qemu/exec.c
<<
>>
Prefs
   1/*
   2 *  Virtual page mapping
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "qapi/error.h"
  21
  22#include "qemu/cutils.h"
  23#include "cpu.h"
  24#include "exec/exec-all.h"
  25#include "exec/target_page.h"
  26#include "tcg.h"
  27#include "hw/qdev-core.h"
  28#include "hw/qdev-properties.h"
  29#if !defined(CONFIG_USER_ONLY)
  30#include "hw/boards.h"
  31#include "hw/xen/xen.h"
  32#endif
  33#include "sysemu/kvm.h"
  34#include "sysemu/sysemu.h"
  35#include "qemu/timer.h"
  36#include "qemu/config-file.h"
  37#include "qemu/error-report.h"
  38#if defined(CONFIG_USER_ONLY)
  39#include "qemu.h"
  40#else /* !CONFIG_USER_ONLY */
  41#include "hw/hw.h"
  42#include "exec/memory.h"
  43#include "exec/ioport.h"
  44#include "sysemu/dma.h"
  45#include "sysemu/numa.h"
  46#include "sysemu/hw_accel.h"
  47#include "exec/address-spaces.h"
  48#include "sysemu/xen-mapcache.h"
  49#include "trace-root.h"
  50
  51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  52#include <linux/falloc.h>
  53#endif
  54
  55#endif
  56#include "qemu/rcu_queue.h"
  57#include "qemu/main-loop.h"
  58#include "translate-all.h"
  59#include "sysemu/replay.h"
  60
  61#include "exec/memory-internal.h"
  62#include "exec/ram_addr.h"
  63#include "exec/log.h"
  64
  65#include "migration/vmstate.h"
  66
  67#include "qemu/range.h"
  68#ifndef _WIN32
  69#include "qemu/mmap-alloc.h"
  70#endif
  71
  72#include "monitor/monitor.h"
  73
  74//#define DEBUG_SUBPAGE
  75
  76#if !defined(CONFIG_USER_ONLY)
  77/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  78 * are protected by the ramlist lock.
  79 */
  80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  81
  82static MemoryRegion *system_memory;
  83static MemoryRegion *system_io;
  84
  85AddressSpace address_space_io;
  86AddressSpace address_space_memory;
  87
  88MemoryRegion io_mem_rom, io_mem_notdirty;
  89static MemoryRegion io_mem_unassigned;
  90
  91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
  92#define RAM_PREALLOC   (1 << 0)
  93
  94/* RAM is mmap-ed with MAP_SHARED */
  95#define RAM_SHARED     (1 << 1)
  96
  97/* Only a portion of RAM (used_length) is actually used, and migrated.
  98 * This used_length size can change across reboots.
  99 */
 100#define RAM_RESIZEABLE (1 << 2)
 101
 102/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 103 * zero the page and wake waiting processes.
 104 * (Set during postcopy)
 105 */
 106#define RAM_UF_ZEROPAGE (1 << 3)
 107
 108/* RAM can be migrated */
 109#define RAM_MIGRATABLE (1 << 4)
 110#endif
 111
 112#ifdef TARGET_PAGE_BITS_VARY
 113int target_page_bits;
 114bool target_page_bits_decided;
 115#endif
 116
 117struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
 118/* current CPU in the current thread. It is only valid inside
 119   cpu_exec() */
 120__thread CPUState *current_cpu;
 121/* 0 = Do not count executed instructions.
 122   1 = Precise instruction counting.
 123   2 = Adaptive rate instruction counting.  */
 124int use_icount;
 125
 126uintptr_t qemu_host_page_size;
 127intptr_t qemu_host_page_mask;
 128
 129bool set_preferred_target_page_bits(int bits)
 130{
 131    /* The target page size is the lowest common denominator for all
 132     * the CPUs in the system, so we can only make it smaller, never
 133     * larger. And we can't make it smaller once we've committed to
 134     * a particular size.
 135     */
 136#ifdef TARGET_PAGE_BITS_VARY
 137    assert(bits >= TARGET_PAGE_BITS_MIN);
 138    if (target_page_bits == 0 || target_page_bits > bits) {
 139        if (target_page_bits_decided) {
 140            return false;
 141        }
 142        target_page_bits = bits;
 143    }
 144#endif
 145    return true;
 146}
 147
 148#if !defined(CONFIG_USER_ONLY)
 149
 150static void finalize_target_page_bits(void)
 151{
 152#ifdef TARGET_PAGE_BITS_VARY
 153    if (target_page_bits == 0) {
 154        target_page_bits = TARGET_PAGE_BITS_MIN;
 155    }
 156    target_page_bits_decided = true;
 157#endif
 158}
 159
 160typedef struct PhysPageEntry PhysPageEntry;
 161
 162struct PhysPageEntry {
 163    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 164    uint32_t skip : 6;
 165     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 166    uint32_t ptr : 26;
 167};
 168
 169#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 170
 171/* Size of the L2 (and L3, etc) page tables.  */
 172#define ADDR_SPACE_BITS 64
 173
 174#define P_L2_BITS 9
 175#define P_L2_SIZE (1 << P_L2_BITS)
 176
 177#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 178
 179typedef PhysPageEntry Node[P_L2_SIZE];
 180
 181typedef struct PhysPageMap {
 182    struct rcu_head rcu;
 183
 184    unsigned sections_nb;
 185    unsigned sections_nb_alloc;
 186    unsigned nodes_nb;
 187    unsigned nodes_nb_alloc;
 188    Node *nodes;
 189    MemoryRegionSection *sections;
 190} PhysPageMap;
 191
 192struct AddressSpaceDispatch {
 193    MemoryRegionSection *mru_section;
 194    /* This is a multi-level map on the physical address space.
 195     * The bottom level has pointers to MemoryRegionSections.
 196     */
 197    PhysPageEntry phys_map;
 198    PhysPageMap map;
 199};
 200
 201#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 202typedef struct subpage_t {
 203    MemoryRegion iomem;
 204    FlatView *fv;
 205    hwaddr base;
 206    uint16_t sub_section[];
 207} subpage_t;
 208
 209#define PHYS_SECTION_UNASSIGNED 0
 210#define PHYS_SECTION_NOTDIRTY 1
 211#define PHYS_SECTION_ROM 2
 212#define PHYS_SECTION_WATCH 3
 213
 214static void io_mem_init(void);
 215static void memory_map_init(void);
 216static void tcg_commit(MemoryListener *listener);
 217
 218static MemoryRegion io_mem_watch;
 219
 220/**
 221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 222 * @cpu: the CPU whose AddressSpace this is
 223 * @as: the AddressSpace itself
 224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 226 */
 227struct CPUAddressSpace {
 228    CPUState *cpu;
 229    AddressSpace *as;
 230    struct AddressSpaceDispatch *memory_dispatch;
 231    MemoryListener tcg_as_listener;
 232};
 233
 234struct DirtyBitmapSnapshot {
 235    ram_addr_t start;
 236    ram_addr_t end;
 237    unsigned long dirty[];
 238};
 239
 240#endif
 241
 242#if !defined(CONFIG_USER_ONLY)
 243
 244static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 245{
 246    static unsigned alloc_hint = 16;
 247    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 248        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
 249        map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
 250        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 251        alloc_hint = map->nodes_nb_alloc;
 252    }
 253}
 254
 255static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 256{
 257    unsigned i;
 258    uint32_t ret;
 259    PhysPageEntry e;
 260    PhysPageEntry *p;
 261
 262    ret = map->nodes_nb++;
 263    p = map->nodes[ret];
 264    assert(ret != PHYS_MAP_NODE_NIL);
 265    assert(ret != map->nodes_nb_alloc);
 266
 267    e.skip = leaf ? 0 : 1;
 268    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 269    for (i = 0; i < P_L2_SIZE; ++i) {
 270        memcpy(&p[i], &e, sizeof(e));
 271    }
 272    return ret;
 273}
 274
 275static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 276                                hwaddr *index, hwaddr *nb, uint16_t leaf,
 277                                int level)
 278{
 279    PhysPageEntry *p;
 280    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 281
 282    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 283        lp->ptr = phys_map_node_alloc(map, level == 0);
 284    }
 285    p = map->nodes[lp->ptr];
 286    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 287
 288    while (*nb && lp < &p[P_L2_SIZE]) {
 289        if ((*index & (step - 1)) == 0 && *nb >= step) {
 290            lp->skip = 0;
 291            lp->ptr = leaf;
 292            *index += step;
 293            *nb -= step;
 294        } else {
 295            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 296        }
 297        ++lp;
 298    }
 299}
 300
 301static void phys_page_set(AddressSpaceDispatch *d,
 302                          hwaddr index, hwaddr nb,
 303                          uint16_t leaf)
 304{
 305    /* Wildly overreserve - it doesn't matter much. */
 306    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 307
 308    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 309}
 310
 311/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 312 * and update our entry so we can skip it and go directly to the destination.
 313 */
 314static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 315{
 316    unsigned valid_ptr = P_L2_SIZE;
 317    int valid = 0;
 318    PhysPageEntry *p;
 319    int i;
 320
 321    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 322        return;
 323    }
 324
 325    p = nodes[lp->ptr];
 326    for (i = 0; i < P_L2_SIZE; i++) {
 327        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 328            continue;
 329        }
 330
 331        valid_ptr = i;
 332        valid++;
 333        if (p[i].skip) {
 334            phys_page_compact(&p[i], nodes);
 335        }
 336    }
 337
 338    /* We can only compress if there's only one child. */
 339    if (valid != 1) {
 340        return;
 341    }
 342
 343    assert(valid_ptr < P_L2_SIZE);
 344
 345    /* Don't compress if it won't fit in the # of bits we have. */
 346    if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
 347        return;
 348    }
 349
 350    lp->ptr = p[valid_ptr].ptr;
 351    if (!p[valid_ptr].skip) {
 352        /* If our only child is a leaf, make this a leaf. */
 353        /* By design, we should have made this node a leaf to begin with so we
 354         * should never reach here.
 355         * But since it's so simple to handle this, let's do it just in case we
 356         * change this rule.
 357         */
 358        lp->skip = 0;
 359    } else {
 360        lp->skip += p[valid_ptr].skip;
 361    }
 362}
 363
 364void address_space_dispatch_compact(AddressSpaceDispatch *d)
 365{
 366    if (d->phys_map.skip) {
 367        phys_page_compact(&d->phys_map, d->map.nodes);
 368    }
 369}
 370
 371static inline bool section_covers_addr(const MemoryRegionSection *section,
 372                                       hwaddr addr)
 373{
 374    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 375     * the section must cover the entire address space.
 376     */
 377    return int128_gethi(section->size) ||
 378           range_covers_byte(section->offset_within_address_space,
 379                             int128_getlo(section->size), addr);
 380}
 381
 382static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 383{
 384    PhysPageEntry lp = d->phys_map, *p;
 385    Node *nodes = d->map.nodes;
 386    MemoryRegionSection *sections = d->map.sections;
 387    hwaddr index = addr >> TARGET_PAGE_BITS;
 388    int i;
 389
 390    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 391        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 392            return &sections[PHYS_SECTION_UNASSIGNED];
 393        }
 394        p = nodes[lp.ptr];
 395        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 396    }
 397
 398    if (section_covers_addr(&sections[lp.ptr], addr)) {
 399        return &sections[lp.ptr];
 400    } else {
 401        return &sections[PHYS_SECTION_UNASSIGNED];
 402    }
 403}
 404
 405bool memory_region_is_unassigned(MemoryRegion *mr)
 406{
 407    return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
 408        && mr != &io_mem_watch;
 409}
 410
 411/* Called from RCU critical section */
 412static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 413                                                        hwaddr addr,
 414                                                        bool resolve_subpage)
 415{
 416    MemoryRegionSection *section = atomic_read(&d->mru_section);
 417    subpage_t *subpage;
 418
 419    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 420        !section_covers_addr(section, addr)) {
 421        section = phys_page_find(d, addr);
 422        atomic_set(&d->mru_section, section);
 423    }
 424    if (resolve_subpage && section->mr->subpage) {
 425        subpage = container_of(section->mr, subpage_t, iomem);
 426        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 427    }
 428    return section;
 429}
 430
 431/* Called from RCU critical section */
 432static MemoryRegionSection *
 433address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 434                                 hwaddr *plen, bool resolve_subpage)
 435{
 436    MemoryRegionSection *section;
 437    MemoryRegion *mr;
 438    Int128 diff;
 439
 440    section = address_space_lookup_region(d, addr, resolve_subpage);
 441    /* Compute offset within MemoryRegionSection */
 442    addr -= section->offset_within_address_space;
 443
 444    /* Compute offset within MemoryRegion */
 445    *xlat = addr + section->offset_within_region;
 446
 447    mr = section->mr;
 448
 449    /* MMIO registers can be expected to perform full-width accesses based only
 450     * on their address, without considering adjacent registers that could
 451     * decode to completely different MemoryRegions.  When such registers
 452     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 453     * regions overlap wildly.  For this reason we cannot clamp the accesses
 454     * here.
