s.regs.gbea = env->gbea;
 394        cs->kvm_run->s.regs.pp = env->pp;
 395        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
 396    } else {
 397        /*
 398         * These ONE_REGS are not protected by a capability. As they are only
 399         * necessary for migration we just trace a possible error, but don't
 400         * return with an error return code.
 401         */
 402        kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 403        kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 404        kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 405        kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 406        kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 407    }
 408
 409    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 410        memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
 411        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
 412    }
 413
 414    /* pfault parameters */
 415    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 416        cs->kvm_run->s.regs.pft = env->pfault_token;
 417        cs->kvm_run->s.regs.pfs = env->pfault_select;
 418        cs->kvm_run->s.regs.pfc = env->pfault_compare;
 419        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
 420    } else if (cap_async_pf) {
 421        r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 422        if (r < 0) {
 423            return r;
 424        }
 425        r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 426        if (r < 0) {
 427            return r;
 428        }
 429        r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 430        if (r < 0) {
 431            return r;
 432        }
 433    }
 434
 435    /* access registers and control registers*/
 436    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 437        for (i = 0; i < 16; i++) {
 438            cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
 439            cs->kvm_run->s.regs.crs[i] = env->cregs[i];
 440        }
 441        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
 442        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
 443    } else {
 444        for (i = 0; i < 16; i++) {
 445            sregs.acrs[i] = env->aregs[i];
 446            sregs.crs[i] = env->cregs[i];
 447        }
 448        r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 449        if (r < 0) {
 450            return r;
 451        }
 452    }
 453
 454    /* Finally the prefix */
 455    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 456        cs->kvm_run->s.regs.prefix = env->psa;
 457        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
 458    } else {
 459        /* prefix is only supported via sync regs */
 460    }
 461    return 0;
 462}
 463
 464int kvm_arch_get_registers(CPUState *cs)
 465{
 466    S390CPU *cpu = S390_CPU(cs);
 467    CPUS390XState *env = &cpu->env;
 468    struct kvm_sregs sregs;
 469    struct kvm_regs regs;
 470    struct kvm_fpu fpu;
 471    int i, r;
 472
 473    /* get the PSW */
 474    env->psw.addr = cs->kvm_run->psw_addr;
 475    env->psw.mask = cs->kvm_run->psw_mask;
 476
 477    /* the GPRS */
 478    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 479        for (i = 0; i < 16; i++) {
 480            env->regs[i] = cs->kvm_run->s.regs.gprs[i];
 481        }
 482    } else {
 483        r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 484        if (r < 0) {
 485            return r;
 486        }
 487         for (i = 0; i < 16; i++) {
 488            env->regs[i] = regs.gprs[i];
 489        }
 490    }
 491
 492    /* The ACRS and CRS */
 493    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 494        for (i = 0; i < 16; i++) {
 495            env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
 496            env->cregs[i] = cs->kvm_run->s.regs.crs[i];
 497        }
 498    } else {
 499        r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 500        if (r < 0) {
 501            return r;
 502        }
 503         for (i = 0; i < 16; i++) {
 504            env->aregs[i] = sregs.acrs[i];
 505            env->cregs[i] = sregs.crs[i];
 506        }
 507    }
 508
 509    /* Floating point and vector registers */
 510    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 511        for (i = 0; i < 32; i++) {
 512            env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
 513            env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
 514        }
 515        env->fpc = cs->kvm_run->s.regs.fpc;
 516    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 517        for (i = 0; i < 16; i++) {
 518            get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
 519        }
 520        env->fpc = cs->kvm_run->s.regs.fpc;
 521    } else {
 522        r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
 523        if (r < 0) {
 524            return r;
 525        }
 526        for (i = 0; i < 16; i++) {
 527            get_freg(env, i)->ll = fpu.fprs[i];
 528        }
 529        env->fpc = fpu.fpc;
 530    }
 531
 532    /* The prefix */
 533    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 534        env->psa = cs->kvm_run->s.regs.prefix;
 535    }
 536
 537    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 538        env->cputm = cs->kvm_run->s.regs.cputm;
 539        env->ckc = cs->kvm_run->s.regs.ckc;
 540        env->todpr = cs->kvm_run->s.regs.todpr;
 541        env->gbea = cs->kvm_run->s.regs.gbea;
 542        env->pp = cs->kvm_run->s.regs.pp;
 543    } else {
 544        /*
 545         * These ONE_REGS are not protected by a capability. As they are only
 546         * necessary for migration we just trace a possible error, but don't
 547         * return with an error return code.
 548         */
 549        kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 550        kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 551        kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 552        kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 553        kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 554    }
 555
 556    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 557        memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
 558    }
 559
 560    /* pfault parameters */
 561    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 562        env->pfault_token = cs->kvm_run->s.regs.pft;
 563        env->pfault_select = cs->kvm_run->s.regs.pfs;
 564        env->pfault_compare = cs->kvm_run->s.regs.pfc;
 565    } else if (cap_async_pf) {
 566        r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 567        if (r < 0) {
 568            return r;
 569        }
 570        r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 571        if (r < 0) {
 572            return r;
 573        }
 574        r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 575        if (r < 0) {
 576            return r;
 577        }
 578    }
 579
 580    return 0;
 581}
 582
 583int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
 584{
 585    int r;
 586    struct kvm_device_attr attr = {
 587        .group = KVM_S390_VM_TOD,
 588        .attr = KVM_S390_VM_TOD_LOW,
 589        .addr = (uint64_t)tod_low,
 590    };
 591
 592    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 593    if (r) {
 594        return r;
 595    }
 596
 597    attr.attr = KVM_S390_VM_TOD_HIGH;
 598    attr.addr = (uint64_t)tod_high;
 599    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 600}
 601
 602int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
 603{
 604    int r;
 605
 606    struct kvm_device_attr attr = {
 607        .group = KVM_S390_VM_TOD,
 608        .attr = KVM_S390_VM_TOD_LOW,
 609        .addr = (uint64_t)tod_low,
 610    };
 611
 612    r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 613    if (r) {
 614        return r;
 615    }
 616
 617    attr.attr = KVM_S390_VM_TOD_HIGH;
 618    attr.addr = (uint64_t)tod_high;
 619    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 620}
 621
 622/**
 623 * kvm_s390_mem_op:
 624 * @addr:      the logical start address in guest memory
 625 * @ar:        the access register number
 626 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 627 * @len:       length that should be transferred
 628 * @is_write:  true = write, false = read
 629 * Returns:    0 on success, non-zero if an exception or error occurred
 630 *
 631 * Use KVM ioctl to read/write from/to guest memory. An access exception
 632 * is injected into the vCPU in case of translation errors.
 633 */
 634int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
 635                    int len, bool is_write)
 636{
 637    struct kvm_s390_mem_op mem_op = {
 638        .gaddr = addr,
 639        .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
 640        .size = len,
 641        .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
 642                       : KVM_S390_MEMOP_LOGICAL_READ,
 643        .buf = (uint64_t)hostbuf,
 644        .ar = ar,
 645    };
 646    int ret;
 647
 648    if (!cap_mem_op) {
 649        return -ENOSYS;
 650    }
 651    if (!hostbuf) {
 652        mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 653    }
 654
 655    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 656    if (ret < 0) {
 657        error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
 658    }
 659    return ret;
 660}
 661
 662/*
 663 * Legacy layout for s390:
 664 * Older S390 KVM requires the topmost vma of the RAM to be
 665 * smaller than an system defined value, which is at least 256GB.
 666 * Larger systems have larger values. We put the guest between
 667 * the end of data segment (system break) and this value. We
 668 * use 32GB as a base to have enough room for the system break
 669 * to grow. We also have to use MAP parameters that avoid
 670 * read-only mapping of guest pages.
