qemu/hw/timer/mc146818rtc.c
<<
>>
Prefs
   1/*
   2 * QEMU MC146818 RTC emulation
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "qemu/cutils.h"
  26#include "qemu/bcd.h"
  27#include "hw/hw.h"
  28#include "qemu/timer.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/replay.h"
  31#include "hw/timer/mc146818rtc.h"
  32#include "qapi/visitor.h"
  33#include "qapi-event.h"
  34#include "qmp-commands.h"
  35
  36#ifdef TARGET_I386
  37#include "hw/i386/apic.h"
  38#endif
  39
  40//#define DEBUG_CMOS
  41//#define DEBUG_COALESCED
  42
  43#ifdef DEBUG_CMOS
  44# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
  45#else
  46# define CMOS_DPRINTF(format, ...)      do { } while (0)
  47#endif
  48
  49#ifdef DEBUG_COALESCED
  50# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
  51#else
  52# define DPRINTF_C(format, ...)      do { } while (0)
  53#endif
  54
  55#define SEC_PER_MIN     60
  56#define MIN_PER_HOUR    60
  57#define SEC_PER_HOUR    3600
  58#define HOUR_PER_DAY    24
  59#define SEC_PER_DAY     86400
  60
  61#define RTC_REINJECT_ON_ACK_COUNT 20
  62#define RTC_CLOCK_RATE            32768
  63#define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768)
  64
  65#define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
  66
  67typedef struct RTCState {
  68    ISADevice parent_obj;
  69
  70    MemoryRegion io;
  71    uint8_t cmos_data[128];
  72    uint8_t cmos_index;
  73    int32_t base_year;
  74    uint64_t base_rtc;
  75    uint64_t last_update;
  76    int64_t offset;
  77    qemu_irq irq;
  78    int it_shift;
  79    /* periodic timer */
  80    QEMUTimer *periodic_timer;
  81    int64_t next_periodic_time;
  82    /* update-ended timer */
  83    QEMUTimer *update_timer;
  84    uint64_t next_alarm_time;
  85    uint16_t irq_reinject_on_ack_count;
  86    uint32_t irq_coalesced;
  87    uint32_t period;
  88    QEMUTimer *coalesced_timer;
  89    Notifier clock_reset_notifier;
  90    LostTickPolicy lost_tick_policy;
  91    Notifier suspend_notifier;
  92    QLIST_ENTRY(RTCState) link;
  93} RTCState;
  94
  95static void rtc_set_time(RTCState *s);
  96static void rtc_update_time(RTCState *s);
  97static void rtc_set_cmos(RTCState *s, const struct tm *tm);
  98static inline int rtc_from_bcd(RTCState *s, int a);
  99static uint64_t get_next_alarm(RTCState *s);
 100
 101static inline bool rtc_running(RTCState *s)
 102{
 103    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 104            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
 105}
 106
 107static uint64_t get_guest_rtc_ns(RTCState *s)
 108{
 109    uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
 110
 111    return s->base_rtc * NANOSECONDS_PER_SECOND +
 112        guest_clock - s->last_update + s->offset;
 113}
 114
 115#ifdef TARGET_I386
 116static void rtc_coalesced_timer_update(RTCState *s)
 117{
 118    if (s->irq_coalesced == 0) {
 119        timer_del(s->coalesced_timer);
 120    } else {
 121        /* divide each RTC interval to 2 - 8 smaller intervals */
 122        int c = MIN(s->irq_coalesced, 7) + 1; 
 123        int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
 124            muldiv64(s->period / c, NANOSECONDS_PER_SECOND, RTC_CLOCK_RATE);
 125        timer_mod(s->coalesced_timer, next_clock);
 126    }
 127}
 128
 129static void rtc_coalesced_timer(void *opaque)
 130{
 131    RTCState *s = opaque;
 132
 133    if (s->irq_coalesced != 0) {
 134        apic_reset_irq_delivered();
 135        s->cmos_data[RTC_REG_C] |= 0xc0;
 136        DPRINTF_C("cmos: injecting from timer\n");
 137        qemu_irq_raise(s->irq);
 138        if (apic_get_irq_delivered()) {
 139            s->irq_coalesced--;
 140            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 141                      s->irq_coalesced);
 142        }
 143    }
 144
 145    rtc_coalesced_timer_update(s);
 146}
 147#endif
 148
 149/* handle periodic timer */
 150static void periodic_timer_update(RTCState *s, int64_t current_time)
 151{
 152    int period_code, period;
 153    int64_t cur_clock, next_irq_clock;
 154
 155    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 156    if (period_code != 0
 157        && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 158        if (period_code <= 2)
 159            period_code += 7;
 160        /* period in 32 Khz cycles */
 161        period = 1 << (period_code - 1);
 162#ifdef TARGET_I386
 163        if (period != s->period) {
 164            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
 165            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
 166        }
 167        s->period = period;
 168#endif
 169        /* compute 32 khz clock */
 170        cur_clock =
