qemu/target-xtensa/op_helper.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "cpu.h"
  30#include "exec/helper-proto.h"
  31#include "qemu/host-utils.h"
  32#include "exec/exec-all.h"
  33#include "exec/cpu_ldst.h"
  34#include "exec/address-spaces.h"
  35#include "qemu/timer.h"
  36
  37void xtensa_cpu_do_unaligned_access(CPUState *cs,
  38        vaddr addr, MMUAccessType access_type,
  39        int mmu_idx, uintptr_t retaddr)
  40{
  41    XtensaCPU *cpu = XTENSA_CPU(cs);
  42    CPUXtensaState *env = &cpu->env;
  43
  44    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
  45            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
  46        cpu_restore_state(CPU(cpu), retaddr);
  47        HELPER(exception_cause_vaddr)(env,
  48                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
  49    }
  50}
  51
  52void tlb_fill(CPUState *cs, target_ulong vaddr, MMUAccessType access_type,
  53              int mmu_idx, uintptr_t retaddr)
  54{
  55    XtensaCPU *cpu = XTENSA_CPU(cs);
  56    CPUXtensaState *env = &cpu->env;
  57    uint32_t paddr;
  58    uint32_t page_size;
  59    unsigned access;
  60    int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
  61            &paddr, &page_size, &access);
  62
  63    qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
  64                  __func__, vaddr, access_type, mmu_idx, paddr, ret);
  65
  66    if (ret == 0) {
  67        tlb_set_page(cs,
  68                     vaddr & TARGET_PAGE_MASK,
  69                     paddr & TARGET_PAGE_MASK,
  70                     access, mmu_idx, page_size);
  71    } else {
  72        cpu_restore_state(cs, retaddr);
  73        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
  74    }
  75}
  76
  77void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
  78                                     bool is_write, bool is_exec, int opaque,
  79                                     unsigned size)
  80{
  81    XtensaCPU *cpu = XTENSA_CPU(cs);
  82    CPUXtensaState *env = &cpu->env;
  83
  84    HELPER(exception_cause_vaddr)(env, env->pc,
  85                                  is_exec ?
  86                                  INSTR_PIF_ADDR_ERROR_CAUSE :
  87                                  LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
  88                                  is_exec ? addr : cs->mem_io_vaddr);
  89}
  90
  91static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
  92{
  93    uint32_t paddr;
  94    uint32_t page_size;
  95    unsigned access;
  96    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
  97            &paddr, &page_size, &access);
  98    if (ret == 0) {
  99        tb_invalidate_phys_addr(&address_space_memory, paddr);
 100    }
 101}
 102
 103void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
 104{
 105    CPUState *cs = CPU(xtensa_env_get_cpu(env));
 106
 107    cs->exception_index = excp;
 108    if (excp == EXCP_DEBUG) {
 109        env->exception_taken = 0;
 110    }
 111    cpu_loop_exit(cs);
 112}
 113
 114void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
 115{
 116    uint32_t vector;
 117
 118    env->pc = pc;
 119    if (env->sregs[PS] & PS_EXCM) {
 120        if (env->config->ndepc) {
 121            env->sregs[DEPC] = pc;
 122        } else {
 123            env->sregs[EPC1] = pc;
 124        }
 125        vector = EXC_DOUBLE;
 126    } else {
 127        env->sregs[EPC1] = pc;
 128        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
 129    }
 130
 131    env->sregs[EXCCAUSE] = cause;
 132    env->sregs[PS] |= PS_EXCM;
 133
 134    HELPER(exception)(env, vector);
 135}
 136
 137void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
 138        uint32_t pc, uint32_t cause, uint32_t vaddr)
 139{
 140    env->sregs[EXCVADDR] = vaddr;
 141    HELPER(exception_cause)(env, pc, cause);
 142}
 143
 144void debug_exception_env(CPUXtensaState *env, uint32_t cause)
 145{
 146    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
 147        HELPER(debug_exception)(env, env->pc, cause);
 148    }
 149}
 150
 151void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
 152{
 153    unsigned level = env->config->debug_level;
 154
 155    env->pc = pc;
 156    env->sregs[DEBUGCAUSE] = cause;
 157    env->sregs[EPC1 + level - 1] = pc;
 158    env->sregs[EPS2 + level - 2] = env->sregs[PS];
 159    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
 160        (level << PS_INTLEVEL_SHIFT);
 161    HELPER(exception)(env, EXC_DEBUG);
 162}
 163
 164uint32_t HELPER(nsa)(uint32_t v)
 165{
 166    if (v & 0x80000000) {
 167        v = ~v;
 168    }
 169    return v ? clz32(v) - 1 : 31;
 170}
 171
 172uint32_t HELPER(nsau)(uint32_t v)
 173{
