qemu/hw/i386/pc.c
<<
>>
Prefs
   1/*
   2 * QEMU PC System Emulator
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "hw/i386/pc.h"
  27#include "hw/char/serial.h"
  28#include "hw/i386/apic.h"
  29#include "hw/i386/topology.h"
  30#include "sysemu/cpus.h"
  31#include "hw/block/fdc.h"
  32#include "hw/ide.h"
  33#include "hw/pci/pci.h"
  34#include "hw/pci/pci_bus.h"
  35#include "hw/nvram/fw_cfg.h"
  36#include "hw/timer/hpet.h"
  37#include "hw/smbios/smbios.h"
  38#include "hw/loader.h"
  39#include "elf.h"
  40#include "multiboot.h"
  41#include "hw/timer/mc146818rtc.h"
  42#include "hw/timer/i8254.h"
  43#include "hw/audio/pcspk.h"
  44#include "hw/pci/msi.h"
  45#include "hw/sysbus.h"
  46#include "sysemu/sysemu.h"
  47#include "sysemu/numa.h"
  48#include "sysemu/kvm.h"
  49#include "sysemu/qtest.h"
  50#include "kvm_i386.h"
  51#include "hw/xen/xen.h"
  52#include "sysemu/block-backend.h"
  53#include "hw/block/block.h"
  54#include "ui/qemu-spice.h"
  55#include "exec/memory.h"
  56#include "exec/address-spaces.h"
  57#include "sysemu/arch_init.h"
  58#include "qemu/bitmap.h"
  59#include "qemu/config-file.h"
  60#include "qemu/error-report.h"
  61#include "hw/acpi/acpi.h"
  62#include "hw/acpi/cpu_hotplug.h"
  63#include "hw/boards.h"
  64#include "hw/pci/pci_host.h"
  65#include "acpi-build.h"
  66#include "hw/mem/pc-dimm.h"
  67#include "qapi/visitor.h"
  68#include "qapi-visit.h"
  69#include "qom/cpu.h"
  70#include "hw/nmi.h"
  71#include "hw/i386/intel_iommu.h"
  72
  73/* debug PC/ISA interrupts */
  74//#define DEBUG_IRQ
  75
  76#ifdef DEBUG_IRQ
  77#define DPRINTF(fmt, ...)                                       \
  78    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
  79#else
  80#define DPRINTF(fmt, ...)
  81#endif
  82
  83#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
  84#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
  85#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
  86#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
  87#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
  88
  89#define E820_NR_ENTRIES         16
  90
  91struct e820_entry {
  92    uint64_t address;
  93    uint64_t length;
  94    uint32_t type;
  95} QEMU_PACKED __attribute((__aligned__(4)));
  96
  97struct e820_table {
  98    uint32_t count;
  99    struct e820_entry entry[E820_NR_ENTRIES];
 100} QEMU_PACKED __attribute((__aligned__(4)));
 101
 102static struct e820_table e820_reserve;
 103static struct e820_entry *e820_table;
 104static unsigned e820_entries;
 105struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
 106
 107void gsi_handler(void *opaque, int n, int level)
 108{
 109    GSIState *s = opaque;
 110
 111    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
 112    if (n < ISA_NUM_IRQS) {
 113        qemu_set_irq(s->i8259_irq[n], level);
 114    }
 115    qemu_set_irq(s->ioapic_irq[n], level);
 116}
 117
 118static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
 119                           unsigned size)
 120{
 121}
 122
 123static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
 124{
 125    return 0xffffffffffffffffULL;
 126}
 127
 128/* MSDOS compatibility mode FPU exception support */
 129static qemu_irq ferr_irq;
 130
 131void pc_register_ferr_irq(qemu_irq irq)
 132{
 133    ferr_irq = irq;
 134}
 135
 136/* XXX: add IGNNE support */
 137void cpu_set_ferr(CPUX86State *s)
 138{
 139    qemu_irq_raise(ferr_irq);
 140}
 141
 142static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
 143                           unsigned size)
 144{
 145    qemu_irq_lower(ferr_irq);
 146}
 147
 148static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
 149{
 150    return 0xffffffffffffffffULL;
 151}
 152
 153/* TSC handling */
 154uint64_t cpu_get_tsc(CPUX86State *env)
 155{
 156    return cpu_get_ticks();
 157}
 158
 159/* IRQ handling */
 160int cpu_get_pic_interrupt(CPUX86State *env)
 161{
 162    X86CPU *cpu = x86_env_get_cpu(env);
 163    int intno;
 164
 165    if (!kvm_irqchip_in_kernel()) {
 166        intno = apic_get_interrupt(cpu->apic_state);
 167        if (intno >= 0) {
 168            return intno;
 169        }
 170        /* read the irq from the PIC */
 171        if (!apic_accept_pic_intr(cpu->apic_state)) {
 172            return -1;
 173        }
 174    }
 175
 176    intno = pic_read_irq(isa_pic);
 177    return intno;
 178}
 179
 180static void pic_irq_request(void *opaque, int irq, int level)
 181{
 182    CPUState *cs = first_cpu;
 183    X86CPU *cpu = X86_CPU(cs);
 184
 185    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
 186    if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
 187        CPU_FOREACH(cs) {
 188            cpu = X86_CPU(cs);
 189            if (apic_accept_pic_intr(cpu->apic_state)) {
 190                apic_deliver_pic_intr(cpu->apic_state, level);
 191            }
 192        }
 193    } else {
 194        if (level) {
 195            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 196        } else {
 197            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 198        }
 199    }
 200}
 201
 202/* PC cmos mappings */
 203
 204#define REG_EQUIPMENT_BYTE          0x14
 205
 206int cmos_get_fd_drive_type(FloppyDriveType fd0)
 207{
 208    int val;
 209
 210    switch (fd0) {
 211    case FLOPPY_DRIVE_TYPE_144:
 212        /* 1.44 Mb 3"5 drive */
 213        val = 4;
 214        break;
 215    case FLOPPY_DRIVE_TYPE_288:
 216        /* 2.88 Mb 3"5 drive */
 217        val = 5;
 218        break;
 219    case FLOPPY_DRIVE_TYPE_120:
 220        /* 1.2 Mb 5"5 drive */
 221        val = 2;
 222        break;
 223    case FLOPPY_DRIVE_TYPE_NONE:
 224    default:
 225        val = 0;
 226        break;
 227    }
 228    return val;
 229}
 230
 231static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
 232                         int16_t cylinders, int8_t heads, int8_t sectors)
 233{
 234    rtc_set_memory(s, type_ofs, 47);
 235    rtc_set_memory(s, info_ofs, cylinders);
 236    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
 237    rtc_set_memory(s, info_ofs + 2, heads);
 238    rtc_set_memory(s, info_ofs + 3, 0xff);
 239    rtc_set_memory(s, info_ofs + 4, 0xff);
 240    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
 241    rtc_set_memory(s, info_ofs + 6, cylinders);
 242    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
 243    rtc_set_memory(s, info_ofs + 8, sectors);
 244}
 245
 246/* convert boot_device letter to something recognizable by the bios */
 247static int boot_device2nibble(char boot_device)
 248{
 249    switch(boot_device) {
 250    case 'a':
 251    case 'b':
 252        return 0x01; /* floppy boot */
 253    case 'c':
 254        return 0x02; /* hard drive boot */
 255    case 'd':
 256        return 0x03; /* CD-ROM boot */
 257    case 'n':
 258        return 0x04; /* Network boot */
 259    }
 260    return 0;
 261}
 262
 263static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
 264{
 265#define PC_MAX_BOOT_DEVICES 3
 266    int nbds, bds[3] = { 0, };
 267    int i;
 268
 269    nbds = strlen(boot_device);
 270    if (nbds > PC_MAX_BOOT_DEVICES) {
 271        error_setg(errp, "Too many boot devices for PC");
 272        return;
 273    }
 274    for (i = 0; i < nbds; i++) {
 275        bds[i] = boot_device2nibble(boot_device[i]);
 276        if (bds[i] == 0) {
 277            error_setg(errp, "Invalid boot device for PC: '%c'",
 278                       boot_device[i]);
 279            return;
 280        }
 281    }
 282    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
 283    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
 284}
 285
 286static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
 287{
 288    set_boot_dev(opaque, boot_device, errp);
 289}
 290
 291static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
 292{
 293    int val, nb, i;
 294    FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
 295                                   FLOPPY_DRIVE_TYPE_NONE };
 296
 297    /* floppy type */
 298    if (floppy) {
 299        for (i = 0; i < 2; i++) {
 300            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
 301        }
 302    }
 303    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
 304        cmos_get_fd_drive_type(fd_type[1]);
 305    rtc_set_memory(rtc_state, 0x10, val);
 306
 307    val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
 308    nb = 0;
 309    if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
 310        nb++;
 311    }
 312    if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
 313        nb++;
 314    }
 315    switch (nb) {
 316    case 0:
 317        break;
 318    case 1:
 319        val |= 0x01; /* 1 drive, ready for boot */
 320        break;
 321    case 2:
 322        val |= 0x41; /* 2 drives, ready for boot */
 323        break;
 324    }
 325    rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
 326}
 327
 328typedef struct pc_cmos_init_late_arg {
 329    ISADevice *rtc_state;
 330    BusState *idebus[2];
 331} pc_cmos_init_late_arg;
 332
 333typedef struct check_fdc_state {
 334    ISADevice *floppy;
 335    bool multiple;
 336} CheckFdcState;
 337
 338static int check_fdc(Object *obj, void *opaque)
 339{
 340    CheckFdcState *state = opaque;
 341    Object *fdc;
 342    uint32_t iobase;
 343    Error *local_err = NULL;
 344
 345    fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
 346    if (!fdc) {
 347        return 0;
 348    }
 349
 350    iobase = object_property_get_int(obj, "iobase", &local_err);
 351    if (local_err || iobase != 0x3f0) {
 352        error_free(local_err);
 353        return 0;
 354    }
 355
 356    if (state->floppy) {
 357        state->multiple = true;
 358    } else {
 359        state->floppy = ISA_DEVICE(obj);
 360    }
 361    return 0;
 362}
 363
 364static const char * const fdc_container_path[] = {
 365    "/unattached", "/peripheral", "/peripheral-anon"
 366};
 367
 368/*
 369 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
 370 * and ACPI objects.