 171            muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
 172
 173        next_irq_clock = (cur_clock & ~(period - 1)) + period;
 174        s->next_periodic_time = muldiv64(next_irq_clock, NANOSECONDS_PER_SECOND,
 175                                         RTC_CLOCK_RATE) + 1;
 176        timer_mod(s->periodic_timer, s->next_periodic_time);
 177    } else {
 178#ifdef TARGET_I386
 179        s->irq_coalesced = 0;
 180#endif
 181        timer_del(s->periodic_timer);
 182    }
 183}
 184
 185static void rtc_periodic_timer(void *opaque)
 186{
 187    RTCState *s = opaque;
 188
 189    periodic_timer_update(s, s->next_periodic_time);
 190    s->cmos_data[RTC_REG_C] |= REG_C_PF;
 191    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
 192        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 193#ifdef TARGET_I386
 194        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 195            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
 196                s->irq_reinject_on_ack_count = 0;               
 197            apic_reset_irq_delivered();
 198            qemu_irq_raise(s->irq);
 199            if (!apic_get_irq_delivered()) {
 200                s->irq_coalesced++;
 201                rtc_coalesced_timer_update(s);
 202                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
 203                          s->irq_coalesced);
 204            }
 205        } else
 206#endif
 207        qemu_irq_raise(s->irq);
 208    }
 209}
 210
 211/* handle update-ended timer */
 212static void check_update_timer(RTCState *s)
 213{
 214    uint64_t next_update_time;
 215    uint64_t guest_nsec;
 216    int next_alarm_sec;
 217
 218    /* From the data sheet: "Holding the dividers in reset prevents
 219     * interrupts from operating, while setting the SET bit allows"
 220     * them to occur.  However, it will prevent an alarm interrupt
 221     * from occurring, because the time of day is not updated.
 222     */
 223    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
 224        timer_del(s->update_timer);
 225        return;
 226    }
 227    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
 228        (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 229        timer_del(s->update_timer);
 230        return;
 231    }
 232    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
 233        (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
 234        timer_del(s->update_timer);
 235        return;
 236    }
 237
 238    guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 239    /* if UF is clear, reprogram to next second */
 240    next_update_time = qemu_clock_get_ns(rtc_clock)
 241        + NANOSECONDS_PER_SECOND - guest_nsec;
 242
 243    /* Compute time of next alarm.  One second is already accounted
 244     * for in next_update_time.
 245     */
 246    next_alarm_sec = get_next_alarm(s);
 247    s->next_alarm_time = next_update_time +
 248                         (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
 249
 250    if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
 251        /* UF is set, but AF is clear.  Program the timer to target
 252         * the alarm time.  */
 253        next_update_time = s->next_alarm_time;
 254    }
 255    if (next_update_time != timer_expire_time_ns(s->update_timer)) {
 256        timer_mod(s->update_timer, next_update_time);
 257    }
 258}
 259
 260static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 261{
 262    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 263        hour %= 12;
 264        if (s->cmos_data[RTC_HOURS] & 0x80) {
 265            hour += 12;
 266        }
 267    }
 268    return hour;
 269}
 270
 271static uint64_t get_next_alarm(RTCState *s)
 272{
 273    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 274    int32_t hour, min, sec;
 275
 276    rtc_update_time(s);
 277
 278    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 279    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 280    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 281    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 282
 283    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 284    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 285    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 286    cur_hour = convert_hour(s, cur_hour);
 287
 288    if (alarm_hour == -1) {
 289        alarm_hour = cur_hour;
 290        if (alarm_min == -1) {
 291            alarm_min = cur_min;
 292            if (alarm_sec == -1) {
 293                alarm_sec = cur_sec + 1;
 294            } else if (cur_sec > alarm_sec) {
 295                alarm_min++;
 296            }