 455     *
 456     * If the length is small (as is the case for address_space_ldl/stl),
 457     * everything works fine.  If the incoming length is large, however,
 458     * the caller really has to do the clamping through memory_access_size.
 459     */
 460    if (memory_region_is_ram(mr)) {
 461        diff = int128_sub(section->size, int128_make64(addr));
 462        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 463    }
 464    return section;
 465}
 466
 467/**
 468 * address_space_translate_iommu - translate an address through an IOMMU
 469 * memory region and then through the target address space.
 470 *
 471 * @iommu_mr: the IOMMU memory region that we start the translation from
 472 * @addr: the address to be translated through the MMU
 473 * @xlat: the translated address offset within the destination memory region.
 474 *        It cannot be %NULL.
 475 * @plen_out: valid read/write length of the translated address. It
 476 *            cannot be %NULL.
 477 * @page_mask_out: page mask for the translated address. This
 478 *            should only be meaningful for IOMMU translated
 479 *            addresses, since there may be huge pages that this bit
 480 *            would tell. It can be %NULL if we don't care about it.
 481 * @is_write: whether the translation operation is for write
 482 * @is_mmio: whether this can be MMIO, set true if it can
 483 * @target_as: the address space targeted by the IOMMU
 484 * @attrs: transaction attributes
 485 *
 486 * This function is called from RCU critical section.  It is the common
 487 * part of flatview_do_translate and address_space_translate_cached.
 488 */
 489static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 490                                                         hwaddr *xlat,
 491                                                         hwaddr *plen_out,
 492                                                         hwaddr *page_mask_out,
 493                                                         bool is_write,
 494                                                         bool is_mmio,
 495                                                         AddressSpace **target_as,
 496                                                         MemTxAttrs attrs)
 497{
 498    MemoryRegionSection *section;
 499    hwaddr page_mask = (hwaddr)-1;
 500
 501    do {
 502        hwaddr addr = *xlat;
 503        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 504        int iommu_idx = 0;
 505        IOMMUTLBEntry iotlb;
 506
 507        if (imrc->attrs_to_index) {
 508            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 509        }
 510
 511        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 512                                IOMMU_WO : IOMMU_RO, iommu_idx);
 513
 514        if (!(iotlb.perm & (1 << is_write))) {
 515            goto unassigned;
 516        }
 517
 518        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 519                | (addr & iotlb.addr_mask));
 520        page_mask &= iotlb.addr_mask;
 521        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 522        *target_as = iotlb.target_as;
 523
 524        section = address_space_translate_internal(
 525                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 526                plen_out, is_mmio);
 527
 528        iommu_mr = memory_region_get_iommu(section->mr);
 529    } while (unlikely(iommu_mr));
 530
 531    if (page_mask_out) {
 532        *page_mask_out = page_mask;
 533    }
 534    return *section;
 535
 536unassigned:
 537    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 538}
 539
 540/**
 541 * flatview_do_translate - translate an address in FlatView
 542 *
 543 * @fv: the flat view that we want to translate on
 544 * @addr: the address to be translated in above address space
 545 * @xlat: the translated address offset within memory region. It
 546 *        cannot be @NULL.
 547 * @plen_out: valid read/write length of the translated address. It
 548 *            can be @NULL when we don't care about it.
 549 * @page_mask_out: page mask for the translated address. This
 550 *            should only be meaningful for IOMMU translated
 551 *            addresses, since there may be huge pages that this bit
 552 *            would tell. It can be @NULL if we don't care about it.
 553 * @is_write: whether the translation operation is for write
 554 * @is_mmio: whether this can be MMIO, set true if it can
 555 * @target_as: the address space targeted by the IOMMU
 556 * @attrs: memory transaction attributes
 557 *
 558 * This function is called from RCU critical section
 559 */
 560static MemoryRegionSection flatview_do_translate(FlatView *fv,
 561                                                 hwaddr addr,
 562                                                 hwaddr *xlat,
 563                                                 hwaddr *plen_out,
 564                                                 hwaddr *page_mask_out,
 565                                                 bool is_write,
 566                                                 bool is_mmio,
 567                                                 AddressSpace **target_as,
 568                                                 MemTxAttrs attrs)
 569{
 570    MemoryRegionSection *section;
 571    IOMMUMemoryRegion *iommu_mr;
 572    hwaddr plen = (hwaddr)(-1);
 573
 574    if (!plen_out) {
 575        plen_out = &plen;
 576    }
 577
 578    section = address_space_translate_internal(
 579            flatview_to_dispatch(fv), addr, xlat,
 580            plen_out, is_mmio);
 581
 582    iommu_mr = memory_region_get_iommu(section->mr);
 583    if (unlikely(iommu_mr)) {
 584        return address_space_translate_iommu(iommu_mr, xlat,
 585                                             plen_out, page_mask_out,
 586                                             is_write, is_mmio,
 587                                             target_as, attrs);
 588    }
 589    if (page_mask_out) {
 590        /* Not behind an IOMMU, use default page size. */
 591        *page_mask_out = ~TARGET_PAGE_MASK;
 592    }
 593
 594    return *section;
 595}
 596
 597/* Called from RCU critical section */
 598IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 599                                            bool is_write, MemTxAttrs attrs)
 600{
 601    MemoryRegionSection section;
 602    hwaddr xlat, page_mask;
 603
 604    /*
 605     * This can never be MMIO, and we don't really care about plen,
 606     * but page mask.
 607     */
 608    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 609                                    NULL, &page_mask, is_write, false, &as,
 610                                    attrs);
 611
 612    /* Illegal translation */
 613    if (section.mr == &io_mem_unassigned) {
 614        goto iotlb_fail;
 615    }
 616
 617    /* Convert memory region offset into address space offset */
 618    xlat += section.offset_within_address_space -
 619        section.offset_within_region;
 620
 621    return (IOMMUTLBEntry) {
 622        .target_as = as,
 623        .iova = addr & ~page_mask,
 624        .translated_addr = xlat & ~page_mask,
 625        .addr_mask = page_mask,
 626        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 627        .perm = IOMMU_RW,
 628    };
 629
 630iotlb_fail:
 631    return (IOMMUTLBEntry) {0};
 632}
 633
 634/* Called from RCU critical section */
 635MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 636                                 hwaddr *plen, bool is_write,
 637                                 MemTxAttrs attrs)
 638{
 639    MemoryRegion *mr;
 640    MemoryRegionSection section;
 641    AddressSpace *as = NULL;
 642
 643    /* This can be MMIO, so setup MMIO bit. */
 644    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 645                                    is_write, true, &as, attrs);
 646    mr = section.mr;
 647
 648    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 649        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 650        *plen = MIN(page, *plen);
 651    }
 652
 653    return mr;
 654}
 655
 656typedef struct TCGIOMMUNotifier {
 657    IOMMUNotifier n;
 658    MemoryRegion *mr;
 659    CPUState *cpu;
 660    int iommu_idx;
 661    bool active;
 662} TCGIOMMUNotifier;
 663
 664static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 665{
 666    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 667
 668    if (!notifier->active) {
 669        return;
 670    }
 671    tlb_flush(notifier->cpu);
 672    notifier->active = false;
 673    /* We leave the notifier struct on the list to avoid reallocating it later.
 674     * Generally the number of IOMMUs a CPU deals with will be small.
 675     * In any case we can't unregister the iommu notifier from a notify
 676     * callback.
 677     */
 678}
 679
 680static void tcg_register_iommu_notifier(CPUState *cpu,
 681                                        IOMMUMemoryRegion *iommu_mr,
 682                                        int iommu_idx)
 683{
 684    /* Make sure this CPU has an IOMMU notifier registered for this
 685     * IOMMU/IOMMU index combination, so that we can flush its TLB
 686     * when the IOMMU tells us the mappings we've cached have changed.
 687     */
 688    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 689    TCGIOMMUNotifier *notifier;
 690    int i;
 691
 692    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 693        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
 694        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 695            break;
 696        }
 697    }
 698    if (i == cpu->iommu_notifiers->len) {
 699        /* Not found, add a new entry at the end of the array */
 700        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 701        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
 702
 703        notifier->mr = mr;
 704        notifier->iommu_idx = iommu_idx;
 705        notifier->cpu = cpu;
 706        /* Rather than trying to register interest in the specific part
 707         * of the iommu's address space that we've accessed and then
 708         * expand it later as subsequent accesses touch more of it, we
 709         * just register interest in the whole thing, on the assumption
 710         * that iommu reconfiguration will be rare.
 711         */
 712        iommu_notifier_init(&notifier->n,
 713                            tcg_iommu_unmap_notify,
 714                            IOMMU_NOTIFIER_UNMAP,
 715                            0,
 716                            HWADDR_MAX,
 717                            iommu_idx);
 718        memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
 719    }
 720
 721    if (!notifier->active) {
 722        notifier->active = true;
 723    }
 724}
 725
 726static void tcg_iommu_free_notifier_list(CPUState *cpu)
 727{
 728    /* Destroy the CPU's notifier list */
 729    int i;
 730    TCGIOMMUNotifier *notifier;
 731
 732    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 733        notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
 734        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 735    }
 736    g_array_free(cpu->iommu_notifiers, true);
 737}
 738
 739/* Called from RCU critical section */
 740MemoryRegionSection *
 741address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 742                                  hwaddr *xlat, hwaddr *plen,
 743                                  MemTxAttrs attrs, int *prot)
 744{
 745    MemoryRegionSection *section;
 746    IOMMUMemoryRegion *iommu_mr;
 747    IOMMUMemoryRegionClass *imrc;
 748    IOMMUTLBEntry iotlb;
 749    int iommu_idx;
 750    AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 751
 752    for (;;) {
 753        section = address_space_translate_internal(d, addr, &addr, plen, false);
 754
 755        iommu_mr = memory_region_get_iommu(section->mr);
 756        if (!iommu_mr) {
 757            break;
 758        }
 759
 760        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 761
 762        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 763        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 764        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 765         * doesn't short-cut its translation table walk.
 766         */
 767        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 768        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 769                | (addr & iotlb.addr_mask));
 770        /* Update the caller's prot bits to remove permissions the IOMMU
 771         * is giving us a failure response for. If we get down to no
 772         * permissions left at all we can give up now.
 773         */
 774        if (!(iotlb.perm & IOMMU_RO)) {
 775            *prot &= ~(PAGE_READ | PAGE_EXEC);
 776        }
 777        if (!(iotlb.perm & IOMMU_WO)) {
 778            *prot &= ~PAGE_WRITE;
 779        }
 780
 781        if (!*prot) {
 782            goto translate_fail;
 783        }
 784
 785        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 786    }
 787
 788    assert(!memory_region_is_iommu(section->mr));
 789    *xlat = addr;
 790    return section;
 791
 792translate_fail:
 793    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 794}
 795#endif
 796
 797#if !defined(CONFIG_USER_ONLY)
 798
 799static int cpu_common_post_load(void *opaque, int version_id)
 800{
 801    CPUState *cpu = opaque;
 802
 803    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 804       version_id is increased. */
 805    cpu->interrupt_request &= ~0x01;
 806    tlb_flush(cpu);
 807
 808    /* loadvm has just updated the content of RAM, bypassing the
 809     * usual mechanisms that ensure we flush TBs for writes to
 810     * memory we've translated code from. So we must flush all TBs,
 811     * which will now be stale.