 371 */
 372ISADevice *pc_find_fdc0(void)
 373{
 374    int i;
 375    Object *container;
 376    CheckFdcState state = { 0 };
 377
 378    for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
 379        container = container_get(qdev_get_machine(), fdc_container_path[i]);
 380        object_child_foreach(container, check_fdc, &state);
 381    }
 382
 383    if (state.multiple) {
 384        error_report("warning: multiple floppy disk controllers with "
 385                     "iobase=0x3f0 have been found");
 386        error_printf("the one being picked for CMOS setup might not reflect "
 387                     "your intent\n");
 388    }
 389
 390    return state.floppy;
 391}
 392
 393static void pc_cmos_init_late(void *opaque)
 394{
 395    pc_cmos_init_late_arg *arg = opaque;
 396    ISADevice *s = arg->rtc_state;
 397    int16_t cylinders;
 398    int8_t heads, sectors;
 399    int val;
 400    int i, trans;
 401
 402    val = 0;
 403    if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
 404                                           &cylinders, &heads, &sectors) >= 0) {
 405        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
 406        val |= 0xf0;
 407    }
 408    if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
 409                                           &cylinders, &heads, &sectors) >= 0) {
 410        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
 411        val |= 0x0f;
 412    }
 413    rtc_set_memory(s, 0x12, val);
 414
 415    val = 0;
 416    for (i = 0; i < 4; i++) {
 417        /* NOTE: ide_get_geometry() returns the physical
 418           geometry.  It is always such that: 1 <= sects <= 63, 1
 419           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
 420           geometry can be different if a translation is done. */
 421        if (arg->idebus[i / 2] &&
 422            ide_get_geometry(arg->idebus[i / 2], i % 2,
 423                             &cylinders, &heads, &sectors) >= 0) {
 424            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
 425            assert((trans & ~3) == 0);
 426            val |= trans << (i * 2);
 427        }
 428    }
 429    rtc_set_memory(s, 0x39, val);
 430
 431    pc_cmos_init_floppy(s, pc_find_fdc0());
 432
 433    qemu_unregister_reset(pc_cmos_init_late, opaque);
 434}
 435
 436void pc_cmos_init(PCMachineState *pcms,
 437                  BusState *idebus0, BusState *idebus1,
 438                  ISADevice *s)
 439{
 440    int val;
 441    static pc_cmos_init_late_arg arg;
 442
 443    /* various important CMOS locations needed by PC/Bochs bios */
 444
 445    /* memory size */
 446    /* base memory (first MiB) */
 447    val = MIN(pcms->below_4g_mem_size / 1024, 640);
 448    rtc_set_memory(s, 0x15, val);
 449    rtc_set_memory(s, 0x16, val >> 8);
 450    /* extended memory (next 64MiB) */
 451    if (pcms->below_4g_mem_size > 1024 * 1024) {
 452        val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
 453    } else {
 454        val = 0;
 455    }
 456    if (val > 65535)
 457        val = 65535;
 458    rtc_set_memory(s, 0x17, val);
 459    rtc_set_memory(s, 0x18, val >> 8);
 460    rtc_set_memory(s, 0x30, val);
 461    rtc_set_memory(s, 0x31, val >> 8);
 462    /* memory between 16MiB and 4GiB */
 463    if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
 464        val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
 465    } else {
 466        val = 0;
 467    }
 468    if (val > 65535)
 469        val = 65535;
 470    rtc_set_memory(s, 0x34, val);
 471    rtc_set_memory(s, 0x35, val >> 8);
 472    /* memory above 4GiB */
 473    val = pcms->above_4g_mem_size / 65536;
 474    rtc_set_memory(s, 0x5b, val);
 475    rtc_set_memory(s, 0x5c, val >> 8);
 476    rtc_set_memory(s, 0x5d, val >> 16);
 477
 478    object_property_add_link(OBJECT(pcms), "rtc_state",
 479                             TYPE_ISA_DEVICE,
 480                             (Object **)&pcms->rtc,
 481                             object_property_allow_set_link,
 482                             OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
 483    object_property_set_link(OBJECT(pcms), OBJECT(s),
 484                             "rtc_state", &error_abort);
 485
 486    set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
 487
 488    val = 0;
 489    val |= 0x02; /* FPU is there */
 490    val |= 0x04; /* PS/2 mouse installed */
 491    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
 492
 493    /* hard drives and FDC */
 494    arg.rtc_state = s;
 495    arg.idebus[0] = idebus0;
 496    arg.idebus[1] = idebus1;
 497    qemu_register_reset(pc_cmos_init_late, &arg);
 498}
 499
 500#define TYPE_PORT92 "port92"
 501#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
 502
 503/* port 92 stuff: could be split off */
 504typedef struct Port92State {
 505    ISADevice parent_obj;
 506
 507    MemoryRegion io;
 508    uint8_t outport;
 509    qemu_irq a20_out;
 510} Port92State;
 511
 512static void port92_write(void *opaque, hwaddr addr, uint64_t val,
 513                         unsigned size)
 514{
 515    Port92State *s = opaque;
 516    int oldval = s->outport;
 517
 518    DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
 519    s->outport = val;
 520    qemu_set_irq(s->a20_out, (val >> 1) & 1);
 521    if ((val & 1) && !(oldval & 1)) {
 522        qemu_system_reset_request();
 523    }
 524}
 525
 526static uint64_t port92_read(void *opaque, hwaddr addr,
 527                            unsigned size)
 528{
 529    Port92State *s = opaque;
 530    uint32_t ret;
 531
 532    ret = s->outport;
 533    DPRINTF("port92: read 0x%02x\n", ret);
 534    return ret;
 535}
 536
 537static void port92_init(ISADevice *dev, qemu_irq a20_out)
 538{
 539    qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
 540}
 541
 542static const VMStateDescription vmstate_port92_isa = {
 543    .name = "port92",
 544    .version_id = 1,
 545    .minimum_version_id = 1,
 546    .fields = (VMStateField[]) {
 547        VMSTATE_UINT8(outport, Port92State),
 548        VMSTATE_END_OF_LIST()
 549    }
 550};
 551
 552static void port92_reset(DeviceState *d)
 553{
 554    Port92State *s = PORT92(d);
 555
 556    s->outport &= ~1;
 557}
 558
 559static const MemoryRegionOps port92_ops = {
 560    .read = port92_read,
 561    .write = port92_write,
 562    .impl = {
 563        .min_access_size = 1,
 564        .max_access_size = 1,
 565    },
 566    .endianness = DEVICE_LITTLE_ENDIAN,
 567};
 568
 569static void port92_initfn(Object *obj)
 570{
 571    Port92State *s = PORT92(obj);
 572
 573    memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
 574
 575    s->outport = 0;
 576
 577    qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
 578}
 579
 580static void port92_realizefn(DeviceState *dev, Error **errp)
 581{
 582    ISADevice *isadev = ISA_DEVICE(dev);
 583    Port92State *s = PORT92(dev);
 584
 585    isa_register_ioport(isadev, &s->io, 0x92);
 586}
 587
 588static void port92_class_initfn(ObjectClass *klass, void *data)
 589{
 590    DeviceClass *dc = DEVICE_CLASS(klass);
 591
 592    dc->realize = port92_realizefn;
 593    dc->reset = port92_reset;
 594    dc->vmsd = &vmstate_port92_isa;
 595    /*
 596     * Reason: unlike ordinary ISA devices, this one needs additional
 597     * wiring: its A20 output line needs to be wired up by
 598     * port92_init().