 174    return v ? clz32(v) : 32;
 175}
 176
 177static void copy_window_from_phys(CPUXtensaState *env,
 178        uint32_t window, uint32_t phys, uint32_t n)
 179{
 180    assert(phys < env->config->nareg);
 181    if (phys + n <= env->config->nareg) {
 182        memcpy(env->regs + window, env->phys_regs + phys,
 183                n * sizeof(uint32_t));
 184    } else {
 185        uint32_t n1 = env->config->nareg - phys;
 186        memcpy(env->regs + window, env->phys_regs + phys,
 187                n1 * sizeof(uint32_t));
 188        memcpy(env->regs + window + n1, env->phys_regs,
 189                (n - n1) * sizeof(uint32_t));
 190    }
 191}
 192
 193static void copy_phys_from_window(CPUXtensaState *env,
 194        uint32_t phys, uint32_t window, uint32_t n)
 195{
 196    assert(phys < env->config->nareg);
 197    if (phys + n <= env->config->nareg) {
 198        memcpy(env->phys_regs + phys, env->regs + window,
 199                n * sizeof(uint32_t));
 200    } else {
 201        uint32_t n1 = env->config->nareg - phys;
 202        memcpy(env->phys_regs + phys, env->regs + window,
 203                n1 * sizeof(uint32_t));
 204        memcpy(env->phys_regs, env->regs + window + n1,
 205                (n - n1) * sizeof(uint32_t));
 206    }
 207}
 208
 209
 210static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
 211{
 212    return a & (env->config->nareg / 4 - 1);
 213}
 214
 215static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
 216{
 217    return 1 << windowbase_bound(a, env);
 218}
 219
 220void xtensa_sync_window_from_phys(CPUXtensaState *env)
 221{
 222    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
 223}
 224
 225void xtensa_sync_phys_from_window(CPUXtensaState *env)
 226{
 227    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
 228}
 229
 230static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
 231{
 232    xtensa_sync_phys_from_window(env);
 233    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
 234    xtensa_sync_window_from_phys(env);
 235}
 236
 237static void rotate_window(CPUXtensaState *env, uint32_t delta)
 238{
 239    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
 240}
 241
 242void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
 243{
 244    rotate_window_abs(env, v);
 245}
 246
 247void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
 248{
 249    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
 250    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
 251        qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
 252                      pc, env->sregs[PS]);
 253        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
 254    } else {
 255        uint32_t windowstart = xtensa_replicate_windowstart(env) >>
 256            (env->sregs[WINDOW_BASE] + 1);
 257
 258        if (windowstart & ((1 << callinc) - 1)) {
 259            HELPER(window_check)(env, pc, callinc);
 260        }
 261        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
 262        rotate_window(env, callinc);
 263        env->sregs[WINDOW_START] |=
 264            windowstart_bit(env->sregs[WINDOW_BASE], env);
 265    }
 266}
 267
 268void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
 269{
 270    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
 271    uint32_t windowstart = xtensa_replicate_windowstart(env) >>
 272        (env->sregs[WINDOW_BASE] + 1);
 273    uint32_t n = ctz32(windowstart) + 1;
 274
 275    assert(n <= w);
 276
 277    rotate_window(env, n);
 278    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
 279        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
 280    env->sregs[EPC1] = env->pc = pc;
 281
 282    switch (ctz32(windowstart >> n)) {
 283    case 0:
 284        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
 285        break;
 286    case 1:
 287        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
 288        break;
 289    default:
 290        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
 291        break;
 292    }
 293}
 294
 295uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
 296{
 297    int n = (env->regs[0] >> 30) & 0x3;
 298    int m = 0;
 299    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
 300    uint32_t windowstart = env->sregs[WINDOW_START];
 301    uint32_t ret_pc = 0;
 302
 303    if (windowstart & windowstart_bit(windowbase - 1, env)) {
 304        m = 1;
 305    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
 306        m = 2;
 307    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
 308        m = 3;
 309    }
 310
 311    if (n == 0 || (m != 0 && m != n) ||
 312            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