 297        } else if (cur_min == alarm_min) {
 298            if (alarm_sec == -1) {
 299                alarm_sec = cur_sec + 1;
 300            } else {
 301                if (cur_sec > alarm_sec) {
 302                    alarm_hour++;
 303                }
 304            }
 305            if (alarm_sec == SEC_PER_MIN) {
 306                /* wrap to next hour, minutes is not in don't care mode */
 307                alarm_sec = 0;
 308                alarm_hour++;
 309            }
 310        } else if (cur_min > alarm_min) {
 311            alarm_hour++;
 312        }
 313    } else if (cur_hour == alarm_hour) {
 314        if (alarm_min == -1) {
 315            alarm_min = cur_min;
 316            if (alarm_sec == -1) {
 317                alarm_sec = cur_sec + 1;
 318            } else if (cur_sec > alarm_sec) {
 319                alarm_min++;
 320            }
 321
 322            if (alarm_sec == SEC_PER_MIN) {
 323                alarm_sec = 0;
 324                alarm_min++;
 325            }
 326            /* wrap to next day, hour is not in don't care mode */
 327            alarm_min %= MIN_PER_HOUR;
 328        } else if (cur_min == alarm_min) {
 329            if (alarm_sec == -1) {
 330                alarm_sec = cur_sec + 1;
 331            }
 332            /* wrap to next day, hours+minutes not in don't care mode */
 333            alarm_sec %= SEC_PER_MIN;
 334        }
 335    }
 336
 337    /* values that are still don't care fire at the next min/sec */
 338    if (alarm_min == -1) {
 339        alarm_min = 0;
 340    }
 341    if (alarm_sec == -1) {
 342        alarm_sec = 0;
 343    }
 344
 345    /* keep values in range */
 346    if (alarm_sec == SEC_PER_MIN) {
 347        alarm_sec = 0;
 348        alarm_min++;
 349    }
 350    if (alarm_min == MIN_PER_HOUR) {
 351        alarm_min = 0;
 352        alarm_hour++;
 353    }
 354    alarm_hour %= HOUR_PER_DAY;
 355
 356    hour = alarm_hour - cur_hour;
 357    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 358    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 359    return sec <= 0 ? sec + SEC_PER_DAY : sec;
 360}
 361
 362static void rtc_update_timer(void *opaque)
 363{
 364    RTCState *s = opaque;
 365    int32_t irqs = REG_C_UF;
 366    int32_t new_irqs;
 367
 368    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
 369
 370    /* UIP might have been latched, update time and clear it.  */
 371    rtc_update_time(s);
 372    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 373
 374    if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
 375        irqs |= REG_C_AF;
 376        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 377            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
 378        }
 379    }
 380
 381    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 382    s->cmos_data[RTC_REG_C] |= irqs;
 383    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 384        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 385        qemu_irq_raise(s->irq);
 386    }
 387    check_update_timer(s);
 388}
 389
 390static void cmos_ioport_write(void *opaque, hwaddr addr,
 391                              uint64_t data, unsigned size)
 392{
 393    RTCState *s = opaque;
 394
 395    if ((addr & 1) == 0) {
 396        s->cmos_index = data & 0x7f;
 397    } else {
 398        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
 399                     s->cmos_index, data);
 400        switch(s->cmos_index) {
 401        case RTC_SECONDS_ALARM:
 402        case RTC_MINUTES_ALARM:
 403        case RTC_HOURS_ALARM:
 404            s->cmos_data[s->cmos_index] = data;
 405            check_update_timer(s);
 406            break;
 407        case RTC_IBM_PS2_CENTURY_BYTE:
 408            s->cmos_index = RTC_CENTURY;
 409            /* fall through */
 410        case RTC_CENTURY:
 411        case RTC_SECONDS:
 412        case RTC_MINUTES:
 413        case RTC_HOURS:
 414        case RTC_DAY_OF_WEEK:
 415        case RTC_DAY_OF_MONTH:
 416        case RTC_MONTH:
 417        case RTC_YEAR:
 418            s->cmos_data[s->cmos_index] = data;
 419            /* if in set mode, do not update the time */
 420            if (rtc_running(s)) {
 421                rtc_set_time(s);
 422                check_update_timer(s);
 423            }
 424            break;
 425        case RTC_REG_A:
 426            if ((data & 0x60) == 0x60) {
 427                if (rtc_running(s)) {
 428                    rtc_update_time(s);
 429                }
 430                /* What happens to UIP when divider reset is enabled is
 431                 * unclear from the datasheet.  Shouldn't matter much
 432                 * though.