 812     */
 813    tb_flush(cpu);
 814
 815    return 0;
 816}
 817
 818static int cpu_common_pre_load(void *opaque)
 819{
 820    CPUState *cpu = opaque;
 821
 822    cpu->exception_index = -1;
 823
 824    return 0;
 825}
 826
 827static bool cpu_common_exception_index_needed(void *opaque)
 828{
 829    CPUState *cpu = opaque;
 830
 831    return tcg_enabled() && cpu->exception_index != -1;
 832}
 833
 834static const VMStateDescription vmstate_cpu_common_exception_index = {
 835    .name = "cpu_common/exception_index",
 836    .version_id = 1,
 837    .minimum_version_id = 1,
 838    .needed = cpu_common_exception_index_needed,
 839    .fields = (VMStateField[]) {
 840        VMSTATE_INT32(exception_index, CPUState),
 841        VMSTATE_END_OF_LIST()
 842    }
 843};
 844
 845static bool cpu_common_crash_occurred_needed(void *opaque)
 846{
 847    CPUState *cpu = opaque;
 848
 849    return cpu->crash_occurred;
 850}
 851
 852static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 853    .name = "cpu_common/crash_occurred",
 854    .version_id = 1,
 855    .minimum_version_id = 1,
 856    .needed = cpu_common_crash_occurred_needed,
 857    .fields = (VMStateField[]) {
 858        VMSTATE_BOOL(crash_occurred, CPUState),
 859        VMSTATE_END_OF_LIST()
 860    }
 861};
 862
 863const VMStateDescription vmstate_cpu_common = {
 864    .name = "cpu_common",
 865    .version_id = 1,
 866    .minimum_version_id = 1,
 867    .pre_load = cpu_common_pre_load,
 868    .post_load = cpu_common_post_load,
 869    .fields = (VMStateField[]) {
 870        VMSTATE_UINT32(halted, CPUState),
 871        VMSTATE_UINT32(interrupt_request, CPUState),
 872        VMSTATE_END_OF_LIST()
 873    },
 874    .subsections = (const VMStateDescription*[]) {
 875        &vmstate_cpu_common_exception_index,
 876        &vmstate_cpu_common_crash_occurred,
 877        NULL
 878    }
 879};
 880
 881#endif
 882
 883CPUState *qemu_get_cpu(int index)
 884{
 885    CPUState *cpu;
 886
 887    CPU_FOREACH(cpu) {
 888        if (cpu->cpu_index == index) {
 889            return cpu;
 890        }
 891    }
 892
 893    return NULL;
 894}
 895
 896#if !defined(CONFIG_USER_ONLY)
 897void cpu_address_space_init(CPUState *cpu, int asidx,
 898                            const char *prefix, MemoryRegion *mr)
 899{
 900    CPUAddressSpace *newas;
 901    AddressSpace *as = g_new0(AddressSpace, 1);
 902    char *as_name;
 903
 904    assert(mr);
 905    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 906    address_space_init(as, mr, as_name);
 907    g_free(as_name);
 908
 909    /* Target code should have set num_ases before calling us */
 910    assert(asidx < cpu->num_ases);
 911
 912    if (asidx == 0) {
 913        /* address space 0 gets the convenience alias */
 914        cpu->as = as;
 915    }
 916
 917    /* KVM cannot currently support multiple address spaces. */
 918    assert(asidx == 0 || !kvm_enabled());
 919
 920    if (!cpu->cpu_ases) {
 921        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 922    }
 923
 924    newas = &cpu->cpu_ases[asidx];
 925    newas->cpu = cpu;
 926    newas->as = as;
 927    if (tcg_enabled()) {
 928        newas->tcg_as_listener.commit = tcg_commit;
 929        memory_listener_register(&newas->tcg_as_listener, as);
 930    }
 931}
 932
 933AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 934{
 935    /* Return the AddressSpace corresponding to the specified index */
 936    return cpu->cpu_ases[asidx].as;
 937}
 938#endif
 939
 940void cpu_exec_unrealizefn(CPUState *cpu)
 941{
 942    CPUClass *cc = CPU_GET_CLASS(cpu);
 943
 944    cpu_list_remove(cpu);
 945
 946    if (cc->vmsd != NULL) {
 947        vmstate_unregister(NULL, cc->vmsd, cpu);
 948    }
 949    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 950        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 951    }
 952#ifndef CONFIG_USER_ONLY
 953    tcg_iommu_free_notifier_list(cpu);
 954#endif
 955}
 956
 957Property cpu_common_props[] = {
 958#ifndef CONFIG_USER_ONLY
 959    /* Create a memory property for softmmu CPU object,
 960     * so users can wire up its memory. (This can't go in qom/cpu.c
 961     * because that file is compiled only once for both user-mode
 962     * and system builds.) The default if no link is set up is to use
 963     * the system address space.
 964     */
 965    DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
 966                     MemoryRegion *),
 967#endif
 968    DEFINE_PROP_END_OF_LIST(),
 969};
 970
 971void cpu_exec_initfn(CPUState *cpu)
 972{
 973    cpu->as = NULL;
 974    cpu->num_ases = 0;
 975
 976#ifndef CONFIG_USER_ONLY
 977    cpu->thread_id = qemu_get_thread_id();
 978    cpu->memory = system_memory;
 979    object_ref(OBJECT(cpu->memory));
 980#endif
 981}
 982
 983void cpu_exec_realizefn(CPUState *cpu, Error **errp)
 984{
 985    CPUClass *cc = CPU_GET_CLASS(cpu);
 986    static bool tcg_target_initialized;
 987
 988    cpu_list_add(cpu);
 989
 990    if (tcg_enabled() && !tcg_target_initialized) {
 991        tcg_target_initialized = true;
 992        cc->tcg_initialize();
 993    }
 994
 995#ifndef CONFIG_USER_ONLY
 996    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 997        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 998    }
 999    if (cc->vmsd != NULL) {
1000        vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1001    }
1002
1003    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1004#endif
1005}
1006
1007const char *parse_cpu_model(const char *cpu_model)
1008{
1009    ObjectClass *oc;
1010    CPUClass *cc;
1011    gchar **model_pieces;
1012    const char *cpu_type;
1013
1014    model_pieces = g_strsplit(cpu_model, ",", 2);
1015
1016    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1017    if (oc == NULL) {
1018        error_report("unable to find CPU model '%s'", model_pieces[0]);
1019        g_strfreev(model_pieces);
1020        exit(EXIT_FAILURE);
1021    }
1022
1023    cpu_type = object_class_get_name(oc);
1024    cc = CPU_CLASS(oc);
1025    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1026    g_strfreev(model_pieces);
1027    return cpu_type;
1028}
1029
1030#if defined(CONFIG_USER_ONLY)
1031void tb_invalidate_phys_addr(target_ulong addr)
1032{
1033    mmap_lock();
1034    tb_invalidate_phys_page_range(addr, addr + 1, 0);
1035    mmap_unlock();
1036}
1037
1038static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1039{
1040    tb_invalidate_phys_addr(pc);
1041}
1042#else
1043void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1044{
1045    ram_addr_t ram_addr;
1046    MemoryRegion *mr;
1047    hwaddr l = 1;
1048
1049    if (!tcg_enabled()) {
1050        return;
1051    }
1052
1053    rcu_read_lock();
1054    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1055    if (!(memory_region_is_ram(mr)
1056          || memory_region_is_romd(mr))) {
1057        rcu_read_unlock();
1058        return;
1059    }
1060    ram_addr = memory_region_get_ram_addr(mr) + addr;
1061    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1062    rcu_read_unlock();
1063}
1064
1065static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1066{
1067    MemTxAttrs attrs;
1068    hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1069    int asidx = cpu_asidx_from_attrs(cpu, attrs);
1070    if (phys != -1) {
1071        /* Locks grabbed by tb_invalidate_phys_addr */
1072        tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1073                                phys | (pc & ~TARGET_PAGE_MASK), attrs);
1074    }
1075}
1076#endif
1077
1078#if defined(CONFIG_USER_ONLY)
1079void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1080
1081{
1082}
1083
1084int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1085                          int flags)
1086{
1087    return -ENOSYS;
1088}
1089
1090void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1091{
1092}
1093
1094int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1095                          int flags, CPUWatchpoint **watchpoint)
1096{
1097    return -ENOSYS;
1098}
1099#else
1100/* Add a watchpoint.  */
1101int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1102                          int flags, CPUWatchpoint **watchpoint)
1103{
1104    CPUWatchpoint *wp;
1105
1106    /* forbid ranges which are empty or run off the end of the address space */
1107    if (len == 0 || (addr + len - 1) < addr) {
1108        error_report("tried to set invalid watchpoint at %"
1109                     VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1110        return -EINVAL;
1111    }
1112    wp = g_malloc(sizeof(*wp));
1113
1114    wp->vaddr = addr;
1115    wp->len = len;
1116    wp->flags = flags;
1117
1118    /* keep all GDB-injected watchpoints in front */
1119    if (flags & BP_GDB) {
1120        QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1121    } else {
1122        QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1123    }
1124
1125    tlb_flush_page(cpu, addr);
1126
1127    if (watchpoint)
1128        *watchpoint = wp;
1129    return 0;
1130}
1131
1132/* Remove a specific watchpoint.  */
1133int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1134                          int flags)
1135{
1136    CPUWatchpoint *wp;
1137
1138    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1139        if (addr == wp->vaddr && len == wp->len
1140                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1141            cpu_watchpoint_remove_by_ref(cpu, wp);
1142            return 0;
1143        }
1144    }
1145    return -ENOENT;
1146}
1147
1148/* Remove a specific watchpoint by reference.  */
1149void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1150{
1151    QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1152
1153    tlb_flush_page(cpu, watchpoint->vaddr);
1154
1155    g_free(watchpoint);
1156}
1157
1158/* Remove all matching watchpoints.  */
1159void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1160{
1161    CPUWatchpoint *wp, *next;
1162
1163    QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1164        if (wp->flags & mask) {
1165            cpu_watchpoint_remove_by_ref(cpu, wp);
1166        }
1167    }
1168}
1169
1170/* Return true if this watchpoint address matches the specified
1171 * access (ie the address range covered by the watchpoint overlaps
1172 * partially or completely with the address range covered by the
1173 * access).
1174 */
1175static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1176                                                  vaddr addr,
1177                                                  vaddr len)
1178{
1179    /* We know the lengths are non-zero, but a little caution is
1180     * required to avoid errors in the case where the range ends
1181     * exactly at the top of the address space and so addr + len
1182     * wraps round to zero.
1183     */
1184    vaddr wpend = wp->vaddr + wp->len - 1;
1185    vaddr addrend = addr + len - 1;
1186
1187    return !(addr > wpend || wp->vaddr > addrend);
1188}
1189
1190#endif
1191
1192/* Add a breakpoint.  */
1193int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1194                          CPUBreakpoint **breakpoint)
1195{
1196    CPUBreakpoint *bp;
1197
1198    bp = g_malloc(sizeof(*bp));
1199
1200    bp->pc = pc;
1201    bp->flags = flags;
1202
1203    /* keep all GDB-injected breakpoints in front */
1204    if (flags & BP_GDB) {
1205        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1206    } else {
1207        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1208    }
1209
1210    breakpoint_invalidate(cpu, pc);
1211
1212    if (breakpoint) {
1213        *breakpoint = bp;
1214    }
1215    return 0;
1216}
1217
1218/* Remove a specific breakpoint.  */
1219int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1220{
1221    CPUBreakpoint *bp;
1222
1223    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1224        if (bp->pc == pc && bp->flags == flags) {
1225            cpu_breakpoint_remove_by_ref(cpu, bp);
1226            return 0;
1227        }
1228    }
1229    return -ENOENT;
1230}
1231
1232/* Remove a specific breakpoint by reference.  */
1233void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1234{
1235    QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1236
1237    breakpoint_invalidate(cpu, breakpoint->pc);
1238
1239    g_free(breakpoint);
1240}
1241
1242/* Remove all matching breakpoints. */
1243void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1244{
1245    CPUBreakpoint *bp, *next;
1246
1247    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1248        if (bp->flags & mask) {
1249            cpu_breakpoint_remove_by_ref(cpu, bp);
1250        }
1251    }
1252}
1253
1254/* enable or disable single step mode. EXCP_DEBUG is returned by the
1255   CPU loop after each instruction */
1256void cpu_single_step(CPUState *cpu, int enabled)
1257{
1258    if (cpu->singlestep_enabled != enabled) {
1259        cpu->singlestep_enabled = enabled;
1260        if (kvm_enabled()) {
1261            kvm_update_guest_debug(cpu, 0);
1262        } else {
1263            /* must flush all the translated code to avoid inconsistencies */
1264            /* XXX: only flush what is necessary */
1265            tb_flush(cpu);
1266        }
1267    }
1268}
1269
1270void cpu_abort(CPUState *cpu, const char *fmt, ...)