 671 */
 672static void *legacy_s390_alloc(size_t size, uint64_t *align)
 673{
 674    void *mem;
 675
 676    mem = mmap((void *) 0x800000000ULL, size,
 677               PROT_EXEC|PROT_READ|PROT_WRITE,
 678               MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
 679    return mem == MAP_FAILED ? NULL : mem;
 680}
 681
 682static uint8_t const *sw_bp_inst;
 683static uint8_t sw_bp_ilen;
 684
 685static void determine_sw_breakpoint_instr(void)
 686{
 687        /* DIAG 501 is used for sw breakpoints with old kernels */
 688        static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
 689        /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
 690        static const uint8_t instr_0x0000[] = {0x00, 0x00};
 691
 692        if (sw_bp_inst) {
 693            return;
 694        }
 695        if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
 696            sw_bp_inst = diag_501;
 697            sw_bp_ilen = sizeof(diag_501);
 698            DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
 699        } else {
 700            sw_bp_inst = instr_0x0000;
 701            sw_bp_ilen = sizeof(instr_0x0000);
 702            DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
 703        }
 704}
 705
 706int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 707{
 708    determine_sw_breakpoint_instr();
 709
 710    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 711                            sw_bp_ilen, 0) ||
 712        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
 713        return -EINVAL;
 714    }
 715    return 0;
 716}
 717
 718int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 719{
 720    uint8_t t[MAX_ILEN];
 721
 722    if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
 723        return -EINVAL;
 724    } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
 725        return -EINVAL;
 726    } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 727                                   sw_bp_ilen, 1)) {
 728        return -EINVAL;
 729    }
 730
 731    return 0;
 732}
 733
 734static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
 735                                                    int len, int type)
 736{
 737    int n;
 738
 739    for (n = 0; n < nb_hw_breakpoints; n++) {
 740        if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
 741            (hw_breakpoints[n].len == len || len == -1)) {
 742            return &hw_breakpoints[n];
 743        }
 744    }
 745
 746    return NULL;
 747}
 748
 749static int insert_hw_breakpoint(target_ulong addr, int len, int type)
 750{
 751    int size;
 752
 753    if (find_hw_breakpoint(addr, len, type)) {
 754        return -EEXIST;
 755    }
 756
 757    size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
 758
 759    if (!hw_breakpoints) {
 760        nb_hw_breakpoints = 0;
 761        hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
 762    } else {
 763        hw_breakpoints =
 764            (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
 765    }
 766
 767    if (!hw_breakpoints) {
 768        nb_hw_breakpoints = 0;
 769        return -ENOMEM;
 770    }
 771
 772    hw_breakpoints[nb_hw_breakpoints].addr = addr;
 773    hw_breakpoints[nb_hw_breakpoints].len = len;
 774    hw_breakpoints[nb_hw_breakpoints].type = type;
 775
 776    nb_hw_breakpoints++;
 777
 778    return 0;
 779}
 780
 781int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 782                                  target_ulong len, int type)
 783{
 784    switch (type) {
 785    case GDB_BREAKPOINT_HW:
 786        type = KVM_HW_BP;
 787        break;
 788    case GDB_WATCHPOINT_WRITE:
 789        if (len < 1) {
 790            return -EINVAL;
 791        }
 792        type = KVM_HW_WP_WRITE;
 793        break;
 794    default:
 795        return -ENOSYS;
 796    }
 797    return insert_hw_breakpoint(addr, len, type);
 798}
 799
 800int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 801                                  target_ulong len, int type)
 802{
 803    int size;
 804    struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
 805
 806    if (bp == NULL) {
 807        return -ENOENT;
 808    }
 809
 810    nb_hw_breakpoints--;
 811    if (nb_hw_breakpoints > 0) {
 812        /*
 813         * In order to trim the array, move the last element to the position to
 814         * be removed - if necessary.
 815         */
 816        if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
 817            *bp = hw_breakpoints[nb_hw_breakpoints];
 818        }
 819        size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
 820        hw_breakpoints =
 821             (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
 822    } else {
 823        g_free(hw_breakpoints);
 824        hw_breakpoints = NULL;
 825    }
 826
 827    return 0;
 828}
 829
 830void kvm_arch_remove_all_hw_breakpoints(void)
 831{
 832    nb_hw_breakpoints = 0;
 833    g_free(hw_breakpoints);
 834    hw_breakpoints = NULL;
 835}
 836
 837void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
 838{
 839    int i;
 840
 841    if (nb_hw_breakpoints > 0) {
 842        dbg->arch.nr_hw_bp = nb_hw_breakpoints;
 843        dbg->arch.hw_bp = hw_breakpoints;
 844
 845        for (i = 0; i < nb_hw_breakpoints; ++i) {
 846            hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
 847                                                       hw_breakpoints[i].addr);
 848        }
 849        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 850    } else {
 851        dbg->arch.nr_hw_bp = 0;
 852        dbg->arch.hw_bp = NULL;
 853    }
 854}
 855
 856void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
 857{
 858}
 859
 860MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 861{
 862    return MEMTXATTRS_UNSPECIFIED;
 863}
 864
 865int kvm_arch_process_async_events(CPUState *cs)
 866{
 867    return cs->halted;
 868}
 869
 870static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
 871                                     struct kvm_s390_interrupt *interrupt)
 872{
 873    int r = 0;
 874
 875    interrupt->type = irq->type;
 876    switch (irq->type) {
 877    case KVM_S390_INT_VIRTIO:
 878        interrupt->parm = irq->u.ext.ext_params;
 879        /* fall through */
 880    case KVM_S390_INT_PFAULT_INIT:
 881    case KVM_S390_INT_PFAULT_DONE:
 882        interrupt->parm64 = irq->u.ext.ext_params2;
 883        break;
 884    case KVM_S390_PROGRAM_INT:
 885        interrupt->parm = irq->u.pgm.code;
 886        break;
 887    case KVM_S390_SIGP_SET_PREFIX:
 888        interrupt->parm = irq->u.prefix.address;
 889        break;
 890    case KVM_S390_INT_SERVICE:
 891        interrupt->parm = irq->u.ext.ext_params;
 892        break;
 893    case KVM_S390_MCHK:
 894        interrupt->parm = irq->u.mchk.cr14;
 895        interrupt->parm64 = irq->u.mchk.mcic;
 896        break;
 897    case KVM_S390_INT_EXTERNAL_CALL:
 898        interrupt->parm = irq->u.extcall.code;
 899        break;
 900    case KVM_S390_INT_EMERGENCY:
 901        interrupt->parm = irq->u.emerg.code;
 902        break;
 903    case KVM_S390_SIGP_STOP:
 904    case KVM_S390_RESTART:
 905        break; /* These types have no parameters */
 906    case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
 907        interrupt->parm = irq->u.io.subchannel_id << 16;
 908        interrupt->parm |= irq->u.io.subchannel_nr;
 909        interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
 910        interrupt->parm64 |= irq->u.io.io_int_word;
 911        break;
 912    default:
 913        r = -EINVAL;
 914        break;
 915    }
 916    return r;
 917}
 918
 919static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
 920{
 921    struct kvm_s390_interrupt kvmint = {};
 922    int r;
 923
 924    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
 925    if (r < 0) {
 926        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
 927        exit(1);
 928    }
 929
 930    r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
 931    if (r < 0) {
 932        fprintf(stderr, "KVM failed to inject interrupt\n");
 933        exit(1);
 934    }
 935}
 936
 937void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
 938{
 939    CPUState *cs = CPU(cpu);
 940    int r;
 941
 942    if (cap_s390_irq) {
 943        r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
 944        if (!r) {
 945            return;
 946        }
 947        error_report("KVM failed to inject interrupt %llx", irq->type);
 948        exit(1);
 949    }
 950
 951    inject_vcpu_irq_legacy(cs, irq);
 952}
 953
 954static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
 955{