 433                 */
 434                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 435            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
 436                    (data & 0x70)  <= 0x20) {
 437                /* when the divider reset is removed, the first update cycle
 438                 * begins one-half second later*/
 439                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 440                    s->offset = 500000000;
 441                    rtc_set_time(s);
 442                }
 443                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 444            }
 445            /* UIP bit is read only */
 446            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 447                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 448            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
 449            check_update_timer(s);
 450            break;
 451        case RTC_REG_B:
 452            if (data & REG_B_SET) {
 453                /* update cmos to when the rtc was stopping */
 454                if (rtc_running(s)) {
 455                    rtc_update_time(s);
 456                }
 457                /* set mode: reset UIP mode */
 458                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 459                data &= ~REG_B_UIE;
 460            } else {
 461                /* if disabling set mode, update the time */
 462                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 463                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
 464                    s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
 465                    rtc_set_time(s);
 466                }
 467            }
 468            /* if an interrupt flag is already set when the interrupt
 469             * becomes enabled, raise an interrupt immediately.  */
 470            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
 471                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 472                qemu_irq_raise(s->irq);
 473            } else {
 474                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
 475                qemu_irq_lower(s->irq);
 476            }
 477            s->cmos_data[RTC_REG_B] = data;
 478            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
 479            check_update_timer(s);
 480            break;
 481        case RTC_REG_C:
 482        case RTC_REG_D:
 483            /* cannot write to them */
 484            break;
 485        default:
 486            s->cmos_data[s->cmos_index] = data;
 487            break;
 488        }
 489    }
 490}
 491
 492static inline int rtc_to_bcd(RTCState *s, int a)
 493{
 494    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 495        return a;
 496    } else {
 497        return ((a / 10) << 4) | (a % 10);
 498    }
 499}
 500
 501static inline int rtc_from_bcd(RTCState *s, int a)
 502{
 503    if ((a & 0xc0) == 0xc0) {
 504        return -1;
 505    }
 506    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 507        return a;
 508    } else {
 509        return ((a >> 4) * 10) + (a & 0x0f);
 510    }
 511}
 512
 513static void rtc_get_time(RTCState *s, struct tm *tm)
 514{
 515    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 516    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 517    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 518    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 519        tm->tm_hour %= 12;
 520        if (s->cmos_data[RTC_HOURS] & 0x80) {
 521            tm->tm_hour += 12;
 522        }
 523    }
 524    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
 525    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 526    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 527    tm->tm_year =
 528        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
 529        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
 530}
 531
 532static QLIST_HEAD(, RTCState) rtc_devices =
 533    QLIST_HEAD_INITIALIZER(rtc_devices);
 534
 535#ifdef TARGET_I386
 536void qmp_rtc_reset_reinjection(Error **errp)
 537{
 538    RTCState *s;
 539
 540    QLIST_FOREACH(s, &rtc_devices, link) {
 541        s->irq_coalesced = 0;
 542    }
 543}
 544#endif
 545
 546static void rtc_set_time(RTCState *s)
 547{
 548    struct tm tm;
 549
 550    rtc_get_time(s, &tm);
 551    s->base_rtc = mktimegm(&tm);
 552    s->last_update = qemu_clock_get_ns(rtc_clock);
 553
 554    qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
 555}
 556
 557static void rtc_set_cmos(RTCState *s, const struct tm *tm)
 558{
 559    int year;
 560
 561    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
 562    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
 563    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
 564        /* 24 hour format */
 565        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
 566    } else {
 567        /* 12 hour format */
 568        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
 569        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
 570        if (tm->tm_hour >= 12)
 571            s->cmos_data[RTC_HOURS] |= 0x80;
 572    }
 573    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
 574    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