1271{
1272    va_list ap;
1273    va_list ap2;
1274
1275    va_start(ap, fmt);
1276    va_copy(ap2, ap);
1277    fprintf(stderr, "qemu: fatal: ");
1278    vfprintf(stderr, fmt, ap);
1279    fprintf(stderr, "\n");
1280    cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1281    if (qemu_log_separate()) {
1282        qemu_log_lock();
1283        qemu_log("qemu: fatal: ");
1284        qemu_log_vprintf(fmt, ap2);
1285        qemu_log("\n");
1286        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1287        qemu_log_flush();
1288        qemu_log_unlock();
1289        qemu_log_close();
1290    }
1291    va_end(ap2);
1292    va_end(ap);
1293    replay_finish();
1294#if defined(CONFIG_USER_ONLY)
1295    {
1296        struct sigaction act;
1297        sigfillset(&act.sa_mask);
1298        act.sa_handler = SIG_DFL;
1299        act.sa_flags = 0;
1300        sigaction(SIGABRT, &act, NULL);
1301    }
1302#endif
1303    abort();
1304}
1305
1306#if !defined(CONFIG_USER_ONLY)
1307/* Called from RCU critical section */
1308static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1309{
1310    RAMBlock *block;
1311
1312    block = atomic_rcu_read(&ram_list.mru_block);
1313    if (block && addr - block->offset < block->max_length) {
1314        return block;
1315    }
1316    RAMBLOCK_FOREACH(block) {
1317        if (addr - block->offset < block->max_length) {
1318            goto found;
1319        }
1320    }
1321
1322    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1323    abort();
1324
1325found:
1326    /* It is safe to write mru_block outside the iothread lock.  This
1327     * is what happens:
1328     *
1329     *     mru_block = xxx
1330     *     rcu_read_unlock()
1331     *                                        xxx removed from list
1332     *                  rcu_read_lock()
1333     *                  read mru_block
1334     *                                        mru_block = NULL;
1335     *                                        call_rcu(reclaim_ramblock, xxx);
1336     *                  rcu_read_unlock()
1337     *
1338     * atomic_rcu_set is not needed here.  The block was already published
1339     * when it was placed into the list.  Here we're just making an extra
1340     * copy of the pointer.
1341     */
1342    ram_list.mru_block = block;
1343    return block;
1344}
1345
1346static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1347{
1348    CPUState *cpu;
1349    ram_addr_t start1;
1350    RAMBlock *block;
1351    ram_addr_t end;
1352
1353    assert(tcg_enabled());
1354    end = TARGET_PAGE_ALIGN(start + length);
1355    start &= TARGET_PAGE_MASK;
1356
1357    rcu_read_lock();
1358    block = qemu_get_ram_block(start);
1359    assert(block == qemu_get_ram_block(end - 1));
1360    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1361    CPU_FOREACH(cpu) {
1362        tlb_reset_dirty(cpu, start1, length);
1363    }
1364    rcu_read_unlock();
1365}
1366
1367/* Note: start and end must be within the same ram block.  */
1368bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1369                                              ram_addr_t length,
1370                                              unsigned client)
1371{
1372    DirtyMemoryBlocks *blocks;
1373    unsigned long end, page;
1374    bool dirty = false;
1375
1376    if (length == 0) {
1377        return false;
1378    }
1379
1380    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1381    page = start >> TARGET_PAGE_BITS;
1382
1383    rcu_read_lock();
1384
1385    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1386
1387    while (page < end) {
1388        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1389        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1390        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1391
1392        dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1393                                              offset, num);
1394        page += num;
1395    }
1396
1397    rcu_read_unlock();
1398
1399    if (dirty && tcg_enabled()) {
1400        tlb_reset_dirty_range_all(start, length);
1401    }
1402
1403    return dirty;
1404}
1405
1406DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1407     (ram_addr_t start, ram_addr_t length, unsigned client)
1408{
1409    DirtyMemoryBlocks *blocks;
1410    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1411    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1412    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1413    DirtyBitmapSnapshot *snap;
1414    unsigned long page, end, dest;
1415
1416    snap = g_malloc0(sizeof(*snap) +
1417                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
1418    snap->start = first;
1419    snap->end   = last;
1420
1421    page = first >> TARGET_PAGE_BITS;
1422    end  = last  >> TARGET_PAGE_BITS;
1423    dest = 0;
1424
1425    rcu_read_lock();
1426
1427    blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1428
1429    while (page < end) {
1430        unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1431        unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1432        unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1433
1434        assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1435        assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1436        offset >>= BITS_PER_LEVEL;
1437
1438        bitmap_copy_and_clear_atomic(snap->dirty + dest,
1439                                     blocks->blocks[idx] + offset,
1440                                     num);
1441        page += num;
1442        dest += num >> BITS_PER_LEVEL;
1443    }
1444
1445    rcu_read_unlock();
1446
1447    if (tcg_enabled()) {
1448        tlb_reset_dirty_range_all(start, length);
1449    }
1450
1451    return snap;
1452}
1453
1454bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1455                                            ram_addr_t start,
1456                                            ram_addr_t length)
1457{
1458    unsigned long page, end;
1459
1460    assert(start >= snap->start);
1461    assert(start + length <= snap->end);
1462
1463    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1464    page = (start - snap->start) >> TARGET_PAGE_BITS;
1465
1466    while (page < end) {
1467        if (test_bit(page, snap->dirty)) {
1468            return true;
1469        }
1470        page++;
1471    }
1472    return false;
1473}
1474
1475/* Called from RCU critical section */
1476hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1477                                       MemoryRegionSection *section,
1478                                       target_ulong vaddr,
1479                                       hwaddr paddr, hwaddr xlat,
1480                                       int prot,
1481                                       target_ulong *address)
1482{
1483    hwaddr iotlb;
1484    CPUWatchpoint *wp;
1485
1486    if (memory_region_is_ram(section->mr)) {
1487        /* Normal RAM.  */
1488        iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1489        if (!section->readonly) {
1490            iotlb |= PHYS_SECTION_NOTDIRTY;
1491        } else {
1492            iotlb |= PHYS_SECTION_ROM;
1493        }
1494    } else {
1495        AddressSpaceDispatch *d;
1496
1497        d = flatview_to_dispatch(section->fv);
1498        iotlb = section - d->map.sections;
1499        iotlb += xlat;
1500    }
1501
1502    /* Make accesses to pages with watchpoints go via the
1503       watchpoint trap routines.  */
1504    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1505        if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1506            /* Avoid trapping reads of pages with a write breakpoint. */
1507            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1508                iotlb = PHYS_SECTION_WATCH + paddr;
1509                *address |= TLB_MMIO;
1510                break;
1511            }
1512        }
1513    }
1514
1515    return iotlb;
1516}
1517#endif /* defined(CONFIG_USER_ONLY) */
1518
1519#if !defined(CONFIG_USER_ONLY)
1520
1521static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1522                             uint16_t section);
1523static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1524
1525static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1526                               qemu_anon_ram_alloc;
1527
1528/*
1529 * Set a custom physical guest memory alloator.
1530 * Accelerators with unusual needs may need this.  Hopefully, we can
1531 * get rid of it eventually.
1532 */
1533void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1534{
1535    phys_mem_alloc = alloc;
1536}
1537
1538static uint16_t phys_section_add(PhysPageMap *map,
1539                                 MemoryRegionSection *section)
1540{
1541    /* The physical section number is ORed with a page-aligned
1542     * pointer to produce the iotlb entries.  Thus it should
1543     * never overflow into the page-aligned value.
1544     */
1545    assert(map->sections_nb < TARGET_PAGE_SIZE);
1546
1547    if (map->sections_nb == map->sections_nb_alloc) {
1548        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1549        map->sections = g_renew(MemoryRegionSection, map->sections,
1550                                map->sections_nb_alloc);
1551    }
1552    map->sections[map->sections_nb] = *section;
1553    memory_region_ref(section->mr);
1554    return map->sections_nb++;
1555}
1556
1557static void phys_section_destroy(MemoryRegion *mr)
1558{
1559    bool have_sub_page = mr->subpage;
1560
1561    memory_region_unref(mr);
1562
1563    if (have_sub_page) {
1564        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1565        object_unref(OBJECT(&subpage->iomem));
1566        g_free(subpage);
1567    }
1568}
1569
1570static void phys_sections_free(PhysPageMap *map)
1571{
1572    while (map->sections_nb > 0) {
1573        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1574        phys_section_destroy(section->mr);
1575    }
1576    g_free(map->sections);
1577    g_free(map->nodes);
1578}
1579
1580static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1581{
1582    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1583    subpage_t *subpage;
1584    hwaddr base = section->offset_within_address_space
1585        & TARGET_PAGE_MASK;
1586    MemoryRegionSection *existing = phys_page_find(d, base);
1587    MemoryRegionSection subsection = {
1588        .offset_within_address_space = base,
1589        .size = int128_make64(TARGET_PAGE_SIZE),
1590    };
1591    hwaddr start, end;
1592
1593    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1594
1595    if (!(existing->mr->subpage)) {
1596        subpage = subpage_init(fv, base);
1597        subsection.fv = fv;
1598        subsection.mr = &subpage->iomem;
1599        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1600                      phys_section_add(&d->map, &subsection));
1601    } else {
1602        subpage = container_of(existing->mr, subpage_t, iomem);
1603    }
1604    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1605    end = start + int128_get64(section->size) - 1;
1606    subpage_register(subpage, start, end,
1607                     phys_section_add(&d->map, section));
1608}
1609
1610
1611static void register_multipage(FlatView *fv,
1612                               MemoryRegionSection *section)
1613{
1614    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1615    hwaddr start_addr = section->offset_within_address_space;
1616    uint16_t section_index = phys_section_add(&d->map, section);
1617    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1618                                                    TARGET_PAGE_BITS));
1619
1620    assert(num_pages);
1621    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1622}
1623
1624void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1625{
1626    MemoryRegionSection now = *section, remain = *section;
1627    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1628
1629    if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1630        uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1631                       - now.offset_within_address_space;
1632
1633        now.size = int128_min(int128_make64(left), now.size);
1634        register_subpage(fv, &now);
1635    } else {
1636        now.size = int128_zero();
1637    }
1638    while (int128_ne(remain.size, now.size)) {
1639        remain.size = int128_sub(remain.size, now.size);
1640        remain.offset_within_address_space += int128_get64(now.size);
1641        remain.offset_within_region += int128_get64(now.size);
1642        now = remain;
1643        if (int128_lt(remain.size, page_size)) {
1644            register_subpage(fv, &now);
1645        } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1646            now.size = page_size;
1647            register_subpage(fv, &now);
1648        } else {
1649            now.size = int128_and(now.size, int128_neg(page_size));
1650            register_multipage(fv, &now);
1651        }
1652    }
1653}
1654
1655void qemu_flush_coalesced_mmio_buffer(void)
1656{
1657    if (kvm_enabled())
1658        kvm_flush_coalesced_mmio_buffer();
1659}
1660
1661void qemu_mutex_lock_ramlist(void)
1662{
1663    qemu_mutex_lock(&ram_list.mutex);
1664}
1665
1666void qemu_mutex_unlock_ramlist(void)
1667{
1668    qemu_mutex_unlock(&ram_list.mutex);
1669}
1670
1671void ram_block_dump(Monitor *mon)
1672{
1673    RAMBlock *block;
1674    char *psize;
1675
1676    rcu_read_lock();
1677    monitor_printf(mon, "%24s %8s  %18s %18s %18s\n",
1678                   "Block Name", "PSize", "Offset", "Used", "Total");
1679    RAMBLOCK_FOREACH(block) {
1680        psize = size_to_str(block->page_size);
1681        monitor_printf(mon, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1682                       " 0x%016" PRIx64 "\n", block->idstr, psize,
1683                       (uint64_t)block->offset,
1684                       (uint64_t)block->used_length,
1685                       (uint64_t)block->max_length);
1686        g_free(psize);
1687    }
1688    rcu_read_unlock();
1689}
1690
1691#ifdef __linux__
1692/*
1693 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1694 * may or may not name the same files / on the same filesystem now as
1695 * when we actually open and map them.  Iterate over the file
1696 * descriptors instead, and use qemu_fd_getpagesize().