 599     */
 600    dc->user_creatable = false;
 601}
 602
 603static const TypeInfo port92_info = {
 604    .name          = TYPE_PORT92,
 605    .parent        = TYPE_ISA_DEVICE,
 606    .instance_size = sizeof(Port92State),
 607    .instance_init = port92_initfn,
 608    .class_init    = port92_class_initfn,
 609};
 610
 611static void port92_register_types(void)
 612{
 613    type_register_static(&port92_info);
 614}
 615
 616type_init(port92_register_types)
 617
 618static void handle_a20_line_change(void *opaque, int irq, int level)
 619{
 620    X86CPU *cpu = opaque;
 621
 622    /* XXX: send to all CPUs ? */
 623    /* XXX: add logic to handle multiple A20 line sources */
 624    x86_cpu_set_a20(cpu, level);
 625}
 626
 627int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
 628{
 629    int index = le32_to_cpu(e820_reserve.count);
 630    struct e820_entry *entry;
 631
 632    if (type != E820_RAM) {
 633        /* old FW_CFG_E820_TABLE entry -- reservations only */
 634        if (index >= E820_NR_ENTRIES) {
 635            return -EBUSY;
 636        }
 637        entry = &e820_reserve.entry[index++];
 638
 639        entry->address = cpu_to_le64(address);
 640        entry->length = cpu_to_le64(length);
 641        entry->type = cpu_to_le32(type);
 642
 643        e820_reserve.count = cpu_to_le32(index);
 644    }
 645
 646    /* new "etc/e820" file -- include ram too */
 647    e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
 648    e820_table[e820_entries].address = cpu_to_le64(address);
 649    e820_table[e820_entries].length = cpu_to_le64(length);
 650    e820_table[e820_entries].type = cpu_to_le32(type);
 651    e820_entries++;
 652
 653    return e820_entries;
 654}
 655
 656int e820_get_num_entries(void)
 657{
 658    return e820_entries;
 659}
 660
 661bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
 662{
 663    if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
 664        *address = le64_to_cpu(e820_table[idx].address);
 665        *length = le64_to_cpu(e820_table[idx].length);
 666        return true;
 667    }
 668    return false;
 669}
 670
 671/* Enables contiguous-apic-ID mode, for compatibility */
 672static bool compat_apic_id_mode;
 673
 674void enable_compat_apic_id_mode(void)
 675{
 676    compat_apic_id_mode = true;
 677}
 678
 679/* Calculates initial APIC ID for a specific CPU index
 680 *
 681 * Currently we need to be able to calculate the APIC ID from the CPU index
 682 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 683 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 684 * all CPUs up to max_cpus.
 685 */
 686static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
 687{
 688    uint32_t correct_id;
 689    static bool warned;
 690
 691    correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
 692    if (compat_apic_id_mode) {
 693        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
 694            error_report("APIC IDs set in compatibility mode, "
 695                         "CPU topology won't match the configuration");
 696            warned = true;
 697        }
 698        return cpu_index;
 699    } else {
 700        return correct_id;
 701    }
 702}
 703
 704static void pc_build_smbios(PCMachineState *pcms)
 705{
 706    uint8_t *smbios_tables, *smbios_anchor;
 707    size_t smbios_tables_len, smbios_anchor_len;
 708    struct smbios_phys_mem_area *mem_array;
 709    unsigned i, array_count;
 710    MachineState *ms = MACHINE(pcms);
 711    X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
 712
 713    /* tell smbios about cpuid version and features */
 714    smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
 715
 716    smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
 717    if (smbios_tables) {
 718        fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
 719                         smbios_tables, smbios_tables_len);
 720    }
 721
 722    /* build the array of physical mem area from e820 table */
 723    mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
 724    for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
 725        uint64_t addr, len;
 726
 727        if (e820_get_entry(i, E820_RAM, &addr, &len)) {
 728            mem_array[array_count].address = addr;
 729            mem_array[array_count].length = len;
 730            array_count++;
 731        }
 732    }
 733    smbios_get_tables(mem_array, array_count,
 734                      &smbios_tables, &smbios_tables_len,
 735                      &smbios_anchor, &smbios_anchor_len);
 736    g_free(mem_array);
 737
 738    if (smbios_anchor) {
 739        fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
 740                        smbios_tables, smbios_tables_len);
 741        fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
 742                        smbios_anchor, smbios_anchor_len);
 743    }
 744}
 745
 746static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
 747{
 748    FWCfgState *fw_cfg;
 749    uint64_t *numa_fw_cfg;
 750    int i, j;
 751
 752    fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
 753    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
 754
 755    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
 756     *
 757     * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
 758     * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
 759     * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
 760     * for CPU hotplug also uses APIC ID and not "CPU index".
 761     * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
 762     * but the "limit to the APIC ID values SeaBIOS may see".
 763     *
 764     * So for compatibility reasons with old BIOSes we are stuck with
 765     * "etc/max-cpus" actually being apic_id_limit
 766     */
 767    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
 768    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
 769    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
 770                     acpi_tables, acpi_tables_len);
 771    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
 772
 773    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
 774                     &e820_reserve, sizeof(e820_reserve));
 775    fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
 776                    sizeof(struct e820_entry) * e820_entries);
 777
 778    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
 779    /* allocate memory for the NUMA channel: one (64bit) word for the number
 780     * of nodes, one word for each VCPU->node and one word for each node to
 781     * hold the amount of memory.
 782     */
 783    numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
 784    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
 785    for (i = 0; i < max_cpus; i++) {
 786        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
 787        assert(apic_id < pcms->apic_id_limit);
 788        j = numa_get_node_for_cpu(i);
 789        if (j < nb_numa_nodes) {
 790            numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
 791        }
 792    }
 793    for (i = 0; i < nb_numa_nodes; i++) {
 794        numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
 795            cpu_to_le64(numa_info[i].node_mem);
 796    }
 797    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
 798                     (1 + pcms->apic_id_limit + nb_numa_nodes) *
 799                     sizeof(*numa_fw_cfg));
 800
 801    return fw_cfg;
 802}
 803
 804static long get_file_size(FILE *f)
 805{
 806    long where, size;
 807
 808    /* XXX: on Unix systems, using fstat() probably makes more sense */
 809
 810    where = ftell(f);
 811    fseek(f, 0, SEEK_END);
 812    size = ftell(f);
 813    fseek(f, where, SEEK_SET);
 814
 815    return size;
 816}
 817
 818/* setup_data types */
 819#define SETUP_NONE     0
 820#define SETUP_E820_EXT 1
 821#define SETUP_DTB      2
 822#define SETUP_PCI      3
 823#define SETUP_EFI      4
 824
 825struct setup_data {
 826    uint64_t next;
 827    uint32_t type;
 828    uint32_t len;
 829    uint8_t data[0];
 830} __attribute__((packed));
 831
 832static void load_linux(PCMachineState *pcms,
 833                       FWCfgState *fw_cfg)
 834{
 835    uint16_t protocol;
 836    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
 837    int dtb_size, setup_data_offset;
 838    uint32_t initrd_max;
 839    uint8_t header[8192], *setup, *kernel, *initrd_data;
 840    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
 841    FILE *f;
 842    char *vmode;
 843    MachineState *machine = MACHINE(pcms);
 844    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
 845    struct setup_data *setup_data;
 846    const char *kernel_filename = machine->kernel_filename;
 847    const char *initrd_filename = machine->initrd_filename;
 848    const char *dtb_filename = machine->dtb;
 849    const char *kernel_cmdline = machine->kernel_cmdline;
 850
 851    /* Align to 16 bytes as a paranoia measure */
 852    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
 853
 854    /* load the kernel header */
 855    f = fopen(kernel_filename, "rb");
 856    if (!f || !(kernel_size = get_file_size(f)) ||
 857        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
 858        MIN(ARRAY_SIZE(header), kernel_size)) {
 859        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
 860                kernel_filename, strerror(errno));
 861        exit(1);
 862    }
 863
 864    /* kernel protocol version */
 865#if 0
 866    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
 867#endif
 868    if (ldl_p(header+0x202) == 0x53726448) {
 869        protocol = lduw_p(header+0x206);
 870    } else {
 871        /* This looks like a multiboot kernel. If it is, let's stop
 872           treating it like a Linux kernel. */
 873        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
 874                           kernel_cmdline, kernel_size, header)) {
 875            return;
 876        }
 877        protocol = 0;
 878    }
 879
 880    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
 881        /* Low kernel */
 882        real_addr    = 0x90000;
 883        cmdline_addr = 0x9a000 - cmdline_size;
 884        prot_addr    = 0x10000;
 885    } else if (protocol < 0x202) {
 886        /* High but ancient kernel */
 887        real_addr    = 0x90000;
 888        cmdline_addr = 0x9a000 - cmdline_size;
 889        prot_addr    = 0x100000;
 890    } else {
 891        /* High and recent kernel */
 892        real_addr    = 0x10000;
 893        cmdline_addr = 0x20000;
 894        prot_addr    = 0x100000;
 895    }
 896
 897#if 0
 898    fprintf(stderr,
 899            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
 900            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
 901            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
 902            real_addr,
 903            cmdline_addr,
 904            prot_addr);
 905#endif
 906
 907    /* highest address for loading the initrd */
 908    if (protocol >= 0x203) {
 909        initrd_max = ldl_p(header+0x22c);
 910    } else {
 911        initrd_max = 0x37ffffff;
 912    }
 913
 914    if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
 915        initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
 916    }
 917
 918    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
 919    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
 920    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 921
 922    if (protocol >= 0x202) {
 923        stl_p(header+0x228, cmdline_addr);
 924    } else {
 925        stw_p(header+0x20, 0xA33F);
 926        stw_p(header+0x22, cmdline_addr-real_addr);
 927    }
 928
 929    /* handle vga= parameter */
 930    vmode = strstr(kernel_cmdline, "vga=");
 931    if (vmode) {
 932        unsigned int video_mode;
 933        /* skip "vga=" */
 934        vmode += 4;
 935        if (!strncmp(vmode, "normal", 6)) {
 936            video_mode = 0xffff;
 937        } else if (!strncmp(vmode, "ext", 3)) {
 938            video_mode = 0xfffe;
 939        } else if (!strncmp(vmode, "ask", 3)) {
 940            video_mode = 0xfffd;
 941        } else {
 942            video_mode = strtol(vmode, NULL, 0);
 943        }
 944        stw_p(header+0x1fa, video_mode);
 945    }
 946
 947    /* loader type */
 948    /* High nybble = B reserved for QEMU; low nybble is revision number.