 575    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
 576    year = tm->tm_year + 1900 - s->base_year;
 577    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
 578    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
 579}
 580
 581static void rtc_update_time(RTCState *s)
 582{
 583    struct tm ret;
 584    time_t guest_sec;
 585    int64_t guest_nsec;
 586
 587    guest_nsec = get_guest_rtc_ns(s);
 588    guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
 589    gmtime_r(&guest_sec, &ret);
 590
 591    /* Is SET flag of Register B disabled? */
 592    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
 593        rtc_set_cmos(s, &ret);
 594    }
 595}
 596
 597static int update_in_progress(RTCState *s)
 598{
 599    int64_t guest_nsec;
 600
 601    if (!rtc_running(s)) {
 602        return 0;
 603    }
 604    if (timer_pending(s->update_timer)) {
 605        int64_t next_update_time = timer_expire_time_ns(s->update_timer);
 606        /* Latch UIP until the timer expires.  */
 607        if (qemu_clock_get_ns(rtc_clock) >=
 608            (next_update_time - UIP_HOLD_LENGTH)) {
 609            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 610            return 1;
 611        }
 612    }
 613
 614    guest_nsec = get_guest_rtc_ns(s);
 615    /* UIP bit will be set at last 244us of every second. */
 616    if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
 617        (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
 618        return 1;
 619    }
 620    return 0;
 621}
 622
 623static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
 624                                 unsigned size)
 625{
 626    RTCState *s = opaque;
 627    int ret;
 628    if ((addr & 1) == 0) {
 629        return 0xff;
 630    } else {
 631        switch(s->cmos_index) {
 632        case RTC_IBM_PS2_CENTURY_BYTE:
 633            s->cmos_index = RTC_CENTURY;
 634            /* fall through */
 635        case RTC_CENTURY:
 636        case RTC_SECONDS:
 637        case RTC_MINUTES:
 638        case RTC_HOURS:
 639        case RTC_DAY_OF_WEEK:
 640        case RTC_DAY_OF_MONTH:
 641        case RTC_MONTH:
 642        case RTC_YEAR:
 643            /* if not in set mode, calibrate cmos before
 644             * reading*/
 645            if (rtc_running(s)) {
 646                rtc_update_time(s);
 647            }
 648            ret = s->cmos_data[s->cmos_index];
 649            break;
 650        case RTC_REG_A:
 651            if (update_in_progress(s)) {
 652                s->cmos_data[s->cmos_index] |= REG_A_UIP;
 653            } else {
 654                s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
 655            }
 656            ret = s->cmos_data[s->cmos_index];
 657            break;
 658        case RTC_REG_C:
 659            ret = s->cmos_data[s->cmos_index];
 660            qemu_irq_lower(s->irq);
 661            s->cmos_data[RTC_REG_C] = 0x00;
 662            if (ret & (REG_C_UF | REG_C_AF)) {
 663                check_update_timer(s);
 664            }
 665#ifdef TARGET_I386
 666            if(s->irq_coalesced &&
 667                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
 668                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
 669                s->irq_reinject_on_ack_count++;
 670                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
 671                apic_reset_irq_delivered();
 672                DPRINTF_C("cmos: injecting on ack\n");
 673                qemu_irq_raise(s->irq);
 674                if (apic_get_irq_delivered()) {
 675                    s->irq_coalesced--;
 676                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 677                              s->irq_coalesced);
 678                }
 679            }
 680#endif
 681            break;
 682        default:
 683            ret = s->cmos_data[s->cmos_index];
 684            break;
 685        }
 686        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
 687                     s->cmos_index, ret);
 688        return ret;
 689    }
 690}
 691
 692void rtc_set_memory(ISADevice *dev, int addr, int val)
 693{
 694    RTCState *s = MC146818_RTC(dev);
 695    if (addr >= 0 && addr <= 127)
 696        s->cmos_data[addr] = val;
 697}
 698
 699int rtc_get_memory(ISADevice *dev, int addr)
 700{
 701    RTCState *s = MC146818_RTC(dev);
 702    assert(addr >= 0 && addr <= 127);
 703    return s->cmos_data[addr];
 704}
 705
 706static void rtc_set_date_from_host(ISADevice *dev)
 707{
 708    RTCState *s = MC146818_RTC(dev);
 709    struct tm tm;
 710
 711    qemu_get_timedate(&tm, 0);
 712
 713    s->base_rtc = mktimegm(&tm);
 714    s->last_update = qemu_clock_get_ns(rtc_clock);
 715    s->offset = 0;
 716
 717    /* set the CMOS date */
 718    rtc_set_cmos(s, &tm);
 719}
 720
 721static void rtc_pre_save(void *opaque)
 722{
 723    RTCState *s = opaque;
 724
 725    rtc_update_time(s);
 726}
 727
 728static int rtc_post_load(void *opaque, int version_id)
 729{
 730    RTCState *s = opaque;
 731
 732    if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
 733        rtc_set_time(s);
 734        s->offset = 0;
 735        check_update_timer(s);
 736    }
 737
 738    /* The periodic timer is deterministic in record/replay mode,
 739     * so there is no need to update it after loading the vmstate.