1697 */
1698static int find_max_supported_pagesize(Object *obj, void *opaque)
1699{
1700    long *hpsize_min = opaque;
1701
1702    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1703        long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1704
1705        if (hpsize < *hpsize_min) {
1706            *hpsize_min = hpsize;
1707        }
1708    }
1709
1710    return 0;
1711}
1712
1713long qemu_getrampagesize(void)
1714{
1715    long hpsize = LONG_MAX;
1716    long mainrampagesize;
1717    Object *memdev_root;
1718
1719    mainrampagesize = qemu_mempath_getpagesize(mem_path);
1720
1721    /* it's possible we have memory-backend objects with
1722     * hugepage-backed RAM. these may get mapped into system
1723     * address space via -numa parameters or memory hotplug
1724     * hooks. we want to take these into account, but we
1725     * also want to make sure these supported hugepage
1726     * sizes are applicable across the entire range of memory
1727     * we may boot from, so we take the min across all
1728     * backends, and assume normal pages in cases where a
1729     * backend isn't backed by hugepages.
1730     */
1731    memdev_root = object_resolve_path("/objects", NULL);
1732    if (memdev_root) {
1733        object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1734    }
1735    if (hpsize == LONG_MAX) {
1736        /* No additional memory regions found ==> Report main RAM page size */
1737        return mainrampagesize;
1738    }
1739
1740    /* If NUMA is disabled or the NUMA nodes are not backed with a
1741     * memory-backend, then there is at least one node using "normal" RAM,
1742     * so if its page size is smaller we have got to report that size instead.
1743     */
1744    if (hpsize > mainrampagesize &&
1745        (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1746        static bool warned;
1747        if (!warned) {
1748            error_report("Huge page support disabled (n/a for main memory).");
1749            warned = true;
1750        }
1751        return mainrampagesize;
1752    }
1753
1754    return hpsize;
1755}
1756#else
1757long qemu_getrampagesize(void)
1758{
1759    return getpagesize();
1760}
1761#endif
1762
1763#ifdef __linux__
1764static int64_t get_file_size(int fd)
1765{
1766    int64_t size = lseek(fd, 0, SEEK_END);
1767    if (size < 0) {
1768        return -errno;
1769    }
1770    return size;
1771}
1772
1773static int file_ram_open(const char *path,
1774                         const char *region_name,
1775                         bool *created,
1776                         Error **errp)
1777{
1778    char *filename;
1779    char *sanitized_name;
1780    char *c;
1781    int fd = -1;
1782
1783    *created = false;
1784    for (;;) {
1785        fd = open(path, O_RDWR);
1786        if (fd >= 0) {
1787            /* @path names an existing file, use it */
1788            break;
1789        }
1790        if (errno == ENOENT) {
1791            /* @path names a file that doesn't exist, create it */
1792            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1793            if (fd >= 0) {
1794                *created = true;
1795                break;
1796            }
1797        } else if (errno == EISDIR) {
1798            /* @path names a directory, create a file there */
1799            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1800            sanitized_name = g_strdup(region_name);
1801            for (c = sanitized_name; *c != '\0'; c++) {
1802                if (*c == '/') {
1803                    *c = '_';
1804                }
1805            }
1806
1807            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1808                                       sanitized_name);
1809            g_free(sanitized_name);
1810
1811            fd = mkstemp(filename);
1812            if (fd >= 0) {
1813                unlink(filename);
1814                g_free(filename);
1815                break;
1816            }
1817            g_free(filename);
1818        }
1819        if (errno != EEXIST && errno != EINTR) {
1820            error_setg_errno(errp, errno,
1821                             "can't open backing store %s for guest RAM",
1822                             path);
1823            return -1;
1824        }
1825        /*
1826         * Try again on EINTR and EEXIST.  The latter happens when
1827         * something else creates the file between our two open().
1828         */
1829    }
1830
1831    return fd;
1832}
1833
1834static void *file_ram_alloc(RAMBlock *block,
1835                            ram_addr_t memory,
1836                            int fd,
1837                            bool truncate,
1838                            Error **errp)
1839{
1840    void *area;
1841
1842    block->page_size = qemu_fd_getpagesize(fd);
1843    if (block->mr->align % block->page_size) {
1844        error_setg(errp, "alignment 0x%" PRIx64
1845                   " must be multiples of page size 0x%zx",
1846                   block->mr->align, block->page_size);
1847        return NULL;
1848    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1849        error_setg(errp, "alignment 0x%" PRIx64
1850                   " must be a power of two", block->mr->align);
1851        return NULL;
1852    }
1853    block->mr->align = MAX(block->page_size, block->mr->align);
1854#if defined(__s390x__)
1855    if (kvm_enabled()) {
1856        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1857    }
1858#endif
1859
1860    if (memory < block->page_size) {
1861        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1862                   "or larger than page size 0x%zx",
1863                   memory, block->page_size);
1864        return NULL;
1865    }
1866
1867    memory = ROUND_UP(memory, block->page_size);
1868
1869    /*
1870     * ftruncate is not supported by hugetlbfs in older
1871     * hosts, so don't bother bailing out on errors.
1872     * If anything goes wrong with it under other filesystems,
1873     * mmap will fail.
1874     *
1875     * Do not truncate the non-empty backend file to avoid corrupting
1876     * the existing data in the file. Disabling shrinking is not
1877     * enough. For example, the current vNVDIMM implementation stores
1878     * the guest NVDIMM labels at the end of the backend file. If the
1879     * backend file is later extended, QEMU will not be able to find
1880     * those labels. Therefore, extending the non-empty backend file
1881     * is disabled as well.
1882     */
1883    if (truncate && ftruncate(fd, memory)) {
1884        perror("ftruncate");
1885    }
1886
1887    area = qemu_ram_mmap(fd, memory, block->mr->align,
1888                         block->flags & RAM_SHARED);
1889    if (area == MAP_FAILED) {
1890        error_setg_errno(errp, errno,
1891                         "unable to map backing store for guest RAM");
1892        return NULL;
1893    }
1894
1895    if (mem_prealloc) {
1896        os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1897        if (errp && *errp) {
1898            qemu_ram_munmap(area, memory);
1899            return NULL;
1900        }
1901    }
1902
1903    block->fd = fd;
1904    return area;
1905}
1906#endif
1907
1908/* Allocate space within the ram_addr_t space that governs the
1909 * dirty bitmaps.
1910 * Called with the ramlist lock held.
1911 */
1912static ram_addr_t find_ram_offset(ram_addr_t size)
1913{
1914    RAMBlock *block, *next_block;
1915    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1916
1917    assert(size != 0); /* it would hand out same offset multiple times */
1918
1919    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1920        return 0;
1921    }
1922
1923    RAMBLOCK_FOREACH(block) {
1924        ram_addr_t candidate, next = RAM_ADDR_MAX;
1925
1926        /* Align blocks to start on a 'long' in the bitmap
1927         * which makes the bitmap sync'ing take the fast path.
1928         */
1929        candidate = block->offset + block->max_length;
1930        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1931
1932        /* Search for the closest following block
1933         * and find the gap.
1934         */
1935        RAMBLOCK_FOREACH(next_block) {
1936            if (next_block->offset >= candidate) {
1937                next = MIN(next, next_block->offset);
1938            }
1939        }
1940
1941        /* If it fits remember our place and remember the size
1942         * of gap, but keep going so that we might find a smaller
1943         * gap to fill so avoiding fragmentation.
1944         */
1945        if (next - candidate >= size && next - candidate < mingap) {
1946            offset = candidate;
1947            mingap = next - candidate;
1948        }
1949
1950        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1951    }
1952
1953    if (offset == RAM_ADDR_MAX) {
1954        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1955                (uint64_t)size);
1956        abort();
1957    }
1958
1959    trace_find_ram_offset(size, offset);
1960
1961    return offset;
1962}
1963
1964static unsigned long last_ram_page(void)
1965{
1966    RAMBlock *block;
1967    ram_addr_t last = 0;
1968
1969    rcu_read_lock();
1970    RAMBLOCK_FOREACH(block) {
1971        last = MAX(last, block->offset + block->max_length);
1972    }
1973    rcu_read_unlock();
1974    return last >> TARGET_PAGE_BITS;
1975}
1976
1977static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1978{
1979    int ret;
1980
1981    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1982    if (!machine_dump_guest_core(current_machine)) {
1983        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1984        if (ret) {
1985            perror("qemu_madvise");
1986            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1987                            "but dump_guest_core=off specified\n");
1988        }
1989    }
1990}
1991
1992const char *qemu_ram_get_idstr(RAMBlock *rb)
1993{
1994    return rb->idstr;
1995}
1996
1997bool qemu_ram_is_shared(RAMBlock *rb)
1998{
1999    return rb->flags & RAM_SHARED;
2000}
2001
2002/* Note: Only set at the start of postcopy */
2003bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2004{
2005    return rb->flags & RAM_UF_ZEROPAGE;
2006}
2007
2008void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2009{
2010    rb->flags |= RAM_UF_ZEROPAGE;
2011}
2012
2013bool qemu_ram_is_migratable(RAMBlock *rb)
2014{
2015    return rb->flags & RAM_MIGRATABLE;
2016}
2017
2018void qemu_ram_set_migratable(RAMBlock *rb)
2019{
2020    rb->flags |= RAM_MIGRATABLE;
2021}
2022
2023void qemu_ram_unset_migratable(RAMBlock *rb)
2024{
2025    rb->flags &= ~RAM_MIGRATABLE;
2026}
2027
2028/* Called with iothread lock held.  */
2029void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2030{
2031    RAMBlock *block;
2032
2033    assert(new_block);
2034    assert(!new_block->idstr[0]);
2035
2036    if (dev) {
2037        char *id = qdev_get_dev_path(dev);
2038        if (id) {
2039            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2040            g_free(id);
2041        }
2042    }
2043    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2044
2045    rcu_read_lock();
2046    RAMBLOCK_FOREACH(block) {
2047        if (block != new_block &&
2048            !strcmp(block->idstr, new_block->idstr)) {
2049            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2050                    new_block->idstr);
2051            abort();
2052        }
2053    }
2054    rcu_read_unlock();
2055}
2056
2057/* Called with iothread lock held.  */
2058void qemu_ram_unset_idstr(RAMBlock *block)
2059{
2060    /* FIXME: arch_init.c assumes that this is not called throughout
2061     * migration.  Ignore the problem since hot-unplug during migration
2062     * does not work anyway.
2063     */
2064    if (block) {
2065        memset(block->idstr, 0, sizeof(block->idstr));
2066    }
2067}
2068
2069size_t qemu_ram_pagesize(RAMBlock *rb)
2070{
2071    return rb->page_size;
2072}
2073
2074/* Returns the largest size of page in use */
2075size_t qemu_ram_pagesize_largest(void)
2076{
2077    RAMBlock *block;
2078    size_t largest = 0;
2079
2080    RAMBLOCK_FOREACH(block) {
2081        largest = MAX(largest, qemu_ram_pagesize(block));
2082    }
2083
2084    return largest;
2085}
2086
2087static int memory_try_enable_merging(void *addr, size_t len)
2088{
2089    if (!machine_mem_merge(current_machine)) {
2090        /* disabled by the user */
2091        return 0;
2092    }
2093
2094    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2095}
2096
2097/* Only legal before guest might have detected the memory size: e.g. on
2098 * incoming migration, or right after reset.
2099 *
2100 * As memory core doesn't know how is memory accessed, it is up to
2101 * resize callback to update device state and/or add assertions to detect
2102 * misuse, if necessary.