 949       If this code is substantially changed, you may want to consider
 950       incrementing the revision. */
 951    if (protocol >= 0x200) {
 952        header[0x210] = 0xB0;
 953    }
 954    /* heap */
 955    if (protocol >= 0x201) {
 956        header[0x211] |= 0x80;  /* CAN_USE_HEAP */
 957        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
 958    }
 959
 960    /* load initrd */
 961    if (initrd_filename) {
 962        if (protocol < 0x200) {
 963            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
 964            exit(1);
 965        }
 966
 967        initrd_size = get_image_size(initrd_filename);
 968        if (initrd_size < 0) {
 969            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 970                    initrd_filename, strerror(errno));
 971            exit(1);
 972        }
 973
 974        initrd_addr = (initrd_max-initrd_size) & ~4095;
 975
 976        initrd_data = g_malloc(initrd_size);
 977        load_image(initrd_filename, initrd_data);
 978
 979        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
 980        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
 981        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
 982
 983        stl_p(header+0x218, initrd_addr);
 984        stl_p(header+0x21c, initrd_size);
 985    }
 986
 987    /* load kernel and setup */
 988    setup_size = header[0x1f1];
 989    if (setup_size == 0) {
 990        setup_size = 4;
 991    }
 992    setup_size = (setup_size+1)*512;
 993    if (setup_size > kernel_size) {
 994        fprintf(stderr, "qemu: invalid kernel header\n");
 995        exit(1);
 996    }
 997    kernel_size -= setup_size;
 998
 999    setup  = g_malloc(setup_size);
1000    kernel = g_malloc(kernel_size);
1001    fseek(f, 0, SEEK_SET);
1002    if (fread(setup, 1, setup_size, f) != setup_size) {
1003        fprintf(stderr, "fread() failed\n");
1004        exit(1);
1005    }
1006    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1007        fprintf(stderr, "fread() failed\n");
1008        exit(1);
1009    }
1010    fclose(f);
1011
1012    /* append dtb to kernel */
1013    if (dtb_filename) {
1014        if (protocol < 0x209) {
1015            fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1016            exit(1);
1017        }
1018
1019        dtb_size = get_image_size(dtb_filename);
1020        if (dtb_size <= 0) {
1021            fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1022                    dtb_filename, strerror(errno));
1023            exit(1);
1024        }
1025
1026        setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1027        kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1028        kernel = g_realloc(kernel, kernel_size);
1029
1030        stq_p(header+0x250, prot_addr + setup_data_offset);
1031
1032        setup_data = (struct setup_data *)(kernel + setup_data_offset);
1033        setup_data->next = 0;
1034        setup_data->type = cpu_to_le32(SETUP_DTB);
1035        setup_data->len = cpu_to_le32(dtb_size);
1036
1037        load_image_size(dtb_filename, setup_data->data, dtb_size);
1038    }
1039
1040    memcpy(setup, header, MIN(sizeof(header), setup_size));
1041
1042    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1043    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1044    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1045
1046    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1047    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1048    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1049
1050    if (fw_cfg_dma_enabled(fw_cfg)) {
1051        option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1052        option_rom[nb_option_roms].bootindex = 0;
1053    } else {
1054        option_rom[nb_option_roms].name = "linuxboot.bin";
1055        option_rom[nb_option_roms].bootindex = 0;
1056    }
1057    nb_option_roms++;
1058}
1059
1060#define NE2000_NB_MAX 6
1061
1062static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1063                                              0x280, 0x380 };
1064static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1065
1066void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1067{
1068    static int nb_ne2k = 0;
1069
1070    if (nb_ne2k == NE2000_NB_MAX)
1071        return;
1072    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1073                    ne2000_irq[nb_ne2k], nd);
1074    nb_ne2k++;
1075}
1076
1077DeviceState *cpu_get_current_apic(void)
1078{
1079    if (current_cpu) {
1080        X86CPU *cpu = X86_CPU(current_cpu);
1081        return cpu->apic_state;
1082    } else {
1083        return NULL;
1084    }
1085}
1086
1087void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1088{
1089    X86CPU *cpu = opaque;
1090
1091    if (level) {
1092        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1093    }
1094}
1095
1096static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1097{
1098    Object *cpu = NULL;
1099    Error *local_err = NULL;
1100
1101    cpu = object_new(typename);
1102
1103    object_property_set_int(cpu, apic_id, "apic-id", &local_err);
1104    object_property_set_bool(cpu, true, "realized", &local_err);
1105
1106    object_unref(cpu);
1107    if (local_err) {
1108        error_propagate(errp, local_err);
1109    }
1110}
1111
1112void pc_hot_add_cpu(const int64_t id, Error **errp)
1113{
1114    ObjectClass *oc;
1115    MachineState *ms = MACHINE(qdev_get_machine());
1116    int64_t apic_id = x86_cpu_apic_id_from_index(id);
1117    Error *local_err = NULL;
1118
1119    if (id < 0) {
1120        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1121        return;
1122    }
1123
1124    if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1125        error_setg(errp, "Unable to add CPU: %" PRIi64
1126                   ", resulting APIC ID (%" PRIi64 ") is too large",
1127                   id, apic_id);
1128        return;
1129    }
1130
1131    assert(ms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1132    oc = OBJECT_CLASS(CPU_GET_CLASS(ms->possible_cpus->cpus[0].cpu));
1133    pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1134    if (local_err) {
1135        error_propagate(errp, local_err);
1136        return;
1137    }
1138}
1139
1140void pc_cpus_init(PCMachineState *pcms)
1141{
1142    int i;
1143    CPUClass *cc;
1144    ObjectClass *oc;
1145    const char *typename;
1146    gchar **model_pieces;
1147    const CPUArchIdList *possible_cpus;
1148    MachineState *machine = MACHINE(pcms);
1149    MachineClass *mc = MACHINE_GET_CLASS(pcms);
1150
1151    /* init CPUs */
1152    if (machine->cpu_model == NULL) {
1153#ifdef TARGET_X86_64
1154        machine->cpu_model = "qemu64";
1155#else
1156        machine->cpu_model = "qemu32";
1157#endif
1158    }
1159
1160    model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1161    if (!model_pieces[0]) {
1162        error_report("Invalid/empty CPU model name");
1163        exit(1);
1164    }
1165
1166    oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1167    if (oc == NULL) {
1168        error_report("Unable to find CPU definition: %s", model_pieces[0]);
1169        exit(1);
1170    }
1171    typename = object_class_get_name(oc);
1172    cc = CPU_CLASS(oc);
1173    cc->parse_features(typename, model_pieces[1], &error_fatal);
1174    g_strfreev(model_pieces);
1175
1176    /* Calculates the limit to CPU APIC ID values
1177     *
1178     * Limit for the APIC ID value, so that all
1179     * CPU APIC IDs are < pcms->apic_id_limit.