 313        qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
 314                      "PS = %08x, m = %d, n = %d\n",
 315                      pc, env->sregs[PS], m, n);
 316        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
 317    } else {
 318        int owb = windowbase;
 319
 320        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
 321
 322        rotate_window(env, -n);
 323        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
 324            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
 325        } else {
 326            /* window underflow */
 327            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
 328                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
 329            env->sregs[EPC1] = env->pc = pc;
 330
 331            if (n == 1) {
 332                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
 333            } else if (n == 2) {
 334                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
 335            } else if (n == 3) {
 336                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
 337            }
 338        }
 339    }
 340    return ret_pc;
 341}
 342
 343void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
 344{
 345    rotate_window(env, imm4);
 346}
 347
 348void HELPER(restore_owb)(CPUXtensaState *env)
 349{
 350    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
 351}
 352
 353void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
 354{
 355    if ((env->sregs[WINDOW_START] &
 356            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
 357             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
 358             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
 359        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
 360    }
 361}
 362
 363void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
 364{
 365    if (env->sregs[LBEG] != v) {
 366        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 367        env->sregs[LBEG] = v;
 368    }
 369}
 370
 371void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
 372{
 373    if (env->sregs[LEND] != v) {
 374        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 375        env->sregs[LEND] = v;
 376        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
 377    }
 378}
 379
 380void HELPER(dump_state)(CPUXtensaState *env)
 381{
 382    XtensaCPU *cpu = xtensa_env_get_cpu(env);
 383
 384    cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
 385}
 386
 387void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
 388{
 389    CPUState *cpu;
 390
 391    env->pc = pc;
 392    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
 393        (intlevel << PS_INTLEVEL_SHIFT);
 394    check_interrupts(env);
 395    if (env->pending_irq_level) {
 396        cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
 397        return;
 398    }
 399
 400    cpu = CPU(xtensa_env_get_cpu(env));
 401    env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 402    cpu->halted = 1;
 403    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
 404        xtensa_rearm_ccompare_timer(env);
 405    }
 406    HELPER(exception)(env, EXCP_HLT);
 407}
 408
 409void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
 410{
 411    xtensa_timer_irq(env, id, active);
 412}
 413
 414void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
 415{
 416    xtensa_advance_ccount(env, d);
 417}
 418
 419void HELPER(check_interrupts)(CPUXtensaState *env)
 420{
 421    check_interrupts(env);
 422}
 423
 424void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
 425{
 426    get_page_addr_code(env, vaddr);
 427}
 428
 429/*!
 430 * Check vaddr accessibility/cache attributes and raise an exception if
 431 * specified by the ATOMCTL SR.
 432 *
 433 * Note: local memory exclusion is not implemented
 434 */
 435void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
 436{
 437    uint32_t paddr, page_size, access;
 438    uint32_t atomctl = env->sregs[ATOMCTL];
 439    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
 440            xtensa_get_cring(env), &paddr, &page_size, &access);
 441
 442    /*
 443     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
 444     * see opcode description in the ISA
 445     */
 446    if (rc == 0 &&
 447            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
 448        rc = STORE_PROHIBITED_CAUSE;
 449    }
 450
 451    if (rc) {
 452        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
 453    }
 454
 455    /*
 456     * When data cache is not configured use ATOMCTL bypass field.
 457     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
 458     * under the Conditional Store Option.