2103 */
2104int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2105{
2106    assert(block);
2107
2108    newsize = HOST_PAGE_ALIGN(newsize);
2109
2110    if (block->used_length == newsize) {
2111        return 0;
2112    }
2113
2114    if (!(block->flags & RAM_RESIZEABLE)) {
2115        error_setg_errno(errp, EINVAL,
2116                         "Length mismatch: %s: 0x" RAM_ADDR_FMT
2117                         " in != 0x" RAM_ADDR_FMT, block->idstr,
2118                         newsize, block->used_length);
2119        return -EINVAL;
2120    }
2121
2122    if (block->max_length < newsize) {
2123        error_setg_errno(errp, EINVAL,
2124                         "Length too large: %s: 0x" RAM_ADDR_FMT
2125                         " > 0x" RAM_ADDR_FMT, block->idstr,
2126                         newsize, block->max_length);
2127        return -EINVAL;
2128    }
2129
2130    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2131    block->used_length = newsize;
2132    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2133                                        DIRTY_CLIENTS_ALL);
2134    memory_region_set_size(block->mr, newsize);
2135    if (block->resized) {
2136        block->resized(block->idstr, newsize, block->host);
2137    }
2138    return 0;
2139}
2140
2141/* Called with ram_list.mutex held */
2142static void dirty_memory_extend(ram_addr_t old_ram_size,
2143                                ram_addr_t new_ram_size)
2144{
2145    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2146                                             DIRTY_MEMORY_BLOCK_SIZE);
2147    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2148                                             DIRTY_MEMORY_BLOCK_SIZE);
2149    int i;
2150
2151    /* Only need to extend if block count increased */
2152    if (new_num_blocks <= old_num_blocks) {
2153        return;
2154    }
2155
2156    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2157        DirtyMemoryBlocks *old_blocks;
2158        DirtyMemoryBlocks *new_blocks;
2159        int j;
2160
2161        old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2162        new_blocks = g_malloc(sizeof(*new_blocks) +
2163                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
2164
2165        if (old_num_blocks) {
2166            memcpy(new_blocks->blocks, old_blocks->blocks,
2167                   old_num_blocks * sizeof(old_blocks->blocks[0]));
2168        }
2169
2170        for (j = old_num_blocks; j < new_num_blocks; j++) {
2171            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2172        }
2173
2174        atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2175
2176        if (old_blocks) {
2177            g_free_rcu(old_blocks, rcu);
2178        }
2179    }
2180}
2181
2182static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2183{
2184    RAMBlock *block;
2185    RAMBlock *last_block = NULL;
2186    ram_addr_t old_ram_size, new_ram_size;
2187    Error *err = NULL;
2188
2189    old_ram_size = last_ram_page();
2190
2191    qemu_mutex_lock_ramlist();
2192    new_block->offset = find_ram_offset(new_block->max_length);
2193
2194    if (!new_block->host) {
2195        if (xen_enabled()) {
2196            xen_ram_alloc(new_block->offset, new_block->max_length,
2197                          new_block->mr, &err);
2198            if (err) {
2199                error_propagate(errp, err);
2200                qemu_mutex_unlock_ramlist();
2201                return;
2202            }
2203        } else {
2204            new_block->host = phys_mem_alloc(new_block->max_length,
2205                                             &new_block->mr->align, shared);
2206            if (!new_block->host) {
2207                error_setg_errno(errp, errno,
2208                                 "cannot set up guest memory '%s'",
2209                                 memory_region_name(new_block->mr));
2210                qemu_mutex_unlock_ramlist();
2211                return;
2212            }
2213            memory_try_enable_merging(new_block->host, new_block->max_length);
2214        }
2215    }
2216
2217    new_ram_size = MAX(old_ram_size,
2218              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2219    if (new_ram_size > old_ram_size) {
2220        dirty_memory_extend(old_ram_size, new_ram_size);
2221    }
2222    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2223     * QLIST (which has an RCU-friendly variant) does not have insertion at
2224     * tail, so save the last element in last_block.
2225     */
2226    RAMBLOCK_FOREACH(block) {
2227        last_block = block;
2228        if (block->max_length < new_block->max_length) {
2229            break;
2230        }
2231    }
2232    if (block) {
2233        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2234    } else if (last_block) {
2235        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2236    } else { /* list is empty */
2237        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2238    }
2239    ram_list.mru_block = NULL;
2240
2241    /* Write list before version */
2242    smp_wmb();
2243    ram_list.version++;
2244    qemu_mutex_unlock_ramlist();
2245
2246    cpu_physical_memory_set_dirty_range(new_block->offset,
2247                                        new_block->used_length,
2248                                        DIRTY_CLIENTS_ALL);
2249
2250    if (new_block->host) {
2251        qemu_ram_setup_dump(new_block->host, new_block->max_length);
2252        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2253        /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2254        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2255        ram_block_notify_add(new_block->host, new_block->max_length);
2256    }
2257}
2258
2259#ifdef __linux__
2260RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2261                                 bool share, int fd,
2262                                 Error **errp)
2263{
2264    RAMBlock *new_block;
2265    Error *local_err = NULL;
2266    int64_t file_size;
2267
2268    if (xen_enabled()) {
2269        error_setg(errp, "-mem-path not supported with Xen");
2270        return NULL;
2271    }
2272
2273    if (kvm_enabled() && !kvm_has_sync_mmu()) {
2274        error_setg(errp,
2275                   "host lacks kvm mmu notifiers, -mem-path unsupported");
2276        return NULL;
2277    }
2278
2279    if (phys_mem_alloc != qemu_anon_ram_alloc) {
2280        /*
2281         * file_ram_alloc() needs to allocate just like
2282         * phys_mem_alloc, but we haven't bothered to provide
2283         * a hook there.
2284         */
2285        error_setg(errp,
2286                   "-mem-path not supported with this accelerator");
2287        return NULL;
2288    }
2289
2290    size = HOST_PAGE_ALIGN(size);
2291    file_size = get_file_size(fd);
2292    if (file_size > 0 && file_size < size) {
2293        error_setg(errp, "backing store %s size 0x%" PRIx64
2294                   " does not match 'size' option 0x" RAM_ADDR_FMT,
2295                   mem_path, file_size, size);
2296        return NULL;
2297    }
2298
2299    new_block = g_malloc0(sizeof(*new_block));
2300    new_block->mr = mr;
2301    new_block->used_length = size;
2302    new_block->max_length = size;
2303    new_block->flags = share ? RAM_SHARED : 0;
2304    new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2305    if (!new_block->host) {
2306        g_free(new_block);
2307        return NULL;
2308    }
2309
2310    ram_block_add(new_block, &local_err, share);
2311    if (local_err) {
2312        g_free(new_block);
2313        error_propagate(errp, local_err);
2314        return NULL;
2315    }
2316    return new_block;
2317
2318}
2319
2320
2321RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2322                                   bool share, const char *mem_path,
2323                                   Error **errp)
2324{
2325    int fd;
2326    bool created;
2327    RAMBlock *block;
2328
2329    fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2330    if (fd < 0) {
2331        return NULL;
2332    }
2333
2334    block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2335    if (!block) {
2336        if (created) {
2337            unlink(mem_path);
2338        }
2339        close(fd);
2340        return NULL;
2341    }
2342
2343    return block;
2344}
2345#endif
2346
2347static
2348RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2349                                  void (*resized)(const char*,
2350                                                  uint64_t length,
2351                                                  void *host),
2352                                  void *host, bool resizeable, bool share,
2353                                  MemoryRegion *mr, Error **errp)
2354{
2355    RAMBlock *new_block;
2356    Error *local_err = NULL;
2357
2358    size = HOST_PAGE_ALIGN(size);
2359    max_size = HOST_PAGE_ALIGN(max_size);
2360    new_block = g_malloc0(sizeof(*new_block));
2361    new_block->mr = mr;
2362    new_block->resized = resized;
2363    new_block->used_length = size;
2364    new_block->max_length = max_size;
2365    assert(max_size >= size);
2366    new_block->fd = -1;
2367    new_block->page_size = getpagesize();
2368    new_block->host = host;
2369    if (host) {
2370        new_block->flags |= RAM_PREALLOC;
2371    }
2372    if (resizeable) {
2373        new_block->flags |= RAM_RESIZEABLE;
2374    }
2375    ram_block_add(new_block, &local_err, share);
2376    if (local_err) {
2377        g_free(new_block);
2378        error_propagate(errp, local_err);
2379        return NULL;
2380    }
2381    return new_block;
2382}
2383
2384RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2385                                   MemoryRegion *mr, Error **errp)
2386{
2387    return qemu_ram_alloc_internal(size, size, NULL, host, false,
2388                                   false, mr, errp);
2389}
2390
2391RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2392                         MemoryRegion *mr, Error **errp)
2393{
2394    return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2395                                   share, mr, errp);
2396}
2397
2398RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2399                                     void (*resized)(const char*,
2400                                                     uint64_t length,
2401                                                     void *host),
2402                                     MemoryRegion *mr, Error **errp)
2403{
2404    return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2405                                   false, mr, errp);
2406}
2407
2408static void reclaim_ramblock(RAMBlock *block)
2409{
2410    if (block->flags & RAM_PREALLOC) {
2411        ;
2412    } else if (xen_enabled()) {
2413        xen_invalidate_map_cache_entry(block->host);
2414#ifndef _WIN32
2415    } else if (block->fd >= 0) {
2416        qemu_ram_munmap(block->host, block->max_length);
2417        close(block->fd);
2418#endif
2419    } else {
2420        qemu_anon_ram_free(block->host, block->max_length);
2421    }
2422    g_free(block);
2423}
2424
2425void qemu_ram_free(RAMBlock *block)
2426{
2427    if (!block) {
2428        return;
2429    }
2430
2431    if (block->host) {
2432        ram_block_notify_remove(block->host, block->max_length);
2433    }
2434
2435    qemu_mutex_lock_ramlist();
2436    QLIST_REMOVE_RCU(block, next);
2437    ram_list.mru_block = NULL;
2438    /* Write list before version */
2439    smp_wmb();
2440    ram_list.version++;
2441    call_rcu(block, reclaim_ramblock, rcu);
2442    qemu_mutex_unlock_ramlist();
2443}
2444
2445#ifndef _WIN32
2446void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2447{
2448    RAMBlock *block;
2449    ram_addr_t offset;
2450    int flags;
2451    void *area, *vaddr;
2452
2453    RAMBLOCK_FOREACH(block) {
2454        offset = addr - block->offset;
2455        if (offset < block->max_length) {
2456            vaddr = ramblock_ptr(block, offset);
2457            if (block->flags & RAM_PREALLOC) {
2458                ;
2459            } else if (xen_enabled()) {
2460                abort();
2461            } else {
2462                flags = MAP_FIXED;
2463                if (block->fd >= 0) {
2464                    flags |= (block->flags & RAM_SHARED ?
2465                              MAP_SHARED : MAP_PRIVATE);
2466                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2467                                flags, block->fd, offset);
2468                } else {
2469                    /*
2470                     * Remap needs to match alloc.  Accelerators that
2471                     * set phys_mem_alloc never remap.  If they did,
2472                     * we'd need a remap hook here.
2473                     */
2474                    assert(phys_mem_alloc == qemu_anon_ram_alloc);
2475
2476                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2477                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2478                                flags, -1, 0);
2479                }
2480                if (area != vaddr) {
2481                    error_report("Could not remap addr: "
2482                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2483                                 length, addr);
2484                    exit(1);
2485                }
2486                memory_try_enable_merging(vaddr, length);
2487                qemu_ram_setup_dump(vaddr, length);
2488            }
2489        }
2490    }
2491}
2492#endif /* !_WIN32 */
2493
2494/* Return a host pointer to ram allocated with qemu_ram_alloc.
2495 * This should not be used for general purpose DMA.  Use address_space_map
2496 * or address_space_rw instead. For local memory (e.g. video ram) that the
2497 * device owns, use memory_region_get_ram_ptr.
2498 *
2499 * Called within RCU critical section.
2500 */
2501void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2502{
2503    RAMBlock *block = ram_block;
2504
2505    if (block == NULL) {
2506        block = qemu_get_ram_block(addr);
2507        addr -= block->offset;
2508    }
2509
2510    if (xen_enabled() && block->host == NULL) {
2511        /* We need to check if the requested address is in the RAM
2512         * because we don't want to map the entire memory in QEMU.
2513         * In that case just map until the end of the page.
2514         */
2515        if (block->offset == 0) {
2516            return xen_map_cache(addr, 0, 0, false);
2517        }
2518
2519        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2520    }
2521    return ramblock_ptr(block, addr);
2522}
2523
2524/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2525 * but takes a size argument.
2526 *
2527 * Called within RCU critical section.
2528 */
2529static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2530                                 hwaddr *size, bool lock)
2531{
2532    RAMBlock *block = ram_block;
2533    if (*size == 0) {
2534        return NULL;
2535    }
2536
2537    if (block == NULL) {
2538        block = qemu_get_ram_block(addr);
2539        addr -= block->offset;
2540    }
2541    *size = MIN(*size, block->max_length - addr);
2542
2543    if (xen_enabled() && block->host == NULL) {
2544        /* We need to check if the requested address is in the RAM
2545         * because we don't want to map the entire memory in QEMU.
2546         * In that case just map the requested area.
2547         */
2548        if (block->offset == 0) {
2549            return xen_map_cache(addr, *size, lock, lock);
2550        }
2551
2552        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2553    }
2554
2555    return ramblock_ptr(block, addr);
2556}
2557
2558/* Return the offset of a hostpointer within a ramblock */
2559ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2560{
2561    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2562    assert((uintptr_t)host >= (uintptr_t)rb->host);
2563    assert(res < rb->max_length);
2564
2565    return res;
2566}
2567
2568/*
2569 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2570 * in that RAMBlock.
