qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/hbitmap.h"
  14#include "qemu/host-utils.h"
  15#include "trace.h"
  16
  17/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  18 * array of unsigned longs, but HBitmap is also optimized to provide fast
  19 * iteration over set bits; going from one bit to the next is O(logB n)
  20 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  21 * that the number of levels is in fact fixed.
  22 *
  23 * In order to do this, it stacks multiple bitmaps with progressively coarser
  24 * granularity; in all levels except the last, bit N is set iff the N-th
  25 * unsigned long is nonzero in the immediately next level.  When iteration
  26 * completes on the last level it can examine the 2nd-last level to quickly
  27 * skip entire words, and even do so recursively to skip blocks of 64 words or
  28 * powers thereof (32 on 32-bit machines).
  29 *
  30 * Given an index in the bitmap, it can be split in group of bits like
  31 * this (for the 64-bit case):
  32 *
  33 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  34 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  35 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  36 *
  37 * So it is easy to move up simply by shifting the index right by
  38 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  39 * similarly, and add the word index within the group.  Iteration uses
  40 * ffs (find first set bit) to find the next word to examine; this
  41 * operation can be done in constant time in most current architectures.
  42 *
  43 * Setting or clearing a range of m bits on all levels, the work to perform
  44 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  45 *
  46 * When iterating on a bitmap, each bit (on any level) is only visited
  47 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  48 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  49 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  50 * cost of advancing from one bit to the next is usually constant (worst case
  51 * O(logB n) as in the non-amortized complexity).
  52 */
  53
  54struct HBitmap {
  55    /* Number of total bits in the bottom level.  */
  56    uint64_t size;
  57
  58    /* Number of set bits in the bottom level.  */
  59    uint64_t count;
  60
  61    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  62     * will actually represent a group of 2^G elements.  Each operation on a
  63     * range of bits first rounds the bits to determine which group they land
  64     * in, and then affect the entire page; iteration will only visit the first
  65     * bit of each group.  Here is an example of operations in a size-16,
  66     * granularity-1 HBitmap:
  67     *
  68     *    initial state            00000000
  69     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  70     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  71     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  72     *    reset(start=5, count=5)  00000000
  73     *
  74     * From an implementation point of view, when setting or resetting bits,
  75     * the bitmap will scale bit numbers right by this amount of bits.  When
  76     * iterating, the bitmap will scale bit numbers left by this amount of
  77     * bits.
  78     */
  79    int granularity;
  80
  81    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
  82    HBitmap *meta;
  83
  84    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  85     * coarsest).  Each bit in level N represents a word in level N+1 that
  86     * has a set bit, except the last level where each bit represents the
  87     * actual bitmap.
  88     *
  89     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  90     * bitmap will still allocate HBITMAP_LEVELS arrays.
  91     */
  92    unsigned long *levels[HBITMAP_LEVELS];
  93
  94    /* The length of each levels[] array. */
  95    uint64_t sizes[HBITMAP_LEVELS];
  96};
  97
  98/* Advance hbi to the next nonzero word and return it.  hbi->pos
  99 * is updated.  Returns zero if we reach the end of the bitmap.
 100 */
 101unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 102{
 103    size_t pos = hbi->pos;
 104    const HBitmap *hb = hbi->hb;
 105    unsigned i = HBITMAP_LEVELS - 1;
 106
 107    unsigned long cur;
 108    do {
 109        cur = hbi->cur[--i];
 110        pos >>= BITS_PER_LEVEL;
 111    } while (cur == 0);
 112
 113    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 114     * bits in the level 0 bitmap; thus we can repurpose the most significant
 115     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 116     * that the above loop ends even without an explicit check on i.
 117     */
 118
 119    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 120        return 0;
 121    }
 122    for (; i < HBITMAP_LEVELS - 1; i++) {
 123        /* Shift back pos to the left, matching the right shifts above.
 124         * The index of this word's least significant set bit provides
 125         * the low-order bits.
 126         */
 127        assert(cur);
 128        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 129        hbi->cur[i] = cur & (cur - 1);
 130
 131        /* Set up next level for iteration.  */
 132        cur = hb->levels[i + 1][pos];
 133    }
 134
 135    hbi->pos = pos;
 136    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 137
 138    assert(cur);
 139    return cur;
 140}
 141
 142void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 143{
 144    unsigned i, bit;
 145    uint64_t pos;
 146
 147    hbi->hb = hb;
 148    pos = first >> hb->granularity;
 149    assert(pos < hb->size);
 150    hbi->pos = pos >> BITS_PER_LEVEL;
 151    hbi->granularity = hb->granularity;
 152
 153    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 154        bit = pos & (BITS_PER_LONG - 1);
 155        pos >>= BITS_PER_LEVEL;
 156
 157        /* Drop bits representing items before first.  */
 158        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 159
 160        /* We have already added level i+1, so the lowest set bit has
 161         * been processed.  Clear it.