1180     *
1181     * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1182     */
1183    pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1184    possible_cpus = mc->possible_cpu_arch_ids(machine);
1185    for (i = 0; i < smp_cpus; i++) {
1186        pc_new_cpu(typename, possible_cpus->cpus[i].arch_id, &error_fatal);
1187    }
1188}
1189
1190static void pc_build_feature_control_file(PCMachineState *pcms)
1191{
1192    MachineState *ms = MACHINE(pcms);
1193    X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1194    CPUX86State *env = &cpu->env;
1195    uint32_t unused, ecx, edx;
1196    uint64_t feature_control_bits = 0;
1197    uint64_t *val;
1198
1199    cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1200    if (ecx & CPUID_EXT_VMX) {
1201        feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1202    }
1203
1204    if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1205        (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1206        (env->mcg_cap & MCG_LMCE_P)) {
1207        feature_control_bits |= FEATURE_CONTROL_LMCE;
1208    }
1209
1210    if (!feature_control_bits) {
1211        return;
1212    }
1213
1214    val = g_malloc(sizeof(*val));
1215    *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1216    fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1217}
1218
1219static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1220{
1221    if (cpus_count > 0xff) {
1222        /* If the number of CPUs can't be represented in 8 bits, the
1223         * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1224         * to make old BIOSes fail more predictably.
1225         */
1226        rtc_set_memory(rtc, 0x5f, 0);
1227    } else {
1228        rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1229    }
1230}
1231
1232static
1233void pc_machine_done(Notifier *notifier, void *data)
1234{
1235    PCMachineState *pcms = container_of(notifier,
1236                                        PCMachineState, machine_done);
1237    PCIBus *bus = pcms->bus;
1238
1239    /* set the number of CPUs */
1240    rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1241
1242    if (bus) {
1243        int extra_hosts = 0;
1244
1245        QLIST_FOREACH(bus, &bus->child, sibling) {
1246            /* look for expander root buses */
1247            if (pci_bus_is_root(bus)) {
1248                extra_hosts++;
1249            }
1250        }
1251        if (extra_hosts && pcms->fw_cfg) {
1252            uint64_t *val = g_malloc(sizeof(*val));
1253            *val = cpu_to_le64(extra_hosts);
1254            fw_cfg_add_file(pcms->fw_cfg,
1255                    "etc/extra-pci-roots", val, sizeof(*val));
1256        }
1257    }
1258
1259    acpi_setup();
1260    if (pcms->fw_cfg) {
1261        pc_build_smbios(pcms);
1262        pc_build_feature_control_file(pcms);
1263        /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1264        fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1265    }
1266
1267    if (pcms->apic_id_limit > 255) {
1268        IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1269
1270        if (!iommu || !iommu->x86_iommu.intr_supported ||
1271            iommu->intr_eim != ON_OFF_AUTO_ON) {
1272            error_report("current -smp configuration requires "
1273                         "Extended Interrupt Mode enabled. "
1274                         "You can add an IOMMU using: "
1275                         "-device intel-iommu,intremap=on,eim=on");
1276            exit(EXIT_FAILURE);
1277        }
1278    }
1279}
1280
1281void pc_guest_info_init(PCMachineState *pcms)
1282{
1283    int i;
1284
1285    pcms->apic_xrupt_override = kvm_allows_irq0_override();
1286    pcms->numa_nodes = nb_numa_nodes;
1287    pcms->node_mem = g_malloc0(pcms->numa_nodes *
1288                                    sizeof *pcms->node_mem);
1289    for (i = 0; i < nb_numa_nodes; i++) {
1290        pcms->node_mem[i] = numa_info[i].node_mem;
1291    }
1292
1293    pcms->machine_done.notify = pc_machine_done;
1294    qemu_add_machine_init_done_notifier(&pcms->machine_done);
1295}
1296
1297/* setup pci memory address space mapping into system address space */
1298void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1299                            MemoryRegion *pci_address_space)
1300{
1301    /* Set to lower priority than RAM */
1302    memory_region_add_subregion_overlap(system_memory, 0x0,
1303                                        pci_address_space, -1);
1304}
1305
1306void pc_acpi_init(const char *default_dsdt)
1307{
1308    char *filename;
1309
1310    if (acpi_tables != NULL) {
1311        /* manually set via -acpitable, leave it alone */
1312        return;
1313    }
1314
1315    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1316    if (filename == NULL) {
1317        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1318    } else {
1319        QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1320                                          &error_abort);
1321        Error *err = NULL;
1322
1323        qemu_opt_set(opts, "file", filename, &error_abort);
1324
1325        acpi_table_add_builtin(opts, &err);
1326        if (err) {
1327            error_reportf_err(err, "WARNING: failed to load %s: ",
1328                              filename);
1329        }
1330        g_free(filename);
1331    }
1332}
1333
1334void xen_load_linux(PCMachineState *pcms)
1335{
1336    int i;
1337    FWCfgState *fw_cfg;
1338
1339    assert(MACHINE(pcms)->kernel_filename != NULL);
1340
1341    fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1342    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1343    rom_set_fw(fw_cfg);
1344
1345    load_linux(pcms, fw_cfg);
1346    for (i = 0; i < nb_option_roms; i++) {
1347        assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1348               !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1349               !strcmp(option_rom[i].name, "multiboot.bin"));
1350        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1351    }
1352    pcms->fw_cfg = fw_cfg;
1353}
1354
1355void pc_memory_init(PCMachineState *pcms,
1356                    MemoryRegion *system_memory,
1357                    MemoryRegion *rom_memory,
1358                    MemoryRegion **ram_memory)
1359{
1360    int linux_boot, i;
1361    MemoryRegion *ram, *option_rom_mr;
1362    MemoryRegion *ram_below_4g, *ram_above_4g;
1363    FWCfgState *fw_cfg;
1364    MachineState *machine = MACHINE(pcms);
1365    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1366
1367    assert(machine->ram_size == pcms->below_4g_mem_size +
1368                                pcms->above_4g_mem_size);
1369
1370    linux_boot = (machine->kernel_filename != NULL);
1371
1372    /* Allocate RAM.  We allocate it as a single memory region and use
1373     * aliases to address portions of it, mostly for backwards compatibility
1374     * with older qemus that used qemu_ram_alloc().