 740     * Reading RTC here would misalign record and replay.
 741     */
 742    if (replay_mode == REPLAY_MODE_NONE) {
 743        uint64_t now = qemu_clock_get_ns(rtc_clock);
 744        if (now < s->next_periodic_time ||
 745            now > (s->next_periodic_time + get_max_clock_jump())) {
 746            periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
 747        }
 748    }
 749
 750#ifdef TARGET_I386
 751    if (version_id >= 2) {
 752        if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 753            rtc_coalesced_timer_update(s);
 754        }
 755    }
 756#endif
 757    return 0;
 758}
 759
 760static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
 761{
 762    RTCState *s = (RTCState *)opaque;
 763    return s->irq_reinject_on_ack_count != 0;
 764}
 765
 766static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
 767    .name = "mc146818rtc/irq_reinject_on_ack_count",
 768    .version_id = 1,
 769    .minimum_version_id = 1,
 770    .needed = rtc_irq_reinject_on_ack_count_needed,
 771    .fields = (VMStateField[]) {
 772        VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
 773        VMSTATE_END_OF_LIST()
 774    }
 775};
 776
 777static const VMStateDescription vmstate_rtc = {
 778    .name = "mc146818rtc",
 779    .version_id = 3,
 780    .minimum_version_id = 1,
 781    .pre_save = rtc_pre_save,
 782    .post_load = rtc_post_load,
 783    .fields = (VMStateField[]) {
 784        VMSTATE_BUFFER(cmos_data, RTCState),
 785        VMSTATE_UINT8(cmos_index, RTCState),
 786        VMSTATE_UNUSED(7*4),
 787        VMSTATE_TIMER_PTR(periodic_timer, RTCState),
 788        VMSTATE_INT64(next_periodic_time, RTCState),
 789        VMSTATE_UNUSED(3*8),
 790        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
 791        VMSTATE_UINT32_V(period, RTCState, 2),
 792        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 793        VMSTATE_UINT64_V(last_update, RTCState, 3),
 794        VMSTATE_INT64_V(offset, RTCState, 3),
 795        VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
 796        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 797        VMSTATE_END_OF_LIST()
 798    },
 799    .subsections = (const VMStateDescription*[]) {
 800        &vmstate_rtc_irq_reinject_on_ack_count,
 801        NULL
 802    }
 803};
 804
 805static void rtc_notify_clock_reset(Notifier *notifier, void *data)
 806{
 807    RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
 808    int64_t now = *(int64_t *)data;
 809
 810    rtc_set_date_from_host(ISA_DEVICE(s));
 811    periodic_timer_update(s, now);
 812    check_update_timer(s);
 813#ifdef TARGET_I386
 814    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 815        rtc_coalesced_timer_update(s);
 816    }
 817#endif
 818}
 819
 820/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
 821   BIOS will read it and start S3 resume at POST Entry */
 822static void rtc_notify_suspend(Notifier *notifier, void *data)
 823{
 824    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
 825    rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
 826}
 827
 828static void rtc_reset(void *opaque)
 829{
 830    RTCState *s = opaque;
 831
 832    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
 833    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
 834    check_update_timer(s);
 835
 836    qemu_irq_lower(s->irq);
 837
 838#ifdef TARGET_I386
 839    if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
 840        s->irq_coalesced = 0;
 841        s->irq_reinject_on_ack_count = 0;               
 842    }
 843#endif
 844}
 845
 846static const MemoryRegionOps cmos_ops = {
 847    .read = cmos_ioport_read,
 848    .write = cmos_ioport_write,
 849    .impl = {
 850        .min_access_size = 1,
 851        .max_access_size = 1,
 852    },
 853    .endianness = DEVICE_LITTLE_ENDIAN,
 854};
 855
 856static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
 857{
 858    RTCState *s = MC146818_RTC(obj);
 859
 860    rtc_update_time(s);
 861    rtc_get_time(s, current_tm);
 862}
 863
 864static void rtc_realizefn(DeviceState *dev, Error **errp)
 865{
 866    ISADevice *isadev = ISA_DEVICE(dev);
 867    RTCState *s = MC146818_RTC(dev);
 868    int base = 0x70;
 869
 870    s->cmos_data[RTC_REG_A] = 0x26;
 871    s->cmos_data[RTC_REG_B] = 0x02;
 872    s->cmos_data[RTC_REG_C] = 0x00;
 873    s->cmos_data[RTC_REG_D] = 0x80;
 874
 875    /* This is for historical reasons.  The default base year qdev property
 876     * was set to 2000 for most machine types before the century byte was
 877     * implemented.