2571 *
2572 * ptr: Host pointer to look up
2573 * round_offset: If true round the result offset down to a page boundary
2574 * *ram_addr: set to result ram_addr
2575 * *offset: set to result offset within the RAMBlock
2576 *
2577 * Returns: RAMBlock (or NULL if not found)
2578 *
2579 * By the time this function returns, the returned pointer is not protected
2580 * by RCU anymore.  If the caller is not within an RCU critical section and
2581 * does not hold the iothread lock, it must have other means of protecting the
2582 * pointer, such as a reference to the region that includes the incoming
2583 * ram_addr_t.
2584 */
2585RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2586                                   ram_addr_t *offset)
2587{
2588    RAMBlock *block;
2589    uint8_t *host = ptr;
2590
2591    if (xen_enabled()) {
2592        ram_addr_t ram_addr;
2593        rcu_read_lock();
2594        ram_addr = xen_ram_addr_from_mapcache(ptr);
2595        block = qemu_get_ram_block(ram_addr);
2596        if (block) {
2597            *offset = ram_addr - block->offset;
2598        }
2599        rcu_read_unlock();
2600        return block;
2601    }
2602
2603    rcu_read_lock();
2604    block = atomic_rcu_read(&ram_list.mru_block);
2605    if (block && block->host && host - block->host < block->max_length) {
2606        goto found;
2607    }
2608
2609    RAMBLOCK_FOREACH(block) {
2610        /* This case append when the block is not mapped. */
2611        if (block->host == NULL) {
2612            continue;
2613        }
2614        if (host - block->host < block->max_length) {
2615            goto found;
2616        }
2617    }
2618
2619    rcu_read_unlock();
2620    return NULL;
2621
2622found:
2623    *offset = (host - block->host);
2624    if (round_offset) {
2625        *offset &= TARGET_PAGE_MASK;
2626    }
2627    rcu_read_unlock();
2628    return block;
2629}
2630
2631/*
2632 * Finds the named RAMBlock
2633 *
2634 * name: The name of RAMBlock to find
2635 *
2636 * Returns: RAMBlock (or NULL if not found)
2637 */
2638RAMBlock *qemu_ram_block_by_name(const char *name)
2639{
2640    RAMBlock *block;
2641
2642    RAMBLOCK_FOREACH(block) {
2643        if (!strcmp(name, block->idstr)) {
2644            return block;
2645        }
2646    }
2647
2648    return NULL;
2649}
2650
2651/* Some of the softmmu routines need to translate from a host pointer
2652   (typically a TLB entry) back to a ram offset.  */
2653ram_addr_t qemu_ram_addr_from_host(void *ptr)
2654{
2655    RAMBlock *block;
2656    ram_addr_t offset;
2657
2658    block = qemu_ram_block_from_host(ptr, false, &offset);
2659    if (!block) {
2660        return RAM_ADDR_INVALID;
2661    }
2662
2663    return block->offset + offset;
2664}
2665
2666/* Called within RCU critical section. */
2667void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2668                          CPUState *cpu,
2669                          vaddr mem_vaddr,
2670                          ram_addr_t ram_addr,
2671                          unsigned size)
2672{
2673    ndi->cpu = cpu;
2674    ndi->ram_addr = ram_addr;
2675    ndi->mem_vaddr = mem_vaddr;
2676    ndi->size = size;
2677    ndi->pages = NULL;
2678
2679    assert(tcg_enabled());
2680    if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2681        ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2682        tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2683    }
2684}
2685
2686/* Called within RCU critical section. */
2687void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2688{
2689    if (ndi->pages) {
2690        assert(tcg_enabled());
2691        page_collection_unlock(ndi->pages);
2692        ndi->pages = NULL;
2693    }
2694
2695    /* Set both VGA and migration bits for simplicity and to remove
2696     * the notdirty callback faster.
2697     */
2698    cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2699                                        DIRTY_CLIENTS_NOCODE);
2700    /* we remove the notdirty callback only if the code has been
2701       flushed */
2702    if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2703        tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2704    }
2705}
2706
2707/* Called within RCU critical section.  */
2708static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2709                               uint64_t val, unsigned size)
2710{
2711    NotDirtyInfo ndi;
2712
2713    memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2714                         ram_addr, size);
2715
2716    stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2717    memory_notdirty_write_complete(&ndi);
2718}
2719
2720static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2721                                 unsigned size, bool is_write,
2722                                 MemTxAttrs attrs)
2723{
2724    return is_write;
2725}
2726
2727static const MemoryRegionOps notdirty_mem_ops = {
2728    .write = notdirty_mem_write,
2729    .valid.accepts = notdirty_mem_accepts,
2730    .endianness = DEVICE_NATIVE_ENDIAN,
2731    .valid = {
2732        .min_access_size = 1,
2733        .max_access_size = 8,
2734        .unaligned = false,
2735    },
2736    .impl = {
2737        .min_access_size = 1,
2738        .max_access_size = 8,
2739        .unaligned = false,
2740    },
2741};
2742
2743/* Generate a debug exception if a watchpoint has been hit.  */
2744static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2745{
2746    CPUState *cpu = current_cpu;
2747    CPUClass *cc = CPU_GET_CLASS(cpu);
2748    target_ulong vaddr;
2749    CPUWatchpoint *wp;
2750
2751    assert(tcg_enabled());
2752    if (cpu->watchpoint_hit) {
2753        /* We re-entered the check after replacing the TB. Now raise
2754         * the debug interrupt so that is will trigger after the
2755         * current instruction. */
2756        cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2757        return;
2758    }
2759    vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2760    vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2761    QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2762        if (cpu_watchpoint_address_matches(wp, vaddr, len)
2763            && (wp->flags & flags)) {
2764            if (flags == BP_MEM_READ) {
2765                wp->flags |= BP_WATCHPOINT_HIT_READ;
2766            } else {
2767                wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2768            }
2769            wp->hitaddr = vaddr;
2770            wp->hitattrs = attrs;
2771            if (!cpu->watchpoint_hit) {
2772                if (wp->flags & BP_CPU &&
2773                    !cc->debug_check_watchpoint(cpu, wp)) {
2774                    wp->flags &= ~BP_WATCHPOINT_HIT;
2775                    continue;
2776                }
2777                cpu->watchpoint_hit = wp;
2778
2779                mmap_lock();
2780                tb_check_watchpoint(cpu);
2781                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2782                    cpu->exception_index = EXCP_DEBUG;
2783                    mmap_unlock();
2784                    cpu_loop_exit(cpu);
2785                } else {
2786                    /* Force execution of one insn next time.  */
2787                    cpu->cflags_next_tb = 1 | curr_cflags();
2788                    mmap_unlock();
2789                    cpu_loop_exit_noexc(cpu);
2790                }
2791            }
2792        } else {
2793            wp->flags &= ~BP_WATCHPOINT_HIT;
2794        }
2795    }
2796}
2797
2798/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
2799   so these check for a hit then pass through to the normal out-of-line
2800   phys routines.  */
2801static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2802                                  unsigned size, MemTxAttrs attrs)
2803{
2804    MemTxResult res;
2805    uint64_t data;
2806    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2807    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2808
2809    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2810    switch (size) {
2811    case 1:
2812        data = address_space_ldub(as, addr, attrs, &res);
2813        break;
2814    case 2:
2815        data = address_space_lduw(as, addr, attrs, &res);
2816        break;
2817    case 4:
2818        data = address_space_ldl(as, addr, attrs, &res);
2819        break;
2820    case 8:
2821        data = address_space_ldq(as, addr, attrs, &res);
2822        break;
2823    default: abort();
2824    }
2825    *pdata = data;
2826    return res;
2827}
2828
2829static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2830                                   uint64_t val, unsigned size,
2831                                   MemTxAttrs attrs)
2832{
2833    MemTxResult res;
2834    int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2835    AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2836
2837    check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2838    switch (size) {
2839    case 1:
2840        address_space_stb(as, addr, val, attrs, &res);
2841        break;
2842    case 2:
2843        address_space_stw(as, addr, val, attrs, &res);
2844        break;
2845    case 4:
2846        address_space_stl(as, addr, val, attrs, &res);
2847        break;
2848    case 8:
2849        address_space_stq(as, addr, val, attrs, &res);
2850        break;
2851    default: abort();
2852    }
2853    return res;
2854}
2855
2856static const MemoryRegionOps watch_mem_ops = {
2857    .read_with_attrs = watch_mem_read,
2858    .write_with_attrs = watch_mem_write,
2859    .endianness = DEVICE_NATIVE_ENDIAN,
2860    .valid = {
2861        .min_access_size = 1,
2862        .max_access_size = 8,
2863        .unaligned = false,
2864    },
2865    .impl = {
2866        .min_access_size = 1,
2867        .max_access_size = 8,
2868        .unaligned = false,
2869    },
2870};
2871
2872static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2873                                      MemTxAttrs attrs, uint8_t *buf, int len);
2874static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2875                                  const uint8_t *buf, int len);
2876static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2877                                  bool is_write, MemTxAttrs attrs);
2878
2879static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2880                                unsigned len, MemTxAttrs attrs)
2881{
2882    subpage_t *subpage = opaque;
2883    uint8_t buf[8];
2884    MemTxResult res;
2885
2886#if defined(DEBUG_SUBPAGE)
2887    printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2888           subpage, len, addr);
2889#endif
2890    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2891    if (res) {
2892        return res;
2893    }
2894    *data = ldn_p(buf, len);
2895    return MEMTX_OK;
2896}
2897
2898static MemTxResult subpage_write(void *opaque, hwaddr addr,
2899                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2900{
2901    subpage_t *subpage = opaque;
2902    uint8_t buf[8];
2903
2904#if defined(DEBUG_SUBPAGE)
2905    printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2906           " value %"PRIx64"\n",
2907           __func__, subpage, len, addr, value);
2908#endif
2909    stn_p(buf, len, value);
2910    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2911}
2912
2913static bool subpage_accepts(void *opaque, hwaddr addr,
2914                            unsigned len, bool is_write,
2915                            MemTxAttrs attrs)
2916{
2917    subpage_t *subpage = opaque;
2918#if defined(DEBUG_SUBPAGE)
2919    printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2920           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2921#endif
2922
2923    return flatview_access_valid(subpage->fv, addr + subpage->base,
2924                                 len, is_write, attrs);
2925}
2926
2927static const MemoryRegionOps subpage_ops = {
2928    .read_with_attrs = subpage_read,
2929    .write_with_attrs = subpage_write,
2930    .impl.min_access_size = 1,
2931    .impl.max_access_size = 8,
2932    .valid.min_access_size = 1,
2933    .valid.max_access_size = 8,
2934    .valid.accepts = subpage_accepts,
2935    .endianness = DEVICE_NATIVE_ENDIAN,
2936};
2937
2938static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2939                             uint16_t section)
2940{
2941    int idx, eidx;
2942
2943    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2944        return -1;
2945    idx = SUBPAGE_IDX(start);
2946    eidx = SUBPAGE_IDX(end);
2947#if defined(DEBUG_SUBPAGE)
2948    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2949           __func__, mmio, start, end, idx, eidx, section);
2950#endif
2951    for (; idx <= eidx; idx++) {
2952        mmio->sub_section[idx] = section;
2953    }
2954
2955    return 0;
2956}
2957
2958static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2959{
2960    subpage_t *mmio;
2961
2962    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2963    mmio->fv = fv;
2964    mmio->base = base;
2965    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2966                          NULL, TARGET_PAGE_SIZE);
2967    mmio->iomem.subpage = true;
2968#if defined(DEBUG_SUBPAGE)
2969    printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2970           mmio, base, TARGET_PAGE_SIZE);
2971#endif
2972    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2973
2974    return mmio;
2975}
2976
2977static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2978{
2979    assert(fv);
2980    MemoryRegionSection section = {
2981        .fv = fv,
2982        .mr = mr,
2983        .offset_within_address_space = 0,
2984        .offset_within_region = 0,
2985        .size = int128_2_64(),
2986    };
2987
2988    return phys_section_add(map, &section);
2989}
2990
2991static void readonly_mem_write(void *opaque, hwaddr addr,
2992                               uint64_t val, unsigned size)
2993{
2994    /* Ignore any write to ROM. */
2995}
2996
2997static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2998                                 unsigned size, bool is_write,
2999                                 MemTxAttrs attrs)
3000{
3001    return is_write;
3002}
3003
3004/* This will only be used for writes, because reads are special cased
3005 * to directly access the underlying host ram.