 956    struct kvm_s390_interrupt kvmint = {};
 957    int r;
 958
 959    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
 960    if (r < 0) {
 961        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
 962        exit(1);
 963    }
 964
 965    r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
 966    if (r < 0) {
 967        fprintf(stderr, "KVM failed to inject interrupt\n");
 968        exit(1);
 969    }
 970}
 971
 972void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
 973{
 974    static bool use_flic = true;
 975    int r;
 976
 977    if (use_flic) {
 978        r = kvm_s390_inject_flic(irq);
 979        if (r == -ENOSYS) {
 980            use_flic = false;
 981        }
 982        if (!r) {
 983            return;
 984        }
 985    }
 986    __kvm_s390_floating_interrupt(irq);
 987}
 988
 989void kvm_s390_service_interrupt(uint32_t parm)
 990{
 991    struct kvm_s390_irq irq = {
 992        .type = KVM_S390_INT_SERVICE,
 993        .u.ext.ext_params = parm,
 994    };
 995
 996    kvm_s390_floating_interrupt(&irq);
 997}
 998
 999static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
1000{
1001    struct kvm_s390_irq irq = {
1002        .type = KVM_S390_PROGRAM_INT,
1003        .u.pgm.code = code,
1004    };
1005
1006    kvm_s390_vcpu_interrupt(cpu, &irq);
1007}
1008
1009void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1010{
1011    struct kvm_s390_irq irq = {
1012        .type = KVM_S390_PROGRAM_INT,
1013        .u.pgm.code = code,
1014        .u.pgm.trans_exc_code = te_code,
1015        .u.pgm.exc_access_id = te_code & 3,
1016    };
1017
1018    kvm_s390_vcpu_interrupt(cpu, &irq);
1019}
1020
1021static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1022                                 uint16_t ipbh0)
1023{
1024    CPUS390XState *env = &cpu->env;
1025    uint64_t sccb;
1026    uint32_t code;
1027    int r = 0;
1028
1029    cpu_synchronize_state(CPU(cpu));
1030    sccb = env->regs[ipbh0 & 0xf];
1031    code = env->regs[(ipbh0 & 0xf0) >> 4];
1032
1033    r = sclp_service_call(env, sccb, code);
1034    if (r < 0) {
1035        enter_pgmcheck(cpu, -r);
1036    } else {
1037        setcc(cpu, r);
1038    }
1039
1040    return 0;
1041}
1042
1043static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1044{
1045    CPUS390XState *env = &cpu->env;
1046    int rc = 0;
1047    uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1048
1049    cpu_synchronize_state(CPU(cpu));
1050
1051    switch (ipa1) {
1052    case PRIV_B2_XSCH:
1053        ioinst_handle_xsch(cpu, env->regs[1]);
1054        break;
1055    case PRIV_B2_CSCH:
1056        ioinst_handle_csch(cpu, env->regs[1]);
1057        break;
1058    case PRIV_B2_HSCH:
1059        ioinst_handle_hsch(cpu, env->regs[1]);
1060        break;
1061    case PRIV_B2_MSCH:
1062        ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1063        break;
1064    case PRIV_B2_SSCH:
1065        ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1066        break;
1067    case PRIV_B2_STCRW:
1068        ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1069        break;
1070    case PRIV_B2_STSCH:
1071        ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1072        break;
1073    case PRIV_B2_TSCH:
1074        /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1075        fprintf(stderr, "Spurious tsch intercept\n");
1076        break;
1077    case PRIV_B2_CHSC:
1078        ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1079        break;
1080    case PRIV_B2_TPI:
1081        /* This should have been handled by kvm already. */
1082        fprintf(stderr, "Spurious tpi intercept\n");
1083        break;
1084    case PRIV_B2_SCHM:
1085        ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1086                           run->s390_sieic.ipb);
1087        break;
1088    case PRIV_B2_RSCH:
1089        ioinst_handle_rsch(cpu, env->regs[1]);
1090        break;
1091    case PRIV_B2_RCHP:
1092        ioinst_handle_rchp(cpu, env->regs[1]);
1093        break;
1094    case PRIV_B2_STCPS:
1095        /* We do not provide this instruction, it is suppressed. */
1096        break;
1097    case PRIV_B2_SAL:
1098        ioinst_handle_sal(cpu, env->regs[1]);
1099        break;
1100    case PRIV_B2_SIGA:
1101        /* Not provided, set CC = 3 for subchannel not operational */
1102        setcc(cpu, 3);
1103        break;
1104    case PRIV_B2_SCLP_CALL:
1105        rc = kvm_sclp_service_call(cpu, run, ipbh0);
1106        break;
1107    default:
1108        rc = -1;
1109        DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1110        break;
1111    }
1112
1113    return rc;
1114}
1115
1116static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1117                                  uint8_t *ar)
1118{
1119    CPUS390XState *env = &cpu->env;
1120    uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1121    uint32_t base2 = run->s390_sieic.ipb >> 28;
1122    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1123                     ((run->s390_sieic.ipb & 0xff00) << 4);
1124
1125    if (disp2 & 0x80000) {
1126        disp2 += 0xfff00000;
1127    }
1128    if (ar) {
1129        *ar = base2;
1130    }
1131
1132    return (base2 ? env->regs[base2] : 0) +
1133           (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1134}
1135
1136static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1137                                  uint8_t *ar)
1138{
1139    CPUS390XState *env = &cpu->env;
1140    uint32_t base2 = run->s390_sieic.ipb >> 28;
1141    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1142                     ((run->s390_sieic.ipb & 0xff00) << 4);
1143
1144    if (disp2 & 0x80000) {
1145        disp2 += 0xfff00000;
1146    }
1147    if (ar) {
1148        *ar = base2;
1149    }
1150
1151    return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1152}
1153
1154static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1155{
1156    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1157
1158    return clp_service_call(cpu, r2);
1159}
1160
1161static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1162{
1163    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1164    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1165
1166    return pcilg_service_call(cpu, r1, r2);
1167}
1168
1169static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1170{
1171    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1172    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1173
1174    return pcistg_service_call(cpu, r1, r2);
1175}
1176
1177static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1178{
1179    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1180    uint64_t fiba;
1181    uint8_t ar;
1182
1183    cpu_synchronize_state(CPU(cpu));
1184    fiba = get_base_disp_rxy(cpu, run, &ar);
1185
1186    return stpcifc_service_call(cpu, r1, fiba, ar);
1187}
1188
1189static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1190{
1191    /* NOOP */
1192    return 0;
1193}
1194
1195static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1196{
1197    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1198    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1199
1200    return rpcit_service_call(cpu, r1, r2);
1201}
1202
1203static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1204{
1205    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1206    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1207    uint64_t gaddr;
1208    uint8_t ar;
1209
1210    cpu_synchronize_state(CPU(cpu));
1211    gaddr = get_base_disp_rsy(cpu, run, &ar);
1212
1213    return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1214}
1215
1216static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1217{
1218    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1219    uint64_t fiba;
1220    uint8_t ar;
1221
1222    cpu_synchronize_state(CPU(cpu));
1223    fiba = get_base_disp_rxy(cpu, run, &ar);
1224
1225    return mpcifc_service_call(cpu, r1, fiba, ar);
1226}
1227
1228static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1229{
1230    int r = 0;
1231
1232    switch (ipa1) {
1233    case PRIV_B9_CLP:
1234        r = kvm_clp_service_call(cpu, run);
1235        break;
1236    case PRIV_B9_PCISTG:
1237        r = kvm_pcistg_service_call(cpu, run);
1238        break;
1239    case PRIV_B9_PCILG:
1240        r = kvm_pcilg_service_call(cpu, run);
1241        break;
1242    case PRIV_B9_RPCIT:
1243        r = kvm_rpcit_service_call(cpu, run);
1244        break;
1245    case PRIV_B9_EQBS:
1246        /* just inject exception */
1247        r = -1;
1248        break;
1249    default:
1250        r = -1;