 878     *
 879     * This if statement means that the century byte will be always 0
 880     * (at least until 2079...) for base_year = 1980, but will be set
 881     * correctly for base_year = 2000.
 882     */
 883    if (s->base_year == 2000) {
 884        s->base_year = 0;
 885    }
 886
 887    rtc_set_date_from_host(isadev);
 888
 889#ifdef TARGET_I386
 890    switch (s->lost_tick_policy) {
 891    case LOST_TICK_POLICY_SLEW:
 892        s->coalesced_timer =
 893            timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
 894        break;
 895    case LOST_TICK_POLICY_DISCARD:
 896        break;
 897    default:
 898        error_setg(errp, "Invalid lost tick policy.");
 899        return;
 900    }
 901#endif
 902
 903    s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
 904    s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
 905    check_update_timer(s);
 906
 907    s->clock_reset_notifier.notify = rtc_notify_clock_reset;
 908    qemu_clock_register_reset_notifier(rtc_clock,
 909                                       &s->clock_reset_notifier);
 910
 911    s->suspend_notifier.notify = rtc_notify_suspend;
 912    qemu_register_suspend_notifier(&s->suspend_notifier);
 913
 914    memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
 915    isa_register_ioport(isadev, &s->io, base);
 916
 917    qdev_set_legacy_instance_id(dev, base, 3);
 918    qemu_register_reset(rtc_reset, s);
 919
 920    object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
 921
 922    object_property_add_alias(qdev_get_machine(), "rtc-time",
 923                              OBJECT(s), "date", NULL);
 924
 925    qdev_init_gpio_out(dev, &s->irq, 1);
 926}
 927
 928ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
 929{
 930    DeviceState *dev;
 931    ISADevice *isadev;
 932    RTCState *s;
 933
 934    isadev = isa_create(bus, TYPE_MC146818_RTC);
 935    dev = DEVICE(isadev);
 936    s = MC146818_RTC(isadev);
 937    qdev_prop_set_int32(dev, "base_year", base_year);
 938    qdev_init_nofail(dev);
 939    if (intercept_irq) {
 940        qdev_connect_gpio_out(dev, 0, intercept_irq);
 941    } else {
 942        isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
 943    }
 944    QLIST_INSERT_HEAD(&rtc_devices, s, link);
 945
 946    return isadev;
 947}
 948
 949static Property mc146818rtc_properties[] = {
 950    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
 951    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
 952                               lost_tick_policy, LOST_TICK_POLICY_DISCARD),
 953    DEFINE_PROP_END_OF_LIST(),
 954};
 955
 956static void rtc_resetdev(DeviceState *d)
 957{
 958    RTCState *s = MC146818_RTC(d);
 959
 960    /* Reason: VM do suspend self will set 0xfe
 961     * Reset any values other than 0xfe(Guest suspend case) */
 962    if (s->cmos_data[0x0f] != 0xfe) {
 963        s->cmos_data[0x0f] = 0x00;
 964    }
 965}
 966
 967static void rtc_class_initfn(ObjectClass *klass, void *data)
 968{
 969    DeviceClass *dc = DEVICE_CLASS(klass);
 970
 971    dc->realize = rtc_realizefn;
 972    dc->reset = rtc_resetdev;
 973    dc->vmsd = &vmstate_rtc;
 974    dc->props = mc146818rtc_properties;
 975    /* Reason: needs to be wired up by rtc_init() */
 976    dc->cannot_instantiate_with_device_add_yet = true;
 977}
 978
 979static void rtc_finalize(Object *obj)
 980{
 981    object_property_del(qdev_get_machine(), "rtc", NULL);
 982}
 983
 984static const TypeInfo mc146818rtc_info = {
 985    .name          = TYPE_MC146818_RTC,
 986    .parent        = TYPE_ISA_DEVICE,
 987    .instance_size = sizeof(RTCState),
 988    .class_init    = rtc_class_initfn,
 989    .instance_finalize = rtc_finalize,
 990};
 991
 992static void mc146818rtc_register_types(void)
 993{
 994    type_register_static(&mc146818rtc_info);
 995}
 996
 997type_init(mc146818rtc_register_types)
 998