 459     */
 460    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
 461        access = PAGE_CACHE_BYPASS;
 462    }
 463
 464    switch (access & PAGE_CACHE_MASK) {
 465    case PAGE_CACHE_WB:
 466        atomctl >>= 2;
 467        /* fall through */
 468    case PAGE_CACHE_WT:
 469        atomctl >>= 2;
 470        /* fall through */
 471    case PAGE_CACHE_BYPASS:
 472        if ((atomctl & 0x3) == 0) {
 473            HELPER(exception_cause_vaddr)(env, pc,
 474                    LOAD_STORE_ERROR_CAUSE, vaddr);
 475        }
 476        break;
 477
 478    case PAGE_CACHE_ISOLATE:
 479        HELPER(exception_cause_vaddr)(env, pc,
 480                LOAD_STORE_ERROR_CAUSE, vaddr);
 481        break;
 482
 483    default:
 484        break;
 485    }
 486}
 487
 488void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
 489{
 490    XtensaCPU *cpu = xtensa_env_get_cpu(env);
 491
 492    v = (v & 0xffffff00) | 0x1;
 493    if (v != env->sregs[RASID]) {
 494        env->sregs[RASID] = v;
 495        tlb_flush(CPU(cpu), 1);
 496    }
 497}
 498
 499static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
 500{
 501    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
 502
 503    switch (way) {
 504    case 4:
 505        return (tlbcfg >> 16) & 0x3;
 506
 507    case 5:
 508        return (tlbcfg >> 20) & 0x1;
 509
 510    case 6:
 511        return (tlbcfg >> 24) & 0x1;
 512
 513    default:
 514        return 0;
 515    }
 516}
 517
 518/*!
 519 * Get bit mask for the virtual address bits translated by the TLB way
 520 */
 521uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 522{
 523    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 524        bool varway56 = dtlb ?
 525            env->config->dtlb.varway56 :
 526            env->config->itlb.varway56;
 527
 528        switch (way) {
 529        case 4:
 530            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
 531
 532        case 5:
 533            if (varway56) {
 534                return 0xf8000000 << get_page_size(env, dtlb, way);
 535            } else {
 536                return 0xf8000000;
 537            }
 538
 539        case 6:
 540            if (varway56) {
 541                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
 542            } else {
 543                return 0xf0000000;
 544            }
 545
 546        default:
 547            return 0xfffff000;
 548        }
 549    } else {
 550        return REGION_PAGE_MASK;
 551    }
 552}
 553
 554/*!
 555 * Get bit mask for the 'VPN without index' field.
 556 * See ISA, 4.6.5.6, data format for RxTLB0
 557 */
 558static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 559{
 560    if (way < 4) {
 561        bool is32 = (dtlb ?
 562                env->config->dtlb.nrefillentries :
 563                env->config->itlb.nrefillentries) == 32;
 564        return is32 ? 0xffff8000 : 0xffffc000;
 565    } else if (way == 4) {
 566        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
 567    } else if (way <= 6) {
 568        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
 569        bool varway56 = dtlb ?
 570            env->config->dtlb.varway56 :
 571            env->config->itlb.varway56;
 572
 573        if (varway56) {
 574            return mask << (way == 5 ? 2 : 3);
 575        } else {
 576            return mask << 1;
 577        }
 578    } else {
 579        return 0xfffff000;
 580    }
 581}
 582
 583/*!
 584 * Split virtual address into VPN (with index) and entry index
 585 * for the given TLB way
 586 */
 587void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
 588        uint32_t *vpn, uint32_t wi, uint32_t *ei)
 589{
 590    bool varway56 = dtlb ?
 591        env->config->dtlb.varway56 :
 592        env->config->itlb.varway56;
 593
 594    if (!dtlb) {
 595        wi &= 7;
 596    }
 597
 598    if (wi < 4) {
 599        bool is32 = (dtlb ?
 600                env->config->dtlb.nrefillentries :
 601                env->config->itlb.nrefillentries) == 32;
 602        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
 603    } else {
 604        switch (wi) {
 605        case 4:
 606            {
 607                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
 608                *ei = (v >> eibase) & 0x3;
 609            }
 610            break;
 611
 612        case 5:
 613            if (varway56) {
 614                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
 615                *ei = (v >> eibase) & 0x3;
 616            } else {
 617                *ei = (v >> 27) & 0x1;
 618            }
 619            break;
 620
 621        case 6:
 622            if (varway56) {
 623                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
 624                *ei = (v >> eibase) & 0x7;
 625            } else {
 626                *ei = (v >> 28) & 0x1;
 627            }
 628            break;
 629
 630        default:
 631            *ei = 0;
 632            break;
 633        }
 634    }
 635    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 636}
 637
 638/*!
