qemu/util/qemu-thread-win32.c
<<
>>
Prefs
   1/*
   2 * Win32 implementation for mutex/cond/thread functions
   3 *
   4 * Copyright Red Hat, Inc. 2010
   5 *
   6 * Author:
   7 *  Paolo Bonzini <pbonzini@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13#include "qemu/osdep.h"
  14#include "qemu-common.h"
  15#include "qemu/thread.h"
  16#include "qemu/notify.h"
  17#include <process.h>
  18
  19static bool name_threads;
  20
  21void qemu_thread_naming(bool enable)
  22{
  23    /* But note we don't actually name them on Windows yet */
  24    name_threads = enable;
  25
  26    fprintf(stderr, "qemu: thread naming not supported on this host\n");
  27}
  28
  29static void error_exit(int err, const char *msg)
  30{
  31    char *pstr;
  32
  33    FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
  34                  NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
  35    fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
  36    LocalFree(pstr);
  37    abort();
  38}
  39
  40void qemu_mutex_init(QemuMutex *mutex)
  41{
  42    mutex->owner = 0;
  43    InitializeCriticalSection(&mutex->lock);
  44}
  45
  46void qemu_mutex_destroy(QemuMutex *mutex)
  47{
  48    assert(mutex->owner == 0);
  49    DeleteCriticalSection(&mutex->lock);
  50}
  51
  52void qemu_mutex_lock(QemuMutex *mutex)
  53{
  54    EnterCriticalSection(&mutex->lock);
  55
  56    /* Win32 CRITICAL_SECTIONs are recursive.  Assert that we're not
  57     * using them as such.
  58     */
  59    assert(mutex->owner == 0);
  60    mutex->owner = GetCurrentThreadId();
  61}
  62
  63int qemu_mutex_trylock(QemuMutex *mutex)
  64{
  65    int owned;
  66
  67    owned = TryEnterCriticalSection(&mutex->lock);
  68    if (owned) {
  69        assert(mutex->owner == 0);
  70        mutex->owner = GetCurrentThreadId();
  71    }
  72    return !owned;
  73}
  74
  75void qemu_mutex_unlock(QemuMutex *mutex)
  76{
  77    assert(mutex->owner == GetCurrentThreadId());
  78    mutex->owner = 0;
  79    LeaveCriticalSection(&mutex->lock);
  80}
  81
  82void qemu_rec_mutex_init(QemuRecMutex *mutex)
  83{
  84    InitializeCriticalSection(&mutex->lock);
  85}
  86
  87void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
  88{
  89    DeleteCriticalSection(&mutex->lock);
  90}
  91
  92void qemu_rec_mutex_lock(QemuRecMutex *mutex)
  93{
  94    EnterCriticalSection(&mutex->lock);
  95}
  96
  97int qemu_rec_mutex_trylock(QemuRecMutex *mutex)
  98{
  99    return !TryEnterCriticalSection(&mutex->lock);
 100}
 101
 102void qemu_rec_mutex_unlock(QemuRecMutex *mutex)
 103{
 104    LeaveCriticalSection(&mutex->lock);
 105}
 106
 107void qemu_cond_init(QemuCond *cond)
 108{
 109    memset(cond, 0, sizeof(*cond));
 110
 111    cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
 112    if (!cond->sema) {
 113        error_exit(GetLastError(), __func__);
 114    }
 115    cond->continue_event = CreateEvent(NULL,    /* security */
 116                                       FALSE,   /* auto-reset */
 117                                       FALSE,   /* not signaled */
 118                                       NULL);   /* name */
 119    if (!cond->continue_event) {
 120        error_exit(GetLastError(), __func__);
 121    }
 122}
 123
 124void qemu_cond_destroy(QemuCond *cond)
 125{
 126    BOOL result;
 127    result = CloseHandle(cond->continue_event);
 128    if (!result) {
 129        error_exit(GetLastError(), __func__);
 130    }
 131    cond->continue_event = 0;
 132    result = CloseHandle(cond->sema);
 133    if (!result) {
 134        error_exit(GetLastError(), __func__);
 135    }
 136    cond->sema = 0;
 137}
 138
 139void qemu_cond_signal(QemuCond *cond)
 140{
 141    DWORD result;
 142
 143    /*
 144     * Signal only when there are waiters.  cond->waiters is
 145     * incremented by pthread_cond_wait under the external lock,
 146     * so we are safe about that.