1251        DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1252        break;
1253    }
1254
1255    return r;
1256}
1257
1258static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1259{
1260    int r = 0;
1261
1262    switch (ipbl) {
1263    case PRIV_EB_PCISTB:
1264        r = kvm_pcistb_service_call(cpu, run);
1265        break;
1266    case PRIV_EB_SIC:
1267        r = kvm_sic_service_call(cpu, run);
1268        break;
1269    case PRIV_EB_SQBS:
1270        /* just inject exception */
1271        r = -1;
1272        break;
1273    default:
1274        r = -1;
1275        DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1276        break;
1277    }
1278
1279    return r;
1280}
1281
1282static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1283{
1284    int r = 0;
1285
1286    switch (ipbl) {
1287    case PRIV_E3_MPCIFC:
1288        r = kvm_mpcifc_service_call(cpu, run);
1289        break;
1290    case PRIV_E3_STPCIFC:
1291        r = kvm_stpcifc_service_call(cpu, run);
1292        break;
1293    default:
1294        r = -1;
1295        DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1296        break;
1297    }
1298
1299    return r;
1300}
1301
1302static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1303{
1304    CPUS390XState *env = &cpu->env;
1305    int ret;
1306
1307    cpu_synchronize_state(CPU(cpu));
1308    ret = s390_virtio_hypercall(env);
1309    if (ret == -EINVAL) {
1310        enter_pgmcheck(cpu, PGM_SPECIFICATION);
1311        return 0;
1312    }
1313
1314    return ret;
1315}
1316
1317static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1318{
1319    uint64_t r1, r3;
1320    int rc;
1321
1322    cpu_synchronize_state(CPU(cpu));
1323    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1324    r3 = run->s390_sieic.ipa & 0x000f;
1325    rc = handle_diag_288(&cpu->env, r1, r3);
1326    if (rc) {
1327        enter_pgmcheck(cpu, PGM_SPECIFICATION);
1328    }
1329}
1330
1331static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1332{
1333    uint64_t r1, r3;
1334
1335    cpu_synchronize_state(CPU(cpu));
1336    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1337    r3 = run->s390_sieic.ipa & 0x000f;
1338    handle_diag_308(&cpu->env, r1, r3);
1339}
1340
1341static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1342{
1343    CPUS390XState *env = &cpu->env;
1344    unsigned long pc;
1345
1346    cpu_synchronize_state(CPU(cpu));
1347
1348    pc = env->psw.addr - sw_bp_ilen;
1349    if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1350        env->psw.addr = pc;
1351        return EXCP_DEBUG;
1352    }
1353
1354    return -ENOENT;
1355}
1356
1357#define DIAG_KVM_CODE_MASK 0x000000000000ffff
1358
1359static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1360{
1361    int r = 0;
1362    uint16_t func_code;
1363
1364    /*
1365     * For any diagnose call we support, bits 48-63 of the resulting
1366     * address specify the function code; the remainder is ignored.
1367     */
1368    func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1369    switch (func_code) {
1370    case DIAG_TIMEREVENT:
1371        kvm_handle_diag_288(cpu, run);
1372        break;
1373    case DIAG_IPL:
1374        kvm_handle_diag_308(cpu, run);
1375        break;
1376    case DIAG_KVM_HYPERCALL:
1377        r = handle_hypercall(cpu, run);
1378        break;
1379    case DIAG_KVM_BREAKPOINT:
1380        r = handle_sw_breakpoint(cpu, run);
1381        break;
1382    default:
1383        DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1384        enter_pgmcheck(cpu, PGM_SPECIFICATION);
1385        break;
1386    }
1387
1388    return r;
1389}
1390
1391typedef struct SigpInfo {
1392    uint64_t param;
1393    int cc;
1394    uint64_t *status_reg;
1395} SigpInfo;
1396
1397static void set_sigp_status(SigpInfo *si, uint64_t status)
1398{
1399    *si->status_reg &= 0xffffffff00000000ULL;
1400    *si->status_reg |= status;
1401    si->cc = SIGP_CC_STATUS_STORED;
1402}
1403
1404static void sigp_start(CPUState *cs, run_on_cpu_data arg)
1405{
1406    S390CPU *cpu = S390_CPU(cs);
1407    SigpInfo *si = arg.host_ptr;
1408
1409    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1410        si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1411        return;
1412    }
1413
1414    s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1415    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1416}
1417
1418static void sigp_stop(CPUState *cs, run_on_cpu_data arg)
1419{
1420    S390CPU *cpu = S390_CPU(cs);
1421    SigpInfo *si = arg.host_ptr;
1422    struct kvm_s390_irq irq = {
1423        .type = KVM_S390_SIGP_STOP,
1424    };
1425
1426    if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) {
1427        si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1428        return;
1429    }
1430
1431    /* disabled wait - sleeping in user space */
1432    if (cs->halted) {
1433        s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1434    } else {
1435        /* execute the stop function */
1436        cpu->env.sigp_order = SIGP_STOP;
1437        kvm_s390_vcpu_interrupt(cpu, &irq);
1438    }
1439    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1440}
1441
1442#define ADTL_SAVE_AREA_SIZE 1024
1443static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr)
1444{
1445    void *mem;
1446    hwaddr len = ADTL_SAVE_AREA_SIZE;
1447
1448    mem = cpu_physical_memory_map(addr, &len, 1);
1449    if (!mem) {
1450        return -EFAULT;
1451    }
1452    if (len != ADTL_SAVE_AREA_SIZE) {
1453        cpu_physical_memory_unmap(mem, len, 1, 0);
1454        return -EFAULT;
1455    }
1456
1457    memcpy(mem, &cpu->env.vregs, 512);
1458
1459    cpu_physical_memory_unmap(mem, len, 1, len);
1460
1461    return 0;
1462}
1463
1464#define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1465#define SAVE_AREA_SIZE 512
1466static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1467{
1468    static const uint8_t ar_id = 1;
1469    uint64_t ckc = cpu->env.ckc >> 8;
1470    void *mem;
1471    int i;
1472    hwaddr len = SAVE_AREA_SIZE;
1473
1474    mem = cpu_physical_memory_map(addr, &len, 1);
1475    if (!mem) {
1476        return -EFAULT;
1477    }
1478    if (len != SAVE_AREA_SIZE) {
1479        cpu_physical_memory_unmap(mem, len, 1, 0);
1480        return -EFAULT;
1481    }
1482
1483    if (store_arch) {
1484        cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1485    }
1486    for (i = 0; i < 16; ++i) {
1487        *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll;
1488    }
1489    memcpy(mem + 128, &cpu->env.regs, 128);
1490    memcpy(mem + 256, &cpu->env.psw, 16);
1491    memcpy(mem + 280, &cpu->env.psa, 4);
1492    memcpy(mem + 284, &cpu->env.fpc, 4);
1493    memcpy(mem + 292, &cpu->env.todpr, 4);
1494    memcpy(mem + 296, &cpu->env.cputm, 8);
1495    memcpy(mem + 304, &ckc, 8);
1496    memcpy(mem + 320, &cpu->env.aregs, 64);
1497    memcpy(mem + 384, &cpu->env.cregs, 128);
1498
1499    cpu_physical_memory_unmap(mem, len, 1, len);
1500
1501    return 0;
1502}
1503
1504static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg)
1505{
1506    S390CPU *cpu = S390_CPU(cs);
1507    SigpInfo *si = arg.host_ptr;
1508    struct kvm_s390_irq irq = {
1509        .type = KVM_S390_SIGP_STOP,
1510    };
1511
1512    /* disabled wait - sleeping in user space */
1513    if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) {
1514        s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1515    }
1516
1517    switch (s390_cpu_get_state(cpu)) {
1518    case CPU_STATE_OPERATING:
1519        cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1520        kvm_s390_vcpu_interrupt(cpu, &irq);
1521        /* store will be performed when handling the stop intercept */
1522        break;
1523    case CPU_STATE_STOPPED:
1524        /* already stopped, just store the status */
1525        cpu_synchronize_state(cs);
1526        kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1527        break;
1528    }
1529    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1530}
1531
1532static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg)
1533{
1534    S390CPU *cpu = S390_CPU(cs);
1535    SigpInfo *si = arg.host_ptr;
1536    uint32_t address = si->param & 0x7ffffe00u;
1537
1538    /* cpu has to be stopped */
1539    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1540        set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1541        return;
1542    }
1543
1544    cpu_synchronize_state(cs);
1545
1546    if (kvm_s390_store_status(cpu, address, false)) {
1547        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1548        return;
1549    }
1550    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1551}
1552