 639 * Split TLB address into TLB way, entry index and VPN (with index).
 640 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 641 */
 642static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
 643        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
 644{
 645    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 646        *wi = v & (dtlb ? 0xf : 0x7);
 647        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
 648    } else {
 649        *vpn = v & REGION_PAGE_MASK;
 650        *wi = 0;
 651        *ei = (v >> 29) & 0x7;
 652    }
 653}
 654
 655static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
 656        uint32_t v, bool dtlb, uint32_t *pwi)
 657{
 658    uint32_t vpn;
 659    uint32_t wi;
 660    uint32_t ei;
 661
 662    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 663    if (pwi) {
 664        *pwi = wi;
 665    }
 666    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
 667}
 668
 669uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 670{
 671    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 672        uint32_t wi;
 673        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 674        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
 675    } else {
 676        return v & REGION_PAGE_MASK;
 677    }
 678}
 679
 680uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 681{
 682    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
 683    return entry->paddr | entry->attr;
 684}
 685
 686void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 687{
 688    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 689        uint32_t wi;
 690        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 691        if (entry->variable && entry->asid) {
 692            tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
 693            entry->asid = 0;
 694        }
 695    }
 696}
 697
 698uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 699{
 700    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 701        uint32_t wi;
 702        uint32_t ei;
 703        uint8_t ring;
 704        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
 705
 706        switch (res) {
 707        case 0:
 708            if (ring >= xtensa_get_ring(env)) {
 709                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
 710            }
 711            break;
 712
 713        case INST_TLB_MULTI_HIT_CAUSE:
 714        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
 715            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
 716            break;
 717        }
 718        return 0;
 719    } else {
 720        return (v & REGION_PAGE_MASK) | 0x1;
 721    }
 722}
 723
 724void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
 725        xtensa_tlb_entry *entry, bool dtlb,
 726        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
 727{
 728    entry->vaddr = vpn;
 729    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 730    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
 731    entry->attr = pte & 0xf;
 732}
 733
 734void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
 735        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
 736{
 737    XtensaCPU *cpu = xtensa_env_get_cpu(env);
 738    CPUState *cs = CPU(cpu);
 739    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 740
 741    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 742        if (entry->variable) {
 743            if (entry->asid) {
 744                tlb_flush_page(cs, entry->vaddr);
 745            }
 746            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
 747            tlb_flush_page(cs, entry->vaddr);
 748        } else {
 749            qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
 750                          __func__, dtlb, wi, ei);
 751        }
 752    } else {
 753        tlb_flush_page(cs, entry->vaddr);
 754        if (xtensa_option_enabled(env->config,
 755                    XTENSA_OPTION_REGION_TRANSLATION)) {
 756            entry->paddr = pte & REGION_PAGE_MASK;
 757        }
 758        entry->attr = pte & 0xf;
 759    }
 760}
 761
 762void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
 763{
 764    uint32_t vpn;
 765    uint32_t wi;
 766    uint32_t ei;
 767    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 768    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
 769}
 770
 771
 772void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
 773{
 774    uint32_t change = v ^ env->sregs[IBREAKENABLE];
 775    unsigned i;
 776
 777    for (i = 0; i < env->config->nibreak; ++i) {
 778        if (change & (1 << i)) {
 779            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
 780        }
 781    }
 782    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
 783}
 784
 785void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
 786{
 787    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
 788        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
 789        tb_invalidate_virtual_addr(env, v);
 790    }
 791    env->sregs[IBREAKA + i] = v;
 792}
 793
 794static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
 795        uint32_t dbreakc)
 796{
 797    CPUState *cs = CPU(xtensa_env_get_cpu(env));
 798    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 799    uint32_t mask = dbreakc | ~DBREAKC_MASK;
 800
 801    if (env->cpu_watchpoint[i]) {