 162         */
 163        if (i != HBITMAP_LEVELS - 1) {
 164            hbi->cur[i] &= ~(1UL << bit);
 165        }
 166    }
 167}
 168
 169bool hbitmap_empty(const HBitmap *hb)
 170{
 171    return hb->count == 0;
 172}
 173
 174int hbitmap_granularity(const HBitmap *hb)
 175{
 176    return hb->granularity;
 177}
 178
 179uint64_t hbitmap_count(const HBitmap *hb)
 180{
 181    return hb->count << hb->granularity;
 182}
 183
 184/* Count the number of set bits between start and end, not accounting for
 185 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 186 */
 187static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 188{
 189    HBitmapIter hbi;
 190    uint64_t count = 0;
 191    uint64_t end = last + 1;
 192    unsigned long cur;
 193    size_t pos;
 194
 195    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 196    for (;;) {
 197        pos = hbitmap_iter_next_word(&hbi, &cur);
 198        if (pos >= (end >> BITS_PER_LEVEL)) {
 199            break;
 200        }
 201        count += ctpopl(cur);
 202    }
 203
 204    if (pos == (end >> BITS_PER_LEVEL)) {
 205        /* Drop bits representing the END-th and subsequent items.  */
 206        int bit = end & (BITS_PER_LONG - 1);
 207        cur &= (1UL << bit) - 1;
 208        count += ctpopl(cur);
 209    }
 210
 211    return count;
 212}
 213
 214/* Setting starts at the last layer and propagates up if an element
 215 * changes.
 216 */
 217static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 218{
 219    unsigned long mask;
 220    unsigned long old;
 221
 222    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 223    assert(start <= last);
 224
 225    mask = 2UL << (last & (BITS_PER_LONG - 1));
 226    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 227    old = *elem;
 228    *elem |= mask;
 229    return old != *elem;
 230}
 231
 232/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 233 * Returns true if at least one bit is changed. */
 234static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
 235                           uint64_t last)
 236{
 237    size_t pos = start >> BITS_PER_LEVEL;
 238    size_t lastpos = last >> BITS_PER_LEVEL;
 239    bool changed = false;
 240    size_t i;
 241
 242    i = pos;
 243    if (i < lastpos) {
 244        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 245        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 246        for (;;) {
 247            start = next;
 248            next += BITS_PER_LONG;
 249            if (++i == lastpos) {
 250                break;
 251            }
 252            changed |= (hb->levels[level][i] == 0);
 253            hb->levels[level][i] = ~0UL;
 254        }
 255    }
 256    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 257
 258    /* If there was any change in this layer, we may have to update
 259     * the one above.
 260     */
 261    if (level > 0 && changed) {
 262        hb_set_between(hb, level - 1, pos, lastpos);
 263    }
 264    return changed;
 265}
 266
 267void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 268{
 269    /* Compute range in the last layer.  */
 270    uint64_t first, n;
 271    uint64_t last = start + count - 1;
 272
 273    trace_hbitmap_set(hb, start, count,
 274                      start >> hb->granularity, last >> hb->granularity);
 275
 276    first = start >> hb->granularity;
 277    last >>= hb->granularity;
 278    assert(last < hb->size);
 279    n = last - first + 1;
 280
 281    hb->count += n - hb_count_between(hb, first, last);
 282    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 283        hb->meta) {
 284        hbitmap_set(hb->meta, start, count);
 285    }
 286}
 287
 288/* Resetting works the other way round: propagate up if the new
 289 * value is zero.
 290 */
 291static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 292{
 293    unsigned long mask;
 294    bool blanked;
 295
 296    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 297    assert(start <= last);
 298
 299    mask = 2UL << (last & (BITS_PER_LONG - 1));
 300    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 301    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 302    *elem &= ~mask;
 303    return blanked;
 304}
 305
 306/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 307 * Returns true if at least one bit is changed. */
 308static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
 309                             uint64_t last)
 310{
 311    size_t pos = start >> BITS_PER_LEVEL;
 312    size_t lastpos = last >> BITS_PER_LEVEL;
 313    bool changed = false;
 314    size_t i;
 315
 316    i = pos;
 317    if (i < lastpos) {
 318        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 319
 320        /* Here we need a more complex test than when setting bits.  Even if
 321         * something was changed, we must not blank bits in the upper level
 322         * unless the lower-level word became entirely zero.  So, remove pos
 323         * from the upper-level range if bits remain set.