1553static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg)
1554{
1555    S390CPU *cpu = S390_CPU(cs);
1556    SigpInfo *si = arg.host_ptr;
1557
1558    if (!s390_has_feat(S390_FEAT_VECTOR)) {
1559        set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1560        return;
1561    }
1562
1563    /* cpu has to be stopped */
1564    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1565        set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1566        return;
1567    }
1568
1569    /* parameter must be aligned to 1024-byte boundary */
1570    if (si->param & 0x3ff) {
1571        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1572        return;
1573    }
1574
1575    cpu_synchronize_state(cs);
1576
1577    if (kvm_s390_store_adtl_status(cpu, si->param)) {
1578        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1579        return;
1580    }
1581    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1582}
1583
1584static void sigp_restart(CPUState *cs, run_on_cpu_data arg)
1585{
1586    S390CPU *cpu = S390_CPU(cs);
1587    SigpInfo *si = arg.host_ptr;
1588    struct kvm_s390_irq irq = {
1589        .type = KVM_S390_RESTART,
1590    };
1591
1592    switch (s390_cpu_get_state(cpu)) {
1593    case CPU_STATE_STOPPED:
1594        /* the restart irq has to be delivered prior to any other pending irq */
1595        cpu_synchronize_state(cs);
1596        do_restart_interrupt(&cpu->env);
1597        s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1598        break;
1599    case CPU_STATE_OPERATING:
1600        kvm_s390_vcpu_interrupt(cpu, &irq);
1601        break;
1602    }
1603    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1604}
1605
1606int kvm_s390_cpu_restart(S390CPU *cpu)
1607{
1608    SigpInfo si = {};
1609
1610    run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1611    DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1612    return 0;
1613}
1614
1615static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1616{
1617    S390CPU *cpu = S390_CPU(cs);
1618    S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1619    SigpInfo *si = arg.host_ptr;
1620
1621    cpu_synchronize_state(cs);
1622    scc->initial_cpu_reset(cs);
1623    cpu_synchronize_post_reset(cs);
1624    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1625}
1626
1627static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1628{
1629    S390CPU *cpu = S390_CPU(cs);
1630    S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1631    SigpInfo *si = arg.host_ptr;
1632
1633    cpu_synchronize_state(cs);
1634    scc->cpu_reset(cs);
1635    cpu_synchronize_post_reset(cs);
1636    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1637}
1638
1639static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg)
1640{
1641    S390CPU *cpu = S390_CPU(cs);
1642    SigpInfo *si = arg.host_ptr;
1643    uint32_t addr = si->param & 0x7fffe000u;
1644
1645    cpu_synchronize_state(cs);
1646
1647    if (!address_space_access_valid(&address_space_memory, addr,
1648                                    sizeof(struct LowCore), false)) {
1649        set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1650        return;
1651    }
1652
1653    /* cpu has to be stopped */
1654    if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1655        set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1656        return;
1657    }
1658
1659    cpu->env.psa = addr;
1660    cpu_synchronize_post_init(cs);
1661    si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1662}
1663
1664static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1665                                  uint64_t param, uint64_t *status_reg)
1666{
1667    SigpInfo si = {
1668        .param = param,
1669        .status_reg = status_reg,
1670    };
1671
1672    /* cpu available? */
1673    if (dst_cpu == NULL) {
1674        return SIGP_CC_NOT_OPERATIONAL;
1675    }
1676
1677    /* only resets can break pending orders */
1678    if (dst_cpu->env.sigp_order != 0 &&
1679        order != SIGP_CPU_RESET &&
1680        order != SIGP_INITIAL_CPU_RESET) {
1681        return SIGP_CC_BUSY;
1682    }
1683
1684    switch (order) {
1685    case SIGP_START:
1686        run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si));
1687        break;
1688    case SIGP_STOP:
1689        run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si));
1690        break;
1691    case SIGP_RESTART:
1692        run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1693        break;
1694    case SIGP_STOP_STORE_STATUS:
1695        run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si));
1696        break;
1697    case SIGP_STORE_STATUS_ADDR:
1698        run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si));
1699        break;
1700    case SIGP_STORE_ADTL_STATUS:
1701        run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si));
1702        break;
1703    case SIGP_SET_PREFIX:
1704        run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si));
1705        break;
1706    case SIGP_INITIAL_CPU_RESET:
1707        run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1708        break;
1709    case SIGP_CPU_RESET:
1710        run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1711        break;
1712    default:
1713        DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1714        set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1715    }
1716
1717    return si.cc;
1718}
1719
1720static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1721                                 uint64_t *status_reg)
1722{
1723    CPUState *cur_cs;
1724    S390CPU *cur_cpu;
1725
1726    /* due to the BQL, we are the only active cpu */
1727    CPU_FOREACH(cur_cs) {
1728        cur_cpu = S390_CPU(cur_cs);
1729        if (cur_cpu->env.sigp_order != 0) {
1730            return SIGP_CC_BUSY;
1731        }
1732        cpu_synchronize_state(cur_cs);
1733        /* all but the current one have to be stopped */
1734        if (cur_cpu != cpu &&
1735            s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1736            *status_reg &= 0xffffffff00000000ULL;
1737            *status_reg |= SIGP_STAT_INCORRECT_STATE;
1738            return SIGP_CC_STATUS_STORED;
1739        }
1740    }
1741
1742    switch (param & 0xff) {
1743    case SIGP_MODE_ESA_S390:
1744        /* not supported */
1745        return SIGP_CC_NOT_OPERATIONAL;
1746    case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW:
1747    case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW:
1748        CPU_FOREACH(cur_cs) {
1749            cur_cpu = S390_CPU(cur_cs);
1750            cur_cpu->env.pfault_token = -1UL;
1751        }
1752        break;
1753    default:
1754        *status_reg &= 0xffffffff00000000ULL;
1755        *status_reg |= SIGP_STAT_INVALID_PARAMETER;
1756        return SIGP_CC_STATUS_STORED;
1757    }
1758
1759    return SIGP_CC_ORDER_CODE_ACCEPTED;
1760}
1761
1762#define SIGP_ORDER_MASK 0x000000ff
1763
1764static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1765{
1766    CPUS390XState *env = &cpu->env;
1767    const uint8_t r1 = ipa1 >> 4;
1768    const uint8_t r3 = ipa1 & 0x0f;
1769    int ret;
1770    uint8_t order;
1771    uint64_t *status_reg;
1772    uint64_t param;
1773    S390CPU *dst_cpu = NULL;
1774
1775    cpu_synchronize_state(CPU(cpu));
1776
1777    /* get order code */
1778    order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1779        & SIGP_ORDER_MASK;
1780    status_reg = &env->regs[r1];
1781    param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1782
1783    if (qemu_mutex_trylock(&qemu_sigp_mutex)) {
1784        ret = SIGP_CC_BUSY;
1785        goto out;
1786    }
1787
1788    switch (order) {
1789    case SIGP_SET_ARCH:
1790        ret = sigp_set_architecture(cpu, param, status_reg);
1791        break;
1792    default:
1793        /* all other sigp orders target a single vcpu */
1794        dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1795        ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1796    }
1797    qemu_mutex_unlock(&qemu_sigp_mutex);
1798
1799out:
1800    trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1801                            dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1802
1803    if (ret >= 0) {
1804        setcc(cpu, ret);
1805        return 0;
1806    }
1807
1808    return ret;
1809}
1810
1811static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1812{
1813    unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1814    uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1815    int r = -1;
1816
1817    DPRINTF("handle_instruction 0x%x 0x%x\n",
1818            run->s390_sieic.ipa, run->s390_sieic.ipb);