 147     */
 148    if (cond->waiters == 0) {
 149        return;
 150    }
 151
 152    /*
 153     * Waiting threads decrement it outside the external lock, but
 154     * only if another thread is executing pthread_cond_broadcast and
 155     * has the mutex.  So, it also cannot be decremented concurrently
 156     * with this particular access.
 157     */
 158    cond->target = cond->waiters - 1;
 159    result = SignalObjectAndWait(cond->sema, cond->continue_event,
 160                                 INFINITE, FALSE);
 161    if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
 162        error_exit(GetLastError(), __func__);
 163    }
 164}
 165
 166void qemu_cond_broadcast(QemuCond *cond)
 167{
 168    BOOLEAN result;
 169    /*
 170     * As in pthread_cond_signal, access to cond->waiters and
 171     * cond->target is locked via the external mutex.
 172     */
 173    if (cond->waiters == 0) {
 174        return;
 175    }
 176
 177    cond->target = 0;
 178    result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
 179    if (!result) {
 180        error_exit(GetLastError(), __func__);
 181    }
 182
 183    /*
 184     * At this point all waiters continue. Each one takes its
 185     * slice of the semaphore. Now it's our turn to wait: Since
 186     * the external mutex is held, no thread can leave cond_wait,
 187     * yet. For this reason, we can be sure that no thread gets
 188     * a chance to eat *more* than one slice. OTOH, it means
 189     * that the last waiter must send us a wake-up.
 190     */
 191    WaitForSingleObject(cond->continue_event, INFINITE);
 192}
 193
 194void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
 195{
 196    /*
 197     * This access is protected under the mutex.
 198     */
 199    cond->waiters++;
 200
 201    /*
 202     * Unlock external mutex and wait for signal.
 203     * NOTE: we've held mutex locked long enough to increment
 204     * waiters count above, so there's no problem with
 205     * leaving mutex unlocked before we wait on semaphore.
 206     */
 207    qemu_mutex_unlock(mutex);
 208    WaitForSingleObject(cond->sema, INFINITE);
 209
 210    /* Now waiters must rendez-vous with the signaling thread and
 211     * let it continue.  For cond_broadcast this has heavy contention
 212     * and triggers thundering herd.  So goes life.
 213     *
 214     * Decrease waiters count.  The mutex is not taken, so we have
 215     * to do this atomically.
 216     *
 217     * All waiters contend for the mutex at the end of this function
 218     * until the signaling thread relinquishes it.  To ensure
 219     * each waiter consumes exactly one slice of the semaphore,
 220     * the signaling thread stops until it is told by the last
 221     * waiter that it can go on.
 222     */
 223    if (InterlockedDecrement(&cond->waiters) == cond->target) {
 224        SetEvent(cond->continue_event);
 225    }
 226
 227    qemu_mutex_lock(mutex);
 228}
 229
 230void qemu_sem_init(QemuSemaphore *sem, int init)
 231{
 232    /* Manual reset.  */
 233    sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
 234}
 235
 236void qemu_sem_destroy(QemuSemaphore *sem)
 237{
 238    CloseHandle(sem->sema);
 239}
 240
 241void qemu_sem_post(QemuSemaphore *sem)
 242{
 243    ReleaseSemaphore(sem->sema, 1, NULL);
 244}
 245
 246int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
 247{
 248    int rc = WaitForSingleObject(sem->sema, ms);
 249    if (rc == WAIT_OBJECT_0) {
 250        return 0;
 251    }
 252    if (rc != WAIT_TIMEOUT) {
 253        error_exit(GetLastError(), __func__);
 254    }
 255    return -1;
 256}
 257
 258void qemu_sem_wait(QemuSemaphore *sem)
 259{
 260    if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
 261        error_exit(GetLastError(), __func__);
 262    }
 263}
 264
 265/* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
 266 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
 267 * sequence.  Such a sequence is, indeed, how QemuEvents are used by
 268 * RCU and other subsystems!