1375     */
1376    ram = g_malloc(sizeof(*ram));
1377    memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1378                                         machine->ram_size);
1379    *ram_memory = ram;
1380    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1381    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1382                             0, pcms->below_4g_mem_size);
1383    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1384    e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1385    if (pcms->above_4g_mem_size > 0) {
1386        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1387        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1388                                 pcms->below_4g_mem_size,
1389                                 pcms->above_4g_mem_size);
1390        memory_region_add_subregion(system_memory, 0x100000000ULL,
1391                                    ram_above_4g);
1392        e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1393    }
1394
1395    if (!pcmc->has_reserved_memory &&
1396        (machine->ram_slots ||
1397         (machine->maxram_size > machine->ram_size))) {
1398        MachineClass *mc = MACHINE_GET_CLASS(machine);
1399
1400        error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1401                     mc->name);
1402        exit(EXIT_FAILURE);
1403    }
1404
1405    /* initialize hotplug memory address space */
1406    if (pcmc->has_reserved_memory &&
1407        (machine->ram_size < machine->maxram_size)) {
1408        ram_addr_t hotplug_mem_size =
1409            machine->maxram_size - machine->ram_size;
1410
1411        if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1412            error_report("unsupported amount of memory slots: %"PRIu64,
1413                         machine->ram_slots);
1414            exit(EXIT_FAILURE);
1415        }
1416
1417        if (QEMU_ALIGN_UP(machine->maxram_size,
1418                          TARGET_PAGE_SIZE) != machine->maxram_size) {
1419            error_report("maximum memory size must by aligned to multiple of "
1420                         "%d bytes", TARGET_PAGE_SIZE);
1421            exit(EXIT_FAILURE);
1422        }
1423
1424        pcms->hotplug_memory.base =
1425            ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1426
1427        if (pcmc->enforce_aligned_dimm) {
1428            /* size hotplug region assuming 1G page max alignment per slot */
1429            hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1430        }
1431
1432        if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1433            hotplug_mem_size) {
1434            error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1435                         machine->maxram_size);
1436            exit(EXIT_FAILURE);
1437        }
1438
1439        memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1440                           "hotplug-memory", hotplug_mem_size);
1441        memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1442                                    &pcms->hotplug_memory.mr);
1443    }
1444
1445    /* Initialize PC system firmware */
1446    pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1447
1448    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1449    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1450                           &error_fatal);
1451    vmstate_register_ram_global(option_rom_mr);
1452    memory_region_add_subregion_overlap(rom_memory,
1453                                        PC_ROM_MIN_VGA,
1454                                        option_rom_mr,
1455                                        1);
1456
1457    fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1458
1459    rom_set_fw(fw_cfg);
1460
1461    if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1462        uint64_t *val = g_malloc(sizeof(*val));
1463        PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1464        uint64_t res_mem_end = pcms->hotplug_memory.base;
1465
1466        if (!pcmc->broken_reserved_end) {
1467            res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1468        }
1469        *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1470        fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1471    }
1472
1473    if (linux_boot) {
1474        load_linux(pcms, fw_cfg);
1475    }
1476
1477    for (i = 0; i < nb_option_roms; i++) {
1478        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1479    }
1480    pcms->fw_cfg = fw_cfg;
1481
1482    /* Init default IOAPIC address space */
1483    pcms->ioapic_as = &address_space_memory;
1484}
1485
1486qemu_irq pc_allocate_cpu_irq(void)
1487{
1488    return qemu_allocate_irq(pic_irq_request, NULL, 0);
1489}
1490
1491DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1492{
1493    DeviceState *dev = NULL;
1494
1495    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1496    if (pci_bus) {
1497        PCIDevice *pcidev = pci_vga_init(pci_bus);
1498        dev = pcidev ? &pcidev->qdev : NULL;
1499    } else if (isa_bus) {
1500        ISADevice *isadev = isa_vga_init(isa_bus);
1501        dev = isadev ? DEVICE(isadev) : NULL;
1502    }
1503    rom_reset_order_override();
1504    return dev;
1505}
1506
1507static const MemoryRegionOps ioport80_io_ops = {
1508    .write = ioport80_write,
1509    .read = ioport80_read,
1510    .endianness = DEVICE_NATIVE_ENDIAN,
1511    .impl = {
1512        .min_access_size = 1,
1513        .max_access_size = 1,
1514    },
1515};
1516
1517static const MemoryRegionOps ioportF0_io_ops = {
1518    .write = ioportF0_write,
1519    .read = ioportF0_read,
1520    .endianness = DEVICE_NATIVE_ENDIAN,
1521    .impl = {
1522        .min_access_size = 1,
1523        .max_access_size = 1,
1524    },
1525};
1526
1527void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1528                          ISADevice **rtc_state,
1529                          bool create_fdctrl,
1530                          bool no_vmport,
1531                          bool has_pit,
1532                          uint32_t hpet_irqs)
1533{
1534    int i;
1535    DriveInfo *fd[MAX_FD];
1536    DeviceState *hpet = NULL;
1537    int pit_isa_irq = 0;
1538    qemu_irq pit_alt_irq = NULL;
1539    qemu_irq rtc_irq = NULL;
1540    qemu_irq *a20_line;
1541    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1542    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1543    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1544
1545    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1546    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1547
1548    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1549    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1550
1551    /*
1552     * Check if an HPET shall be created.
1553     *
1554     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1555     * when the HPET wants to take over. Thus we have to disable the latter.
1556     */
1557    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1558        /* In order to set property, here not using sysbus_try_create_simple */
1559        hpet = qdev_try_create(NULL, TYPE_HPET);
1560        if (hpet) {
1561            /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1562             * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1563             * IRQ8 and IRQ2.
1564             */
1565            uint8_t compat = object_property_get_int(OBJECT(hpet),
1566                    HPET_INTCAP, NULL);
1567            if (!compat) {
1568                qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1569            }
1570            qdev_init_nofail(hpet);
1571            sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1572
1573            for (i = 0; i < GSI_NUM_PINS; i++) {
1574                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1575            }
1576            pit_isa_irq = -1;
1577            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1578            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1579        }
1580    }
1581    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1582
1583    qemu_register_boot_set(pc_boot_set, *rtc_state);
1584
1585    if (!xen_enabled() && has_pit) {
1586        if (kvm_pit_in_kernel()) {
1587            pit = kvm_pit_init(isa_bus, 0x40);
1588        } else {
1589            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1590        }
1591        if (hpet) {
1592            /* connect PIT to output control line of the HPET */
1593            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1594        }
1595        pcspk_init(isa_bus, pit);
1596    }
1597
1598    serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1599    parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1600
1601    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1602    i8042 = isa_create_simple(isa_bus, "i8042");
1603    i8042_setup_a20_line(i8042, a20_line[0]);
1604    if (!no_vmport) {
1605        vmport_init(isa_bus);
1606        vmmouse = isa_try_create(isa_bus, "vmmouse");
1607    } else {
1608        vmmouse = NULL;
1609    }
1610    if (vmmouse) {
1611        DeviceState *dev = DEVICE(vmmouse);
1612        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1613        qdev_init_nofail(dev);
1614    }
1615    port92 = isa_create_simple(isa_bus, "port92");
1616    port92_init(port92, a20_line[1]);
1617    g_free(a20_line);
1618
1619    DMA_init(isa_bus, 0);
1620
1621    for(i = 0; i < MAX_FD; i++) {
1622        fd[i] = drive_get(IF_FLOPPY, 0, i);
1623        create_fdctrl |= !!fd[i];
1624    }
1625    if (create_fdctrl) {
1626        fdctrl_init_isa(isa_bus, fd);
1627    }
1628}
1629
1630void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1631{
1632    int i;
1633
1634    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1635    for (i = 0; i < nb_nics; i++) {
1636        NICInfo *nd = &nd_table[i];
1637
1638        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1639            pc_init_ne2k_isa(isa_bus, nd);
1640        } else {
1641            pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1642        }
1643    }
1644    rom_reset_order_override();
1645}
1646
1647void pc_pci_device_init(PCIBus *pci_bus)
1648{
1649    int max_bus;
1650    int bus;
1651
1652    /* Note: if=scsi is deprecated with PC machine types */
1653    max_bus = drive_get_max_bus(IF_SCSI);
1654    for (bus = 0; bus <= max_bus; bus++) {
1655        pci_create_simple(pci_bus, -1, "lsi53c895a");
1656        /*
1657         * By not creating frontends here, we make
1658         * scsi_legacy_handle_cmdline() create them, and warn that
1659         * this usage is deprecated.
1660         */
1661    }
1662}
1663
1664void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1665{
1666    DeviceState *dev;
1667    SysBusDevice *d;
1668    unsigned int i;
1669
1670    if (kvm_ioapic_in_kernel()) {
1671        dev = qdev_create(NULL, "kvm-ioapic");
1672    } else {
1673        dev = qdev_create(NULL, "ioapic");
1674    }
1675    if (parent_name) {
1676        object_property_add_child(object_resolve_path(parent_name, NULL),
1677                                  "ioapic", OBJECT(dev), NULL);
1678    }
1679    qdev_init_nofail(dev);
1680    d = SYS_BUS_DEVICE(dev);
1681    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1682
1683    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1684        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1685    }
1686}
1687
1688static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1689                         DeviceState *dev, Error **errp)
1690{
1691    HotplugHandlerClass *hhc;
1692    Error *local_err = NULL;
1693    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1694    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1695    PCDIMMDevice *dimm = PC_DIMM(dev);
1696    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1697    MemoryRegion *mr = ddc->get_memory_region(dimm);
1698    uint64_t align = TARGET_PAGE_SIZE;
1699
1700    if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1701        align = memory_region_get_alignment(mr);
1702    }
1703
1704    if (!pcms->acpi_dev) {
1705        error_setg(&local_err,
1706                   "memory hotplug is not enabled: missing acpi device");
1707        goto out;
1708    }
1709
1710    pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1711    if (local_err) {
1712        goto out;
1713    }
1714
1715    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1716        if (!pcms->acpi_nvdimm_state.is_enabled) {
1717            error_setg(&local_err,
1718                       "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1719            goto out;
1720        }
1721        nvdimm_plug(&pcms->acpi_nvdimm_state);
1722    }
1723
1724    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1725    hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1726out:
1727    error_propagate(errp, local_err);
1728}
1729
1730static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1731                                   DeviceState *dev, Error **errp)
1732{
1733    HotplugHandlerClass *hhc;
1734    Error *local_err = NULL;
1735    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1736
1737    if (!pcms->acpi_dev) {
1738        error_setg(&local_err,
1739                   "memory hotplug is not enabled: missing acpi device");
1740        goto out;
1741    }
1742
1743    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1744        error_setg(&local_err,
1745                   "nvdimm device hot unplug is not supported yet.");
1746        goto out;
1747    }
1748
1749    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1750    hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1751
1752out:
1753    error_propagate(errp, local_err);
1754}
1755
1756static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1757                           DeviceState *dev, Error **errp)
1758{
1759    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1760    PCDIMMDevice *dimm = PC_DIMM(dev);
1761    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1762    MemoryRegion *mr = ddc->get_memory_region(dimm);
1763    HotplugHandlerClass *hhc;
1764    Error *local_err = NULL;
1765
1766    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1767    hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1768
1769    if (local_err) {
1770        goto out;
1771    }
1772
1773    pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1774    object_unparent(OBJECT(dev));
1775
1776 out:
1777    error_propagate(errp, local_err);
1778}
1779
1780static int pc_apic_cmp(const void *a, const void *b)
1781{
1782   CPUArchId *apic_a = (CPUArchId *)a;
1783   CPUArchId *apic_b = (CPUArchId *)b;
1784
1785   return apic_a->arch_id - apic_b->arch_id;
1786}
1787
1788/* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1789 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1790 * entry corresponding to CPU's apic_id returns NULL.