1819    switch (ipa0) {
1820    case IPA0_B2:
1821        r = handle_b2(cpu, run, ipa1);
1822        break;
1823    case IPA0_B9:
1824        r = handle_b9(cpu, run, ipa1);
1825        break;
1826    case IPA0_EB:
1827        r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1828        break;
1829    case IPA0_E3:
1830        r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1831        break;
1832    case IPA0_DIAG:
1833        r = handle_diag(cpu, run, run->s390_sieic.ipb);
1834        break;
1835    case IPA0_SIGP:
1836        r = handle_sigp(cpu, run, ipa1);
1837        break;
1838    }
1839
1840    if (r < 0) {
1841        r = 0;
1842        enter_pgmcheck(cpu, 0x0001);
1843    }
1844
1845    return r;
1846}
1847
1848static bool is_special_wait_psw(CPUState *cs)
1849{
1850    /* signal quiesce */
1851    return cs->kvm_run->psw_addr == 0xfffUL;
1852}
1853
1854static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1855{
1856    CPUState *cs = CPU(cpu);
1857
1858    error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1859                 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1860                 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1861    s390_cpu_halt(cpu);
1862    qemu_system_guest_panicked();
1863}
1864
1865static int handle_intercept(S390CPU *cpu)
1866{
1867    CPUState *cs = CPU(cpu);
1868    struct kvm_run *run = cs->kvm_run;
1869    int icpt_code = run->s390_sieic.icptcode;
1870    int r = 0;
1871
1872    DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1873            (long)cs->kvm_run->psw_addr);
1874    switch (icpt_code) {
1875        case ICPT_INSTRUCTION:
1876            r = handle_instruction(cpu, run);
1877            break;
1878        case ICPT_PROGRAM:
1879            unmanageable_intercept(cpu, "program interrupt",
1880                                   offsetof(LowCore, program_new_psw));
1881            r = EXCP_HALTED;
1882            break;
1883        case ICPT_EXT_INT:
1884            unmanageable_intercept(cpu, "external interrupt",
1885                                   offsetof(LowCore, external_new_psw));
1886            r = EXCP_HALTED;
1887            break;
1888        case ICPT_WAITPSW:
1889            /* disabled wait, since enabled wait is handled in kernel */
1890            cpu_synchronize_state(cs);
1891            if (s390_cpu_halt(cpu) == 0) {
1892                if (is_special_wait_psw(cs)) {
1893                    qemu_system_shutdown_request();
1894                } else {
1895                    qemu_system_guest_panicked();
1896                }
1897            }
1898            r = EXCP_HALTED;
1899            break;
1900        case ICPT_CPU_STOP:
1901            if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
1902                qemu_system_shutdown_request();
1903            }
1904            if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
1905                kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
1906                                      true);
1907            }
1908            cpu->env.sigp_order = 0;
1909            r = EXCP_HALTED;
1910            break;
1911        case ICPT_OPEREXC:
1912            /* currently only instr 0x0000 after enabled via capability */
1913            r = handle_sw_breakpoint(cpu, run);
1914            if (r == -ENOENT) {
1915                enter_pgmcheck(cpu, PGM_OPERATION);
1916                r = 0;
1917            }
1918            break;
1919        case ICPT_SOFT_INTERCEPT:
1920            fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1921            exit(1);
1922            break;
1923        case ICPT_IO:
1924            fprintf(stderr, "KVM unimplemented icpt IO\n");
1925            exit(1);
1926            break;
1927        default:
1928            fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1929            exit(1);
1930            break;
1931    }
1932
1933    return r;
1934}
1935
1936static int handle_tsch(S390CPU *cpu)
1937{
1938    CPUState *cs = CPU(cpu);
1939    struct kvm_run *run = cs->kvm_run;
1940    int ret;
1941
1942    cpu_synchronize_state(cs);
1943
1944    ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
1945    if (ret < 0) {
1946        /*
1947         * Failure.
1948         * If an I/O interrupt had been dequeued, we have to reinject it.
1949         */
1950        if (run->s390_tsch.dequeued) {
1951            kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1952                                  run->s390_tsch.subchannel_nr,
1953                                  run->s390_tsch.io_int_parm,
1954                                  run->s390_tsch.io_int_word);
1955        }
1956        ret = 0;
1957    }
1958    return ret;
1959}
1960
1961static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1962{
1963    struct sysib_322 sysib;
1964    int del;
1965
1966    if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1967        return;
1968    }
1969    /* Shift the stack of Extended Names to prepare for our own data */
1970    memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1971            sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1972    /* First virt level, that doesn't provide Ext Names delimits stack. It is
1973     * assumed it's not capable of managing Extended Names for lower levels.
1974     */
1975    for (del = 1; del < sysib.count; del++) {
1976        if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1977            break;
1978        }
1979    }
1980    if (del < sysib.count) {
1981        memset(sysib.ext_names[del], 0,
1982               sizeof(sysib.ext_names[0]) * (sysib.count - del));
1983    }
1984    /* Insert short machine name in EBCDIC, padded with blanks */
1985    if (qemu_name) {
1986        memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1987        ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1988                                                    strlen(qemu_name)));
1989    }
1990    sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1991    memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1992    /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1993     * considered by s390 as not capable of providing any Extended Name.
1994     * Therefore if no name was specified on qemu invocation, we go with the
1995     * same "KVMguest" default, which KVM has filled into short name field.
1996     */
1997    if (qemu_name) {
1998        strncpy((char *)sysib.ext_names[0], qemu_name,
1999                sizeof(sysib.ext_names[0]));
2000    } else {
2001        strcpy((char *)sysib.ext_names[0], "KVMguest");
2002    }
2003    /* Insert UUID */
2004    memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
2005
2006    s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
2007}
2008
2009static int handle_stsi(S390CPU *cpu)
2010{
2011    CPUState *cs = CPU(cpu);
2012    struct kvm_run *run = cs->kvm_run;
2013
2014    switch (run->s390_stsi.fc) {
2015    case 3:
2016        if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2017            return 0;
2018        }
2019        /* Only sysib 3.2.2 needs post-handling for now. */
2020        insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2021        return 0;
2022    default:
2023        return 0;
2024    }
2025}
2026
2027static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2028{
2029    CPUState *cs = CPU(cpu);
2030    struct kvm_run *run = cs->kvm_run;
2031
2032    int ret = 0;
2033    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2034
2035    switch (arch_info->type) {
2036    case KVM_HW_WP_WRITE:
2037        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2038            cs->watchpoint_hit = &hw_watchpoint;
2039            hw_watchpoint.vaddr = arch_info->addr;
2040            hw_watchpoint.flags = BP_MEM_WRITE;
2041            ret = EXCP_DEBUG;
2042        }
2043        break;
2044    case KVM_HW_BP:
2045        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2046            ret = EXCP_DEBUG;
2047        }
2048        break;
2049    case KVM_SINGLESTEP:
2050        if (cs->singlestep_enabled) {
2051            ret = EXCP_DEBUG;
2052        }
2053        break;
2054    default:
2055        ret = -ENOSYS;
2056    }
2057
2058    return ret;
2059}
2060
2061int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2062{
2063    S390CPU *cpu = S390_CPU(cs);
2064    int ret = 0;
2065
2066    qemu_mutex_lock_iothread();
2067
2068    switch (run->exit_reason) {
2069        case KVM_EXIT_S390_SIEIC:
2070            ret = handle_intercept(cpu);
2071            break;
2072        case KVM_EXIT_S390_RESET:
2073            s390_reipl_request();
2074            break;