 269 *
 270 * Valid transitions:
 271 * - free->set, when setting the event
 272 * - busy->set, when setting the event, followed by futex_wake
 273 * - set->free, when resetting the event
 274 * - free->busy, when waiting
 275 *
 276 * set->busy does not happen (it can be observed from the outside but
 277 * it really is set->free->busy).
 278 *
 279 * busy->free provably cannot happen; to enforce it, the set->free transition
 280 * is done with an OR, which becomes a no-op if the event has concurrently
 281 * transitioned to free or busy (and is faster than cmpxchg).
 282 */
 283
 284#define EV_SET         0
 285#define EV_FREE        1
 286#define EV_BUSY       -1
 287
 288void qemu_event_init(QemuEvent *ev, bool init)
 289{
 290    /* Manual reset.  */
 291    ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
 292    ev->value = (init ? EV_SET : EV_FREE);
 293}
 294
 295void qemu_event_destroy(QemuEvent *ev)
 296{
 297    CloseHandle(ev->event);
 298}
 299
 300void qemu_event_set(QemuEvent *ev)
 301{
 302    /* qemu_event_set has release semantics, but because it *loads*
 303     * ev->value we need a full memory barrier here.
 304     */
 305    smp_mb();
 306    if (atomic_read(&ev->value) != EV_SET) {
 307        if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
 308            /* There were waiters, wake them up.  */
 309            SetEvent(ev->event);
 310        }
 311    }
 312}
 313
 314void qemu_event_reset(QemuEvent *ev)
 315{
 316    unsigned value;
 317
 318    value = atomic_read(&ev->value);
 319    smp_mb_acquire();
 320    if (value == EV_SET) {
 321        /* If there was a concurrent reset (or even reset+wait),
 322         * do nothing.  Otherwise change EV_SET->EV_FREE.
 323         */
 324        atomic_or(&ev->value, EV_FREE);
 325    }
 326}
 327
 328void qemu_event_wait(QemuEvent *ev)
 329{
 330    unsigned value;
 331
 332    value = atomic_read(&ev->value);
 333    smp_mb_acquire();
 334    if (value != EV_SET) {
 335        if (value == EV_FREE) {
 336            /* qemu_event_set is not yet going to call SetEvent, but we are
 337             * going to do another check for EV_SET below when setting EV_BUSY.
 338             * At that point it is safe to call WaitForSingleObject.
 339             */
 340            ResetEvent(ev->event);
 341
 342            /* Tell qemu_event_set that there are waiters.  No need to retry
 343             * because there cannot be a concurent busy->free transition.
 344             * After the CAS, the event will be either set or busy.