1791 */
1792static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1793{
1794    CPUArchId apic_id, *found_cpu;
1795
1796    apic_id.arch_id = id;
1797    found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1798        ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1799        pc_apic_cmp);
1800    if (found_cpu && idx) {
1801        *idx = found_cpu - ms->possible_cpus->cpus;
1802    }
1803    return found_cpu;
1804}
1805
1806static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1807                        DeviceState *dev, Error **errp)
1808{
1809    CPUArchId *found_cpu;
1810    HotplugHandlerClass *hhc;
1811    Error *local_err = NULL;
1812    X86CPU *cpu = X86_CPU(dev);
1813    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1814
1815    if (pcms->acpi_dev) {
1816        hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1817        hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1818        if (local_err) {
1819            goto out;
1820        }
1821    }
1822
1823    /* increment the number of CPUs */
1824    pcms->boot_cpus++;
1825    if (pcms->rtc) {
1826        rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1827    }
1828    if (pcms->fw_cfg) {
1829        fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1830    }
1831
1832    found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1833    found_cpu->cpu = OBJECT(dev);
1834out:
1835    error_propagate(errp, local_err);
1836}
1837static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1838                                     DeviceState *dev, Error **errp)
1839{
1840    int idx = -1;
1841    HotplugHandlerClass *hhc;
1842    Error *local_err = NULL;
1843    X86CPU *cpu = X86_CPU(dev);
1844    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1845
1846    pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1847    assert(idx != -1);
1848    if (idx == 0) {
1849        error_setg(&local_err, "Boot CPU is unpluggable");
1850        goto out;
1851    }
1852
1853    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1854    hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1855
1856    if (local_err) {
1857        goto out;
1858    }
1859
1860 out:
1861    error_propagate(errp, local_err);
1862
1863}
1864
1865static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1866                             DeviceState *dev, Error **errp)
1867{
1868    CPUArchId *found_cpu;
1869    HotplugHandlerClass *hhc;
1870    Error *local_err = NULL;
1871    X86CPU *cpu = X86_CPU(dev);
1872    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1873
1874    hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1875    hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1876
1877    if (local_err) {
1878        goto out;
1879    }
1880
1881    found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1882    found_cpu->cpu = NULL;
1883    object_unparent(OBJECT(dev));
1884
1885    /* decrement the number of CPUs */
1886    pcms->boot_cpus--;
1887    /* Update the number of CPUs in CMOS */
1888    rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1889    fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1890 out:
1891    error_propagate(errp, local_err);
1892}
1893
1894static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1895                            DeviceState *dev, Error **errp)
1896{
1897    int idx;
1898    CPUState *cs;
1899    CPUArchId *cpu_slot;
1900    X86CPUTopoInfo topo;
1901    X86CPU *cpu = X86_CPU(dev);
1902    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1903
1904    /* if APIC ID is not set, set it based on socket/core/thread properties */
1905    if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1906        int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1907
1908        if (cpu->socket_id < 0) {
1909            error_setg(errp, "CPU socket-id is not set");
1910            return;
1911        } else if (cpu->socket_id > max_socket) {
1912            error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1913                       cpu->socket_id, max_socket);
1914            return;
1915        }
1916        if (cpu->core_id < 0) {
1917            error_setg(errp, "CPU core-id is not set");
1918            return;
1919        } else if (cpu->core_id > (smp_cores - 1)) {
1920            error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1921                       cpu->core_id, smp_cores - 1);
1922            return;
1923        }
1924        if (cpu->thread_id < 0) {
1925            error_setg(errp, "CPU thread-id is not set");
1926            return;
1927        } else if (cpu->thread_id > (smp_threads - 1)) {
1928            error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1929                       cpu->thread_id, smp_threads - 1);
1930            return;
1931        }
1932
1933        topo.pkg_id = cpu->socket_id;
1934        topo.core_id = cpu->core_id;
1935        topo.smt_id = cpu->thread_id;
1936        cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1937    }
1938
1939    cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1940    if (!cpu_slot) {
1941        MachineState *ms = MACHINE(pcms);
1942
1943        x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1944        error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1945                  " APIC ID %" PRIu32 ", valid index range 0:%d",
1946                   topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1947                   ms->possible_cpus->len - 1);
1948        return;
1949    }
1950
1951    if (cpu_slot->cpu) {
1952        error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1953                   idx, cpu->apic_id);
1954        return;
1955    }
1956
1957    /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1958     * so that machine_query_hotpluggable_cpus would show correct values
1959     */
1960    /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1961     * once -smp refactoring is complete and there will be CPU private
1962     * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1963    x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1964    if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1965        error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1966            " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1967        return;
1968    }
1969    cpu->socket_id = topo.pkg_id;
1970
1971    if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1972        error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1973            " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1974        return;
1975    }
1976    cpu->core_id = topo.core_id;
1977
1978    if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1979        error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1980            " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1981        return;
1982    }
1983    cpu->thread_id = topo.smt_id;
1984
1985    cs = CPU(cpu);
1986    cs->cpu_index = idx;
1987}
1988
1989static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1990                                          DeviceState *dev, Error **errp)
1991{
1992    if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1993        pc_cpu_pre_plug(hotplug_dev, dev, errp);
1994    }
1995}
1996
1997static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1998                                      DeviceState *dev, Error **errp)
1999{
2000    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2001        pc_dimm_plug(hotplug_dev, dev, errp);
2002    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2003        pc_cpu_plug(hotplug_dev, dev, errp);
2004    }
2005}
2006
2007static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2008                                                DeviceState *dev, Error **errp)
2009{
2010    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2011        pc_dimm_unplug_request(hotplug_dev, dev, errp);
2012    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2013        pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2014    } else {
2015        error_setg(errp, "acpi: device unplug request for not supported device"
2016                   " type: %s", object_get_typename(OBJECT(dev)));
2017    }
2018}
2019
2020static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2021                                        DeviceState *dev, Error **errp)
2022{
2023    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2024        pc_dimm_unplug(hotplug_dev, dev, errp);
2025    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2026        pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2027    } else {
2028        error_setg(errp, "acpi: device unplug for not supported device"
2029                   " type: %s", object_get_typename(OBJECT(dev)));
2030    }
2031}
2032
2033static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2034                                             DeviceState *dev)
2035{
2036    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2037
2038    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2039        object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2040        return HOTPLUG_HANDLER(machine);
2041    }
2042
2043    return pcmc->get_hotplug_handler ?