2075        case KVM_EXIT_S390_TSCH:
2076            ret = handle_tsch(cpu);
2077            break;
2078        case KVM_EXIT_S390_STSI:
2079            ret = handle_stsi(cpu);
2080            break;
2081        case KVM_EXIT_DEBUG:
2082            ret = kvm_arch_handle_debug_exit(cpu);
2083            break;
2084        default:
2085            fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2086            break;
2087    }
2088    qemu_mutex_unlock_iothread();
2089
2090    if (ret == 0) {
2091        ret = EXCP_INTERRUPT;
2092    }
2093    return ret;
2094}
2095
2096bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2097{
2098    return true;
2099}
2100
2101int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2102{
2103    return 1;
2104}
2105
2106int kvm_arch_on_sigbus(int code, void *addr)
2107{
2108    return 1;
2109}
2110
2111void kvm_s390_io_interrupt(uint16_t subchannel_id,
2112                           uint16_t subchannel_nr, uint32_t io_int_parm,
2113                           uint32_t io_int_word)
2114{
2115    struct kvm_s390_irq irq = {
2116        .u.io.subchannel_id = subchannel_id,
2117        .u.io.subchannel_nr = subchannel_nr,
2118        .u.io.io_int_parm = io_int_parm,
2119        .u.io.io_int_word = io_int_word,
2120    };
2121
2122    if (io_int_word & IO_INT_WORD_AI) {
2123        irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2124    } else {
2125        irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2126                                      (subchannel_id & 0x0006),
2127                                      subchannel_nr);
2128    }
2129    kvm_s390_floating_interrupt(&irq);
2130}
2131
2132static uint64_t build_channel_report_mcic(void)
2133{
2134    uint64_t mcic;
2135
2136    /* subclass: indicate channel report pending */
2137    mcic = MCIC_SC_CP |
2138    /* subclass modifiers: none */
2139    /* storage errors: none */
2140    /* validity bits: no damage */
2141        MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2142        MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2143        MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2144    if (s390_has_feat(S390_FEAT_VECTOR)) {
2145        mcic |= MCIC_VB_VR;
2146    }
2147    return mcic;
2148}
2149
2150void kvm_s390_crw_mchk(void)
2151{
2152    struct kvm_s390_irq irq = {
2153        .type = KVM_S390_MCHK,
2154        .u.mchk.cr14 = 1 << 28,
2155        .u.mchk.mcic = build_channel_report_mcic(),
2156    };
2157    kvm_s390_floating_interrupt(&irq);
2158}
2159
2160void kvm_s390_enable_css_support(S390CPU *cpu)
2161{
2162    int r;
2163
2164    /* Activate host kernel channel subsystem support. */
2165    r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2166    assert(r == 0);
2167}
2168
2169void kvm_arch_init_irq_routing(KVMState *s)
2170{
2171    /*
2172     * Note that while irqchip capabilities generally imply that cpustates
2173     * are handled in-kernel, it is not true for s390 (yet); therefore, we
2174     * have to override the common code kvm_halt_in_kernel_allowed setting.
2175     */
2176    if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2177        kvm_gsi_routing_allowed = true;
2178        kvm_halt_in_kernel_allowed = false;
2179    }
2180}
2181
2182int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2183                                    int vq, bool assign)
2184{
2185    struct kvm_ioeventfd kick = {
2186        .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2187        KVM_IOEVENTFD_FLAG_DATAMATCH,
2188        .fd = event_notifier_get_fd(notifier),
2189        .datamatch = vq,
2190        .addr = sch,
2191        .len = 8,
2192    };
2193    if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2194        return -ENOSYS;
2195    }
2196    if (!assign) {
2197        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2198    }
2199    return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2200}
2201
2202int kvm_s390_get_memslot_count(KVMState *s)
2203{
2204    return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2205}
2206
2207int kvm_s390_get_ri(void)
2208{
2209    return cap_ri;
2210}
2211
2212int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2213{
2214    struct kvm_mp_state mp_state = {};
2215    int ret;
2216
2217    /* the kvm part might not have been initialized yet */
2218    if (CPU(cpu)->kvm_state == NULL) {
2219        return 0;
2220    }
2221
2222    switch (cpu_state) {
2223    case CPU_STATE_STOPPED:
2224        mp_state.mp_state = KVM_MP_STATE_STOPPED;
2225        break;
2226    case CPU_STATE_CHECK_STOP:
2227        mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2228        break;
2229    case CPU_STATE_OPERATING:
2230        mp_state.mp_state = KVM_MP_STATE_OPERATING;
2231        break;
2232    case CPU_STATE_LOAD:
2233        mp_state.mp_state = KVM_MP_STATE_LOAD;
2234        break;
2235    default:
2236        error_report("Requested CPU state is not a valid S390 CPU state: %u",
2237                     cpu_state);
2238        exit(1);
2239    }
2240
2241    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2242    if (ret) {
2243        trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2244                                       strerror(-ret));
2245    }
2246
2247    return ret;
2248}
2249
2250void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2251{
2252    struct kvm_s390_irq_state irq_state;
2253    CPUState *cs = CPU(cpu);
2254    int32_t bytes;
2255
2256    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2257        return;
2258    }
2259
2260    irq_state.buf = (uint64_t) cpu->irqstate;
2261    irq_state.len = VCPU_IRQ_BUF_SIZE;
2262
2263    bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2264    if (bytes < 0) {
2265        cpu->irqstate_saved_size = 0;
2266        error_report("Migration of interrupt state failed");
2267        return;
2268    }
2269
2270    cpu->irqstate_saved_size = bytes;
2271}
2272
2273int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2274{
2275    CPUState *cs = CPU(cpu);
2276    struct kvm_s390_irq_state irq_state;
2277    int r;
2278
2279    if (cpu->irqstate_saved_size == 0) {
2280        return 0;
2281    }
2282
2283    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2284        return -ENOSYS;
2285    }
2286
2287    irq_state.buf = (uint64_t) cpu->irqstate;
2288    irq_state.len = cpu->irqstate_saved_size;
2289
2290    r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2291    if (r) {
2292        error_report("Setting interrupt state failed %d", r);
2293    }
2294    return r;
2295}
2296
2297int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2298                             uint64_t address, uint32_t data, PCIDevice *dev)
2299{
2300    S390PCIBusDevice *pbdev;
2301    uint32_t idx = data >> ZPCI_MSI_VEC_BITS;
2302    uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2303
2304    pbdev = s390_pci_find_dev_by_idx(idx);
2305    if (!pbdev) {
2306        DPRINTF("add_msi_route no dev\n");
2307        return -ENODEV;
2308    }
2309
2310    pbdev->routes.adapter.ind_offset = vec;
2311
2312    route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2313    route->flags = 0;
2314    route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2315    route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2316    route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2317    route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset;
2318    route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2319    return 0;
2320}
2321
2322int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2323                                int vector, PCIDevice *dev)
2324{
2325    return 0;
2326}
2327
2328int kvm_arch_release_virq_post(int virq)
2329{
2330    return 0;
2331}
2332
2333int kvm_arch_msi_data_to_gsi(uint32_t data)
2334{
2335    abort();
2336}
2337
2338static inline int test_bit_inv(long nr, const unsigned long *addr)
2339{
2340    return test_bit(BE_BIT_NR(nr), addr);
2341}
2342
2343static inline void set_bit_inv(long nr, unsigned long *addr)
2344{
2345    set_bit(BE_BIT_NR(nr), addr);
2346}
2347
2348static int query_cpu_subfunc(S390FeatBitmap features)
2349{
2350    struct kvm_s390_vm_cpu_subfunc prop;
2351    struct kvm_device_attr attr = {
2352        .group = KVM_S390_VM_CPU_MODEL,
2353        .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2354        .addr = (uint64_t) &prop,
2355    };
2356    int rc;
2357
2358    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2359    if (rc) {
2360        return  rc;
2361    }
2362
2363    /*
2364     * We're going to add all subfunctions now, if the corresponding feature
2365     * is available that unlocks the query functions.