 802        cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
 803    }
 804    if (dbreakc & DBREAKC_SB) {
 805        flags |= BP_MEM_WRITE;
 806    }
 807    if (dbreakc & DBREAKC_LB) {
 808        flags |= BP_MEM_READ;
 809    }
 810    /* contiguous mask after inversion is one less than some power of 2 */
 811    if ((~mask + 1) & ~mask) {
 812        qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
 813        /* cut mask after the first zero bit */
 814        mask = 0xffffffff << (32 - clo32(mask));
 815    }
 816    if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
 817            flags, &env->cpu_watchpoint[i])) {
 818        env->cpu_watchpoint[i] = NULL;
 819        qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
 820                      dbreaka & mask, ~mask + 1);
 821    }
 822}
 823
 824void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
 825{
 826    uint32_t dbreakc = env->sregs[DBREAKC + i];
 827
 828    if ((dbreakc & DBREAKC_SB_LB) &&
 829            env->sregs[DBREAKA + i] != v) {
 830        set_dbreak(env, i, v, dbreakc);
 831    }
 832    env->sregs[DBREAKA + i] = v;
 833}
 834
 835void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
 836{
 837    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
 838        if (v & DBREAKC_SB_LB) {
 839            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
 840        } else {
 841            if (env->cpu_watchpoint[i]) {
 842                CPUState *cs = CPU(xtensa_env_get_cpu(env));
 843
 844                cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
 845                env->cpu_watchpoint[i] = NULL;
 846            }
 847        }
 848    }
 849    env->sregs[DBREAKC + i] = v;
 850}
 851
 852void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
 853{
 854    static const int rounding_mode[] = {
 855        float_round_nearest_even,
 856        float_round_to_zero,
 857        float_round_up,
 858        float_round_down,
 859    };
 860
 861    env->uregs[FCR] = v & 0xfffff07f;
 862    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
 863}
 864
 865float32 HELPER(abs_s)(float32 v)
 866{
 867    return float32_abs(v);
 868}
 869
 870float32 HELPER(neg_s)(float32 v)
 871{
 872    return float32_chs(v);
 873}
 874
 875float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
 876{
 877    return float32_add(a, b, &env->fp_status);
 878}
 879
 880float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
 881{
 882    return float32_sub(a, b, &env->fp_status);
 883}
 884
 885float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
 886{
 887    return float32_mul(a, b, &env->fp_status);
 888}
 889
 890float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
 891{
 892    return float32_muladd(b, c, a, 0,
 893            &env->fp_status);
 894}
 895
 896float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
 897{
 898    return float32_muladd(b, c, a, float_muladd_negate_product,
 899            &env->fp_status);
 900}
 901
 902uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
 903{
 904    float_status fp_status = {0};
 905
 906    set_float_rounding_mode(rounding_mode, &fp_status);
 907    return float32_to_int32(
 908            float32_scalbn(v, scale, &fp_status), &fp_status);
 909}
 910
 911uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
 912{
 913    float_status fp_status = {0};
 914    float32 res;
 915
 916    set_float_rounding_mode(rounding_mode, &fp_status);
 917
 918    res = float32_scalbn(v, scale, &fp_status);
 919
 920    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
 921        return float32_to_int32(res, &fp_status);
 922    } else {
 923        return float32_to_uint32(res, &fp_status);
 924    }
 925}
 926
 927float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
 928{
 929    return float32_scalbn(int32_to_float32(v, &env->fp_status),
 930            (int32_t)scale, &env->fp_status);
 931}
 932
 933float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
 934{
 935    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
 936            (int32_t)scale, &env->fp_status);
 937}
 938
 939static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
 940{
 941    if (v) {
 942        env->sregs[BR] |= br;
 943    } else {
 944        env->sregs[BR] &= ~br;
 945    }
 946}
 947
 948void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 949{
 950    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
 951}
 952
 953void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 954{
 955    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
 956}
 957
 958void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 959{
 960    int v = float32_compare_quiet(a, b, &env->fp_status);
 961    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
 962}
 963
 964void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 965{
 966    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
 967}
 968
 969void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 970{
 971    int v = float32_compare_quiet(a, b, &env->fp_status);
 972    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
 973}
 974
 975void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 976{
 977    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
 978}
 979
 980void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
 981{
 982    int v = float32_compare_quiet(a, b, &env->fp_status);
 983    set_br(env, v != float_relation_greater, br);
 984}
 985