2044        pcmc->get_hotplug_handler(machine, dev) : NULL;
2045}
2046
2047static void
2048pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2049                                          const char *name, void *opaque,
2050                                          Error **errp)
2051{
2052    PCMachineState *pcms = PC_MACHINE(obj);
2053    int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2054
2055    visit_type_int(v, name, &value, errp);
2056}
2057
2058static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2059                                            const char *name, void *opaque,
2060                                            Error **errp)
2061{
2062    PCMachineState *pcms = PC_MACHINE(obj);
2063    uint64_t value = pcms->max_ram_below_4g;
2064
2065    visit_type_size(v, name, &value, errp);
2066}
2067
2068static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2069                                            const char *name, void *opaque,
2070                                            Error **errp)
2071{
2072    PCMachineState *pcms = PC_MACHINE(obj);
2073    Error *error = NULL;
2074    uint64_t value;
2075
2076    visit_type_size(v, name, &value, &error);
2077    if (error) {
2078        error_propagate(errp, error);
2079        return;
2080    }
2081    if (value > (1ULL << 32)) {
2082        error_setg(&error,
2083                   "Machine option 'max-ram-below-4g=%"PRIu64
2084                   "' expects size less than or equal to 4G", value);
2085        error_propagate(errp, error);
2086        return;
2087    }
2088
2089    if (value < (1ULL << 20)) {
2090        error_report("Warning: small max_ram_below_4g(%"PRIu64
2091                     ") less than 1M.  BIOS may not work..",
2092                     value);
2093    }
2094
2095    pcms->max_ram_below_4g = value;
2096}
2097
2098static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2099                                  void *opaque, Error **errp)
2100{
2101    PCMachineState *pcms = PC_MACHINE(obj);
2102    OnOffAuto vmport = pcms->vmport;
2103
2104    visit_type_OnOffAuto(v, name, &vmport, errp);
2105}
2106
2107static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2108                                  void *opaque, Error **errp)
2109{
2110    PCMachineState *pcms = PC_MACHINE(obj);
2111
2112    visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2113}
2114
2115bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2116{
2117    bool smm_available = false;
2118
2119    if (pcms->smm == ON_OFF_AUTO_OFF) {
2120        return false;
2121    }
2122
2123    if (tcg_enabled() || qtest_enabled()) {
2124        smm_available = true;
2125    } else if (kvm_enabled()) {
2126        smm_available = kvm_has_smm();
2127    }
2128
2129    if (smm_available) {
2130        return true;
2131    }
2132
2133    if (pcms->smm == ON_OFF_AUTO_ON) {
2134        error_report("System Management Mode not supported by this hypervisor.");
2135        exit(1);
2136    }
2137    return false;
2138}
2139
2140static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2141                               void *opaque, Error **errp)
2142{
2143    PCMachineState *pcms = PC_MACHINE(obj);
2144    OnOffAuto smm = pcms->smm;
2145
2146    visit_type_OnOffAuto(v, name, &smm, errp);
2147}
2148
2149static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2150                               void *opaque, Error **errp)
2151{
2152    PCMachineState *pcms = PC_MACHINE(obj);
2153
2154    visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2155}
2156
2157static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2158{
2159    PCMachineState *pcms = PC_MACHINE(obj);
2160
2161    return pcms->acpi_nvdimm_state.is_enabled;
2162}
2163
2164static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2165{
2166    PCMachineState *pcms = PC_MACHINE(obj);
2167
2168    pcms->acpi_nvdimm_state.is_enabled = value;
2169}
2170
2171static bool pc_machine_get_smbus(Object *obj, Error **errp)
2172{
2173    PCMachineState *pcms = PC_MACHINE(obj);
2174
2175    return pcms->smbus;
2176}
2177
2178static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2179{
2180    PCMachineState *pcms = PC_MACHINE(obj);
2181
2182    pcms->smbus = value;
2183}
2184
2185static bool pc_machine_get_sata(Object *obj, Error **errp)
2186{
2187    PCMachineState *pcms = PC_MACHINE(obj);
2188
2189    return pcms->sata;
2190}
2191
2192static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2193{
2194    PCMachineState *pcms = PC_MACHINE(obj);
2195
2196    pcms->sata = value;
2197}
2198
2199static bool pc_machine_get_pit(Object *obj, Error **errp)
2200{
2201    PCMachineState *pcms = PC_MACHINE(obj);
2202
2203    return pcms->pit;
2204}
2205
2206static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2207{
2208    PCMachineState *pcms = PC_MACHINE(obj);
2209
2210    pcms->pit = value;
2211}
2212
2213static void pc_machine_initfn(Object *obj)
2214{
2215    PCMachineState *pcms = PC_MACHINE(obj);
2216
2217    pcms->max_ram_below_4g = 0; /* use default */
2218    pcms->smm = ON_OFF_AUTO_AUTO;
2219    pcms->vmport = ON_OFF_AUTO_AUTO;
2220    /* nvdimm is disabled on default. */
2221    pcms->acpi_nvdimm_state.is_enabled = false;
2222    /* acpi build is enabled by default if machine supports it */
2223    pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2224    pcms->smbus = true;
2225    pcms->sata = true;
2226    pcms->pit = true;
2227}
2228
2229static void pc_machine_reset(void)
2230{
2231    CPUState *cs;
2232    X86CPU *cpu;
2233
2234    qemu_devices_reset();
2235
2236    /* Reset APIC after devices have been reset to cancel
2237     * any changes that qemu_devices_reset() might have done.
2238     */
2239    CPU_FOREACH(cs) {
2240        cpu = X86_CPU(cs);
2241
2242        if (cpu->apic_state) {
2243            device_reset(cpu->apic_state);
2244        }
2245    }
2246}
2247
2248static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2249{
2250    X86CPUTopoInfo topo;
2251    x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2252                          &topo);
2253    return topo.pkg_id;
2254}
2255
2256static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2257{
2258    int i;
2259
2260    if (ms->possible_cpus) {
2261        /*
2262         * make sure that max_cpus hasn't changed since the first use, i.e.
2263         * -smp hasn't been parsed after it
2264        */
2265        assert(ms->possible_cpus->len == max_cpus);
2266        return ms->possible_cpus;
2267    }
2268
2269    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2270                                  sizeof(CPUArchId) * max_cpus);
2271    ms->possible_cpus->len = max_cpus;
2272    for (i = 0; i < ms->possible_cpus->len; i++) {
2273        X86CPUTopoInfo topo;
2274
2275        ms->possible_cpus->cpus[i].vcpus_count = 1;
2276        ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2277        x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2278                                 smp_cores, smp_threads, &topo);
2279        ms->possible_cpus->cpus[i].props.has_socket_id = true;
2280        ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2281        ms->possible_cpus->cpus[i].props.has_core_id = true;
2282        ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2283        ms->possible_cpus->cpus[i].props.has_thread_id = true;
2284        ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2285    }
2286    return ms->possible_cpus;
2287}
2288
2289static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2290{
2291    /* cpu index isn't used */
2292    CPUState *cs;
2293
2294    CPU_FOREACH(cs) {
2295        X86CPU *cpu = X86_CPU(cs);
2296
2297        if (!cpu->apic_state) {
2298            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2299        } else {
2300            apic_deliver_nmi(cpu->apic_state);
2301        }
2302    }
2303}
2304
2305static void pc_machine_class_init(ObjectClass *oc, void *data)
2306{
2307    MachineClass *mc = MACHINE_CLASS(oc);
2308    PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2309    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2310    NMIClass *nc = NMI_CLASS(oc);
2311
2312    pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2313    pcmc->pci_enabled = true;
2314    pcmc->has_acpi_build = true;
2315    pcmc->rsdp_in_ram = true;
2316    pcmc->smbios_defaults = true;
2317    pcmc->smbios_uuid_encoded = true;
2318    pcmc->gigabyte_align = true;
2319    pcmc->has_reserved_memory = true;
2320    pcmc->kvmclock_enabled = true;
2321    pcmc->enforce_aligned_dimm = true;
2322    /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2323     * to be used at the moment, 32K should be enough for a while.  */
2324    pcmc->acpi_data_size = 0x20000 + 0x8000;
2325    pcmc->save_tsc_khz = true;
2326    mc->get_hotplug_handler = pc_get_hotpug_handler;
2327    mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2328    mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2329    mc->has_hotpluggable_cpus = true;
2330    mc->default_boot_order = "cad";
2331    mc->hot_add_cpu = pc_hot_add_cpu;
2332    mc->block_default_type = IF_IDE;
2333    mc->max_cpus = 255;
2334    mc->reset = pc_machine_reset;
2335    hc->pre_plug = pc_machine_device_pre_plug_cb;
2336    hc->plug = pc_machine_device_plug_cb;
2337    hc->unplug_request = pc_machine_device_unplug_request_cb;
2338    hc->unplug = pc_machine_device_unplug_cb;
2339    nc->nmi_monitor_handler = x86_nmi;
2340
2341    object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2342        pc_machine_get_hotplug_memory_region_size, NULL,
2343        NULL, NULL, &error_abort);
2344
2345    object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2346        pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2347        NULL, NULL, &error_abort);
2348
2349    object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2350        "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2351
2352    object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2353        pc_machine_get_smm, pc_machine_set_smm,
2354        NULL, NULL, &error_abort);
2355    object_class_property_set_description(oc, PC_MACHINE_SMM,
2356        "Enable SMM (pc & q35)", &error_abort);
2357
2358    object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2359        pc_machine_get_vmport, pc_machine_set_vmport,
2360        NULL, NULL, &error_abort);
2361    object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2362        "Enable vmport (pc & q35)", &error_abort);
2363
2364    object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2365        pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2366
2367    object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2368        pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2369
2370    object_class_property_add_bool(oc, PC_MACHINE_SATA,
2371        pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2372
2373    object_class_property_add_bool(oc, PC_MACHINE_PIT,
2374        pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2375}
2376
2377static const TypeInfo pc_machine_info = {
2378    .name = TYPE_PC_MACHINE,
2379    .parent = TYPE_MACHINE,
2380    .abstract = true,
2381    .instance_size = sizeof(PCMachineState),
2382    .instance_init = pc_machine_initfn,
2383    .class_size = sizeof(PCMachineClass),
2384    .class_init = pc_machine_class_init,
2385    .interfaces = (InterfaceInfo[]) {
2386         { TYPE_HOTPLUG_HANDLER },
2387         { TYPE_NMI },
2388         { }
2389    },
2390};
2391
2392static void pc_machine_register_types(void)
2393{
2394    type_register_static(&pc_machine_info);
2395}
2396
2397type_init(pc_machine_register_types)
2398