2366     */
2367    s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2368    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2369        s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2370    }
2371    if (test_bit(S390_FEAT_MSA, features)) {
2372        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2373        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2374        s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2375        s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2376        s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2377    }
2378    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2379        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2380    }
2381    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2382        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2383        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2384        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2385        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2386    }
2387    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2388        s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2389    }
2390    return 0;
2391}
2392
2393static int configure_cpu_subfunc(const S390FeatBitmap features)
2394{
2395    struct kvm_s390_vm_cpu_subfunc prop = {};
2396    struct kvm_device_attr attr = {
2397        .group = KVM_S390_VM_CPU_MODEL,
2398        .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2399        .addr = (uint64_t) &prop,
2400    };
2401
2402    if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2403                           KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2404        /* hardware support might be missing, IBC will handle most of this */
2405        return 0;
2406    }
2407
2408    s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2409    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2410        s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2411        prop.ptff[0] |= 0x80; /* query is always available */
2412    }
2413    if (test_bit(S390_FEAT_MSA, features)) {
2414        s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2415        prop.kmac[0] |= 0x80; /* query is always available */
2416        s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2417        prop.kmc[0] |= 0x80; /* query is always available */
2418        s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2419        prop.km[0] |= 0x80; /* query is always available */
2420        s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2421        prop.kimd[0] |= 0x80; /* query is always available */
2422        s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2423        prop.klmd[0] |= 0x80; /* query is always available */
2424    }
2425    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2426        s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2427        prop.pckmo[0] |= 0x80; /* query is always available */
2428    }
2429    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2430        s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2431        prop.kmctr[0] |= 0x80; /* query is always available */
2432        s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2433        prop.kmf[0] |= 0x80; /* query is always available */
2434        s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2435        prop.kmo[0] |= 0x80; /* query is always available */
2436        s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2437        prop.pcc[0] |= 0x80; /* query is always available */
2438    }
2439    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2440        s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2441        prop.ppno[0] |= 0x80; /* query is always available */
2442    }
2443    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2444}
2445
2446static int kvm_to_feat[][2] = {
2447    { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2448    { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2449    { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2450    { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2451    { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2452    { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2453    { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2454    { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2455    { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2456    { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2457    { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2458    { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2459    { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2460};
2461
2462static int query_cpu_feat(S390FeatBitmap features)
2463{
2464    struct kvm_s390_vm_cpu_feat prop;
2465    struct kvm_device_attr attr = {
2466        .group = KVM_S390_VM_CPU_MODEL,
2467        .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2468        .addr = (uint64_t) &prop,
2469    };
2470    int rc;
2471    int i;
2472
2473    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2474    if (rc) {
2475        return  rc;
2476    }
2477
2478    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2479        if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) {
2480            set_bit(kvm_to_feat[i][1], features);
2481        }
2482    }
2483    return 0;
2484}
2485
2486static int configure_cpu_feat(const S390FeatBitmap features)
2487{
2488    struct kvm_s390_vm_cpu_feat prop = {};
2489    struct kvm_device_attr attr = {
2490        .group = KVM_S390_VM_CPU_MODEL,
2491        .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2492        .addr = (uint64_t) &prop,
2493    };
2494    int i;
2495
2496    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2497        if (test_bit(kvm_to_feat[i][1], features)) {
2498            set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat);
2499        }
2500    }
2501    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2502}
2503
2504bool kvm_s390_cpu_models_supported(void)
2505{
2506    if (!cpu_model_allowed()) {
2507        /* compatibility machines interfere with the cpu model */
2508        return false;
2509    }
2510    return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2511                             KVM_S390_VM_CPU_MACHINE) &&
2512           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2513                             KVM_S390_VM_CPU_PROCESSOR) &&
2514           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2515                             KVM_S390_VM_CPU_MACHINE_FEAT) &&
2516           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2517                             KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2518           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2519                             KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2520}
2521
2522void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2523{
2524    struct kvm_s390_vm_cpu_machine prop = {};
2525    struct kvm_device_attr attr = {
2526        .group = KVM_S390_VM_CPU_MODEL,
2527        .attr = KVM_S390_VM_CPU_MACHINE,
2528        .addr = (uint64_t) &prop,
2529    };
2530    uint16_t unblocked_ibc = 0, cpu_type = 0;
2531    int rc;
2532
2533    memset(model, 0, sizeof(*model));
2534
2535    if (!kvm_s390_cpu_models_supported()) {
2536        error_setg(errp, "KVM doesn't support CPU models");
2537        return;
2538    }
2539
2540    /* query the basic cpu model properties */
2541    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2542    if (rc) {
2543        error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2544        return;
2545    }
2546
2547    cpu_type = cpuid_type(prop.cpuid);
2548    if (has_ibc(prop.ibc)) {
2549        model->lowest_ibc = lowest_ibc(prop.ibc);
2550        unblocked_ibc = unblocked_ibc(prop.ibc);
2551    }
2552    model->cpu_id = cpuid_id(prop.cpuid);
2553    model->cpu_ver = 0xff;
2554
2555    /* get supported cpu features indicated via STFL(E) */
2556    s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2557                             (uint8_t *) prop.fac_mask);
2558    /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2559    if (test_bit(S390_FEAT_STFLE, model->features)) {
2560        set_bit(S390_FEAT_DAT_ENH_2, model->features);
2561    }
2562    /* get supported cpu features indicated e.g. via SCLP */
2563    rc = query_cpu_feat(model->features);
2564    if (rc) {
2565        error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2566        return;
2567    }
2568    /* get supported cpu subfunctions indicated via query / test bit */
2569    rc = query_cpu_subfunc(model->features);
2570    if (rc) {
2571        error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2572        return;
2573    }
2574
2575    /* with cpu model support, CMM is only indicated if really available */
2576    if (kvm_s390_cmma_available()) {
2577        set_bit(S390_FEAT_CMM, model->features);
2578    }
2579
2580    if (s390_known_cpu_type(cpu_type)) {
2581        /* we want the exact model, even if some features are missing */
2582        model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2583                                       ibc_ec_ga(unblocked_ibc), NULL);
2584    } else {
2585        /* model unknown, e.g. too new - search using features */
2586        model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2587                                       ibc_ec_ga(unblocked_ibc),
2588                                       model->features);
2589    }
2590    if (!model->def) {
2591        error_setg(errp, "KVM: host CPU model could not be identified");
2592        return;
2593    }
2594    /* strip of features that are not part of the maximum model */
2595    bitmap_and(model->features, model->features, model->def->full_feat,
2596               S390_FEAT_MAX);
2597}
2598
2599void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2600{
2601    struct kvm_s390_vm_cpu_processor prop  = {
2602        .fac_list = { 0 },
2603    };
2604    struct kvm_device_attr attr = {
2605        .group = KVM_S390_VM_CPU_MODEL,
2606        .attr = KVM_S390_VM_CPU_PROCESSOR,
2607        .addr = (uint64_t) &prop,
2608    };
2609    int rc;
2610
2611    if (!model) {
2612        /* compatibility handling if cpu models are disabled */
2613        if (kvm_s390_cmma_available() && !mem_path) {
2614            kvm_s390_enable_cmma();
2615        }
2616        return;
2617    }
2618    if (!kvm_s390_cpu_models_supported()) {
2619        error_setg(errp, "KVM doesn't support CPU models");
2620        return;
2621    }
2622    prop.cpuid = s390_cpuid_from_cpu_model(model);
2623    prop.ibc = s390_ibc_from_cpu_model(model);
2624    /* configure cpu features indicated via STFL(e) */
2625    s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2626                         (uint8_t *) prop.fac_list);
2627    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2628    if (rc) {
2629        error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2630        return;
2631    }
2632    /* configure cpu features indicated e.g. via SCLP */
2633    rc = configure_cpu_feat(model->features);
2634    if (rc) {
2635        error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2636        return;
2637    }
2638    /* configure cpu subfunctions indicated via query / test bit */
2639    rc = configure_cpu_subfunc(model->features);
2640    if (rc) {
2641        error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2642        return;
2643    }
2644    /* enable CMM via CMMA - disable on hugetlbfs */
2645    if (test_bit(S390_FEAT_CMM, model->features)) {
2646        if (mem_path) {
2647            error_report("Warning: CMM will not be enabled because it is not "
2648                         "compatible to hugetlbfs.");
2649        } else {
2650            kvm_s390_enable_cmma();
2651        }
2652    }
2653}
2654