 324         */
 325        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 326            changed = true;
 327        } else {
 328            pos++;
 329        }
 330
 331        for (;;) {
 332            start = next;
 333            next += BITS_PER_LONG;
 334            if (++i == lastpos) {
 335                break;
 336            }
 337            changed |= (hb->levels[level][i] != 0);
 338            hb->levels[level][i] = 0UL;
 339        }
 340    }
 341
 342    /* Same as above, this time for lastpos.  */
 343    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 344        changed = true;
 345    } else {
 346        lastpos--;
 347    }
 348
 349    if (level > 0 && changed) {
 350        hb_reset_between(hb, level - 1, pos, lastpos);
 351    }
 352
 353    return changed;
 354
 355}
 356
 357void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 358{
 359    /* Compute range in the last layer.  */
 360    uint64_t first;
 361    uint64_t last = start + count - 1;
 362
 363    trace_hbitmap_reset(hb, start, count,
 364                        start >> hb->granularity, last >> hb->granularity);
 365
 366    first = start >> hb->granularity;
 367    last >>= hb->granularity;
 368    assert(last < hb->size);
 369
 370    hb->count -= hb_count_between(hb, first, last);
 371    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 372        hb->meta) {
 373        hbitmap_set(hb->meta, start, count);
 374    }
 375}
 376
 377void hbitmap_reset_all(HBitmap *hb)
 378{
 379    unsigned int i;
 380
 381    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
 382    for (i = HBITMAP_LEVELS; --i >= 1; ) {
 383        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
 384    }
 385
 386    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
 387    hb->count = 0;
 388}
 389
 390bool hbitmap_get(const HBitmap *hb, uint64_t item)
 391{
 392    /* Compute position and bit in the last layer.  */
 393    uint64_t pos = item >> hb->granularity;
 394    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 395    assert(pos < hb->size);
 396
 397    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 398}
 399
 400uint64_t hbitmap_serialization_granularity(const HBitmap *hb)
 401{
 402    /* Must hold true so that the shift below is defined
 403     * (ld(64) == 6, i.e. 1 << 6 == 64) */
 404    assert(hb->granularity < 64 - 6);
 405
 406    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
 407     * hosts. */
 408    return UINT64_C(64) << hb->granularity;
 409}
 410
 411/* Start should be aligned to serialization granularity, chunk size should be
 412 * aligned to serialization granularity too, except for last chunk.
 413 */
 414static void serialization_chunk(const HBitmap *hb,
 415                                uint64_t start, uint64_t count,
 416                                unsigned long **first_el, uint64_t *el_count)
 417{
 418    uint64_t last = start + count - 1;
 419    uint64_t gran = hbitmap_serialization_granularity(hb);
 420
 421    assert((start & (gran - 1)) == 0);
 422    assert((last >> hb->granularity) < hb->size);
 423    if ((last >> hb->granularity) != hb->size - 1) {
 424        assert((count & (gran - 1)) == 0);
 425    }
 426
 427    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
 428    last = (last >> hb->granularity) >> BITS_PER_LEVEL;
 429
 430    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
 431    *el_count = last - start + 1;
 432}
 433
 434uint64_t hbitmap_serialization_size(const HBitmap *hb,
 435                                    uint64_t start, uint64_t count)
 436{
 437    uint64_t el_count;
 438    unsigned long *cur;
 439
 440    if (!count) {
 441        return 0;
 442    }
 443    serialization_chunk(hb, start, count, &cur, &el_count);
 444
 445    return el_count * sizeof(unsigned long);
 446}
 447
 448void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
 449                            uint64_t start, uint64_t count)
 450{
 451    uint64_t el_count;
 452    unsigned long *cur, *end;
 453
 454    if (!count) {
 455        return;
 456    }
 457    serialization_chunk(hb, start, count, &cur, &el_count);
 458    end = cur + el_count;
 459
 460    while (cur != end) {
 461        unsigned long el =
 462            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
 463
 464        memcpy(buf, &el, sizeof(el));
 465        buf += sizeof(el);
 466        cur++;
 467    }
 468}
 469
 470void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
 471                              uint64_t start, uint64_t count,
 472                              bool finish)
 473{
 474    uint64_t el_count;
 475    unsigned long *cur, *end;
 476
 477    if (!count) {
 478        return;
 479    }
 480    serialization_chunk(hb, start, count, &cur, &el_count);
 481    end = cur + el_count;
 482
 483    while (cur != end) {
 484        memcpy(cur, buf, sizeof(*cur));
 485
 486        if (BITS_PER_LONG == 32) {
 487            le32_to_cpus((uint32_t *)cur);
 488        } else {
 489            le64_to_cpus((uint64_t *)cur);
 490        }
 491
 492        buf += sizeof(unsigned long);
 493        cur++;
 494    }
 495    if (finish) {
 496        hbitmap_deserialize_finish(hb);
 497    }
 498}
 499
 500void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
 501                                bool finish)
 502{
 503    uint64_t el_count;
 504    unsigned long *first;
 505