 345             */
 346            if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
 347                value = EV_SET;
 348            } else {
 349                value = EV_BUSY;
 350            }
 351        }
 352        if (value == EV_BUSY) {
 353            WaitForSingleObject(ev->event, INFINITE);
 354        }
 355    }
 356}
 357
 358struct QemuThreadData {
 359    /* Passed to win32_start_routine.  */
 360    void             *(*start_routine)(void *);
 361    void             *arg;
 362    short             mode;
 363    NotifierList      exit;
 364
 365    /* Only used for joinable threads. */
 366    bool              exited;
 367    void             *ret;
 368    CRITICAL_SECTION  cs;
 369};
 370
 371static bool atexit_registered;
 372static NotifierList main_thread_exit;
 373
 374static __thread QemuThreadData *qemu_thread_data;
 375
 376static void run_main_thread_exit(void)
 377{
 378    notifier_list_notify(&main_thread_exit, NULL);
 379}
 380
 381void qemu_thread_atexit_add(Notifier *notifier)
 382{
 383    if (!qemu_thread_data) {
 384        if (!atexit_registered) {
 385            atexit_registered = true;
 386            atexit(run_main_thread_exit);
 387        }
 388        notifier_list_add(&main_thread_exit, notifier);
 389    } else {
 390        notifier_list_add(&qemu_thread_data->exit, notifier);
 391    }
 392}
 393
 394void qemu_thread_atexit_remove(Notifier *notifier)
 395{
 396    notifier_remove(notifier);
 397}
 398
 399static unsigned __stdcall win32_start_routine(void *arg)
 400{
 401    QemuThreadData *data = (QemuThreadData *) arg;
 402    void *(*start_routine)(void *) = data->start_routine;
 403    void *thread_arg = data->arg;
 404
 405    qemu_thread_data = data;
 406    qemu_thread_exit(start_routine(thread_arg));
 407    abort();
 408}
 409
 410void qemu_thread_exit(void *arg)
 411{
 412    QemuThreadData *data = qemu_thread_data;
 413
 414    notifier_list_notify(&data->exit, NULL);
 415    if (data->mode == QEMU_THREAD_JOINABLE) {
 416        data->ret = arg;
 417        EnterCriticalSection(&data->cs);
 418        data->exited = true;
 419        LeaveCriticalSection(&data->cs);
 420    } else {
 421        g_free(data);
 422    }
 423    _endthreadex(0);
 424}
 425
 426void *qemu_thread_join(QemuThread *thread)
 427{
 428    QemuThreadData *data;
 429    void *ret;
 430    HANDLE handle;
 431
 432    data = thread->data;
 433    if (data->mode == QEMU_THREAD_DETACHED) {
 434        return NULL;
 435    }
 436
 437    /*
 438     * Because multiple copies of the QemuThread can exist via
 439     * qemu_thread_get_self, we need to store a value that cannot
 440     * leak there.  The simplest, non racy way is to store the TID,
 441     * discard the handle that _beginthreadex gives back, and
 442     * get another copy of the handle here.
 443     */
 444    handle = qemu_thread_get_handle(thread);
 445    if (handle) {
 446        WaitForSingleObject(handle, INFINITE);
 447        CloseHandle(handle);
 448    }
 449    ret = data->ret;
 450    DeleteCriticalSection(&data->cs);
 451    g_free(data);
 452    return ret;
 453}
 454
 455void qemu_thread_create(QemuThread *thread, const char *name,
 456                       void *(*start_routine)(void *),
 457                       void *arg, int mode)
 458{
 459    HANDLE hThread;
 460    struct QemuThreadData *data;
 461
 462    data = g_malloc(sizeof *data);
 463    data->start_routine = start_routine;
 464    data->arg = arg;
 465    data->mode = mode;
 466    data->exited = false;
 467    notifier_list_init(&data->exit);
 468
 469    if (data->mode != QEMU_THREAD_DETACHED) {
 470        InitializeCriticalSection(&data->cs);
 471    }
 472
 473    hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
 474                                      data, 0, &thread->tid);
 475    if (!hThread) {
 476        error_exit(GetLastError(), __func__);
 477    }
 478    CloseHandle(hThread);
 479    thread->data = data;
 480}
 481
 482void qemu_thread_get_self(QemuThread *thread)
 483{
 484    thread->data = qemu_thread_data;
 485    thread->tid = GetCurrentThreadId();
 486}
 487
 488HANDLE qemu_thread_get_handle(QemuThread *thread)
 489{
 490    QemuThreadData *data;
 491    HANDLE handle;
 492
 493    data = thread->data;
 494    if (data->mode == QEMU_THREAD_DETACHED) {
 495        return NULL;
 496    }
 497
 498    EnterCriticalSection(&data->cs);
 499    if (!data->exited) {
 500        handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
 501                            thread->tid);
 502    } else {
 503        handle = NULL;
 504    }
 505    LeaveCriticalSection(&data->cs);
 506    return handle;
 507}
 508
 509bool qemu_thread_is_self(QemuThread *thread)
 510{
 511    return GetCurrentThreadId() == thread->tid;
 512}
 513