 506    if (!count) {
 507        return;
 508    }
 509    serialization_chunk(hb, start, count, &first, &el_count);
 510
 511    memset(first, 0, el_count * sizeof(unsigned long));
 512    if (finish) {
 513        hbitmap_deserialize_finish(hb);
 514    }
 515}
 516
 517void hbitmap_deserialize_finish(HBitmap *bitmap)
 518{
 519    int64_t i, size, prev_size;
 520    int lev;
 521
 522    /* restore levels starting from penultimate to zero level, assuming
 523     * that the last level is ok */
 524    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 525    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
 526        prev_size = size;
 527        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 528        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
 529
 530        for (i = 0; i < prev_size; ++i) {
 531            if (bitmap->levels[lev + 1][i]) {
 532                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
 533                    1UL << (i & (BITS_PER_LONG - 1));
 534            }
 535        }
 536    }
 537
 538    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 539}
 540
 541void hbitmap_free(HBitmap *hb)
 542{
 543    unsigned i;
 544    assert(!hb->meta);
 545    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 546        g_free(hb->levels[i]);
 547    }
 548    g_free(hb);
 549}
 550
 551HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 552{
 553    HBitmap *hb = g_new0(struct HBitmap, 1);
 554    unsigned i;
 555
 556    assert(granularity >= 0 && granularity < 64);
 557    size = (size + (1ULL << granularity) - 1) >> granularity;
 558    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 559
 560    hb->size = size;
 561    hb->granularity = granularity;
 562    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 563        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 564        hb->sizes[i] = size;
 565        hb->levels[i] = g_new0(unsigned long, size);
 566    }
 567
 568    /* We necessarily have free bits in level 0 due to the definition
 569     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 570     * hbitmap_iter_skip_words.
 571     */
 572    assert(size == 1);
 573    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 574    return hb;
 575}
 576
 577void hbitmap_truncate(HBitmap *hb, uint64_t size)
 578{
 579    bool shrink;
 580    unsigned i;
 581    uint64_t num_elements = size;
 582    uint64_t old;
 583
 584    /* Size comes in as logical elements, adjust for granularity. */
 585    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
 586    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 587    shrink = size < hb->size;
 588
 589    /* bit sizes are identical; nothing to do. */
 590    if (size == hb->size) {
 591        return;
 592    }
 593
 594    /* If we're losing bits, let's clear those bits before we invalidate all of
 595     * our invariants. This helps keep the bitcount consistent, and will prevent
 596     * us from carrying around garbage bits beyond the end of the map.
 597     */
 598    if (shrink) {
 599        /* Don't clear partial granularity groups;
 600         * start at the first full one. */
 601        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
 602        uint64_t fix_count = (hb->size << hb->granularity) - start;
 603
 604        assert(fix_count);
 605        hbitmap_reset(hb, start, fix_count);
 606    }
 607
 608    hb->size = size;
 609    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 610        size = MAX(BITS_TO_LONGS(size), 1);
 611        if (hb->sizes[i] == size) {
 612            break;
 613        }
 614        old = hb->sizes[i];
 615        hb->sizes[i] = size;
 616        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
 617        if (!shrink) {
 618            memset(&hb->levels[i][old], 0x00,
 619                   (size - old) * sizeof(*hb->levels[i]));
 620        }
 621    }
 622    if (hb->meta) {
 623        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
 624    }
 625}
 626
 627
 628/**
 629 * Given HBitmaps A and B, let A := A (BITOR) B.
 630 * Bitmap B will not be modified.
 631 *
 632 * @return true if the merge was successful,
 633 *         false if it was not attempted.
 634 */
 635bool hbitmap_merge(HBitmap *a, const HBitmap *b)
 636{
 637    int i;
 638    uint64_t j;
 639
 640    if ((a->size != b->size) || (a->granularity != b->granularity)) {
 641        return false;
 642    }
 643
 644    if (hbitmap_count(b) == 0) {
 645        return true;
 646    }
 647
 648    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
 649     * It may be possible to improve running times for sparsely populated maps
 650     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
 651     */
 652    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
 653        for (j = 0; j < a->sizes[i]; j++) {
 654            a->levels[i][j] |= b->levels[i][j];
 655        }
 656    }
 657
 658    return true;
 659}
 660
 661HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
 662{
 663    assert(!(chunk_size & (chunk_size - 1)));
 664    assert(!hb->meta);
 665    hb->meta = hbitmap_alloc(hb->size << hb->granularity,
 666                             hb->granularity + ctz32(chunk_size));
 667    return hb->meta;
 668}
 669
 670void hbitmap_free_meta(HBitmap *hb)
 671{
 672    assert(hb->meta);
 673    hbitmap_free(hb->meta);
 674    hb->meta = NULL;
 675}
 676