3006 */
3007static const MemoryRegionOps readonly_mem_ops = {
3008    .write = readonly_mem_write,
3009    .valid.accepts = readonly_mem_accepts,
3010    .endianness = DEVICE_NATIVE_ENDIAN,
3011    .valid = {
3012        .min_access_size = 1,
3013        .max_access_size = 8,
3014        .unaligned = false,
3015    },
3016    .impl = {
3017        .min_access_size = 1,
3018        .max_access_size = 8,
3019        .unaligned = false,
3020    },
3021};
3022
3023MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3024                                      hwaddr index, MemTxAttrs attrs)
3025{
3026    int asidx = cpu_asidx_from_attrs(cpu, attrs);
3027    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3028    AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3029    MemoryRegionSection *sections = d->map.sections;
3030
3031    return &sections[index & ~TARGET_PAGE_MASK];
3032}
3033
3034static void io_mem_init(void)
3035{
3036    memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3037                          NULL, NULL, UINT64_MAX);
3038    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3039                          NULL, UINT64_MAX);
3040
3041    /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3042     * which can be called without the iothread mutex.
3043     */
3044    memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3045                          NULL, UINT64_MAX);
3046    memory_region_clear_global_locking(&io_mem_notdirty);
3047
3048    memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3049                          NULL, UINT64_MAX);
3050}
3051
3052AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3053{
3054    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3055    uint16_t n;
3056
3057    n = dummy_section(&d->map, fv, &io_mem_unassigned);
3058    assert(n == PHYS_SECTION_UNASSIGNED);
3059    n = dummy_section(&d->map, fv, &io_mem_notdirty);
3060    assert(n == PHYS_SECTION_NOTDIRTY);
3061    n = dummy_section(&d->map, fv, &io_mem_rom);
3062    assert(n == PHYS_SECTION_ROM);
3063    n = dummy_section(&d->map, fv, &io_mem_watch);
3064    assert(n == PHYS_SECTION_WATCH);
3065
3066    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3067
3068    return d;
3069}
3070
3071void address_space_dispatch_free(AddressSpaceDispatch *d)
3072{
3073    phys_sections_free(&d->map);
3074    g_free(d);
3075}
3076
3077static void tcg_commit(MemoryListener *listener)
3078{
3079    CPUAddressSpace *cpuas;
3080    AddressSpaceDispatch *d;
3081
3082    assert(tcg_enabled());
3083    /* since each CPU stores ram addresses in its TLB cache, we must
3084       reset the modified entries */
3085    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3086    cpu_reloading_memory_map();
3087    /* The CPU and TLB are protected by the iothread lock.
3088     * We reload the dispatch pointer now because cpu_reloading_memory_map()
3089     * may have split the RCU critical section.
3090     */
3091    d = address_space_to_dispatch(cpuas->as);
3092    atomic_rcu_set(&cpuas->memory_dispatch, d);
3093    tlb_flush(cpuas->cpu);
3094}
3095
3096static void memory_map_init(void)
3097{
3098    system_memory = g_malloc(sizeof(*system_memory));
3099
3100    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3101    address_space_init(&address_space_memory, system_memory, "memory");
3102
3103    system_io = g_malloc(sizeof(*system_io));
3104    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3105                          65536);
3106    address_space_init(&address_space_io, system_io, "I/O");
3107}
3108
3109MemoryRegion *get_system_memory(void)
3110{
3111    return system_memory;
3112}
3113
3114MemoryRegion *get_system_io(void)
3115{
3116    return system_io;
3117}
3118
3119#endif /* !defined(CONFIG_USER_ONLY) */
3120
3121/* physical memory access (slow version, mainly for debug) */
3122#if defined(CONFIG_USER_ONLY)
3123int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3124                        uint8_t *buf, int len, int is_write)
3125{
3126    int l, flags;
3127    target_ulong page;
3128    void * p;
3129
3130    while (len > 0) {
3131        page = addr & TARGET_PAGE_MASK;
3132        l = (page + TARGET_PAGE_SIZE) - addr;
3133        if (l > len)
3134            l = len;
3135        flags = page_get_flags(page);
3136        if (!(flags & PAGE_VALID))
3137            return -1;
3138        if (is_write) {
3139            if (!(flags & PAGE_WRITE))
3140                return -1;
3141            /* XXX: this code should not depend on lock_user */
3142            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3143                return -1;
3144            memcpy(p, buf, l);
3145            unlock_user(p, addr, l);
3146        } else {
3147            if (!(flags & PAGE_READ))
3148                return -1;
3149            /* XXX: this code should not depend on lock_user */
3150            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3151                return -1;
3152            memcpy(buf, p, l);
3153            unlock_user(p, addr, 0);
3154        }
3155        len -= l;
3156        buf += l;
3157        addr += l;
3158    }
3159    return 0;
3160}
3161
3162#else
3163
3164static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3165                                     hwaddr length)
3166{
3167    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3168    addr += memory_region_get_ram_addr(mr);
3169
3170    /* No early return if dirty_log_mask is or becomes 0, because
3171     * cpu_physical_memory_set_dirty_range will still call
3172     * xen_modified_memory.
3173     */
3174    if (dirty_log_mask) {
3175        dirty_log_mask =
3176            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3177    }
3178    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3179        assert(tcg_enabled());
3180        tb_invalidate_phys_range(addr, addr + length);
3181        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3182    }
3183    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3184}
3185
3186static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3187{
3188    unsigned access_size_max = mr->ops->valid.max_access_size;
3189
3190    /* Regions are assumed to support 1-4 byte accesses unless
3191       otherwise specified.  */
3192    if (access_size_max == 0) {
3193        access_size_max = 4;
3194    }
3195
3196    /* Bound the maximum access by the alignment of the address.  */
3197    if (!mr->ops->impl.unaligned) {
3198        unsigned align_size_max = addr & -addr;
3199        if (align_size_max != 0 && align_size_max < access_size_max) {
3200            access_size_max = align_size_max;
3201        }
3202    }
3203
3204    /* Don't attempt accesses larger than the maximum.  */
3205    if (l > access_size_max) {
3206        l = access_size_max;
3207    }
3208    l = pow2floor(l);
3209
3210    return l;
3211}
3212
3213static bool prepare_mmio_access(MemoryRegion *mr)
3214{
3215    bool unlocked = !qemu_mutex_iothread_locked();
3216    bool release_lock = false;
3217
3218    if (unlocked && mr->global_locking) {
3219        qemu_mutex_lock_iothread();
3220        unlocked = false;
3221        release_lock = true;
3222    }
3223    if (mr->flush_coalesced_mmio) {
3224        if (unlocked) {
3225            qemu_mutex_lock_iothread();
3226        }
3227        qemu_flush_coalesced_mmio_buffer();
3228        if (unlocked) {
3229            qemu_mutex_unlock_iothread();
3230        }
3231    }
3232
3233    return release_lock;
3234}
3235
3236/* Called within RCU critical section.  */
3237static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3238                                           MemTxAttrs attrs,
3239                                           const uint8_t *buf,
3240                                           int len, hwaddr addr1,
3241                                           hwaddr l, MemoryRegion *mr)
3242{
3243    uint8_t *ptr;
3244    uint64_t val;
3245    MemTxResult result = MEMTX_OK;
3246    bool release_lock = false;
3247
3248    for (;;) {
3249        if (!memory_access_is_direct(mr, true)) {
3250            release_lock |= prepare_mmio_access(mr);
3251            l = memory_access_size(mr, l, addr1);
3252            /* XXX: could force current_cpu to NULL to avoid
3253               potential bugs */
3254            val = ldn_p(buf, l);
3255            result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3256        } else {
3257            /* RAM case */
3258            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3259            memcpy(ptr, buf, l);
3260            invalidate_and_set_dirty(mr, addr1, l);
3261        }
3262
3263        if (release_lock) {
3264            qemu_mutex_unlock_iothread();
3265            release_lock = false;
3266        }
3267
3268        len -= l;
3269        buf += l;
3270        addr += l;
3271
3272        if (!len) {
3273            break;
3274        }
3275
3276        l = len;
3277        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3278    }
3279
3280    return result;
3281}
3282
3283/* Called from RCU critical section.  */
3284static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3285                                  const uint8_t *buf, int len)
3286{
3287    hwaddr l;
3288    hwaddr addr1;
3289    MemoryRegion *mr;
3290    MemTxResult result = MEMTX_OK;
3291
3292    l = len;
3293    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3294    result = flatview_write_continue(fv, addr, attrs, buf, len,
3295                                     addr1, l, mr);
3296
3297    return result;
3298}
3299
3300/* Called within RCU critical section.  */
3301MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3302                                   MemTxAttrs attrs, uint8_t *buf,
3303                                   int len, hwaddr addr1, hwaddr l,
3304                                   MemoryRegion *mr)
3305{
3306    uint8_t *ptr;
3307    uint64_t val;
3308    MemTxResult result = MEMTX_OK;
3309    bool release_lock = false;
3310
3311    for (;;) {
3312        if (!memory_access_is_direct(mr, false)) {
3313            /* I/O case */
3314            release_lock |= prepare_mmio_access(mr);
3315            l = memory_access_size(mr, l, addr1);
3316            result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3317            stn_p(buf, l, val);
3318        } else {
3319            /* RAM case */
3320            ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3321            memcpy(buf, ptr, l);
3322        }
3323
3324        if (release_lock) {
3325            qemu_mutex_unlock_iothread();
3326            release_lock = false;
3327        }
3328
3329        len -= l;
3330        buf += l;
3331        addr += l;
3332
3333        if (!len) {
3334            break;
3335        }
3336
3337        l = len;
3338        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3339    }
3340
3341    return result;
3342}
3343
3344/* Called from RCU critical section.  */
3345static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3346                                 MemTxAttrs attrs, uint8_t *buf, int len)
3347{
3348    hwaddr l;
3349    hwaddr addr1;
3350    MemoryRegion *mr;
3351
3352    l = len;
3353    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3354    return flatview_read_continue(fv, addr, attrs, buf, len,
3355                                  addr1, l, mr);
3356}
3357
3358MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3359                                    MemTxAttrs attrs, uint8_t *buf, int len)
3360{
3361    MemTxResult result = MEMTX_OK;
3362    FlatView *fv;
3363
3364    if (len > 0) {
3365        rcu_read_lock();
3366        fv = address_space_to_flatview(as);
3367        result = flatview_read(fv, addr, attrs, buf, len);
3368        rcu_read_unlock();
3369    }
3370
3371    return result;
3372}
3373
3374MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3375                                MemTxAttrs attrs,
3376                                const uint8_t *buf, int len)
3377{
3378    MemTxResult result = MEMTX_OK;
3379    FlatView *fv;
3380
3381    if (len > 0) {
3382        rcu_read_lock();
3383        fv = address_space_to_flatview(as);
3384        result = flatview_write(fv, addr, attrs, buf, len);
3385        rcu_read_unlock();
3386    }
3387
3388    return result;
3389}
3390
3391MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3392                             uint8_t *buf, int len, bool is_write)
3393{
3394    if (is_write) {
3395        return address_space_write(as, addr, attrs, buf, len);
3396    } else {
3397        return address_space_read_full(as, addr, attrs, buf, len);
3398    }
3399}
3400
3401void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3402                            int len, int is_write)
3403{
3404    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3405                     buf, len, is_write);
3406}
3407
3408enum write_rom_type {
3409    WRITE_DATA,
3410    FLUSH_CACHE,
3411};
3412
3413static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3414    hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3415{
3416    hwaddr l;
3417    uint8_t *ptr;
3418    hwaddr addr1;
3419    MemoryRegion *mr;
3420
3421    rcu_read_lock();
3422    while (len > 0) {
3423        l = len;
3424        mr = address_space_translate(as, addr, &addr1, &l, true,
3425                                     MEMTXATTRS_UNSPECIFIED);
3426
3427        if (!(memory_region_is_ram(mr) ||
3428              memory_region_is_romd(mr))) {
3429            l = memory_access_size(mr, l, addr1);
3430        } else {
3431            /* ROM/RAM case */
3432            ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3433            switch (type) {
3434            case WRITE_DATA:
3435                memcpy(ptr, buf, l);
3436                invalidate_and_set_dirty(mr, addr1, l);
3437                break;
3438            case FLUSH_CACHE:
3439                flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3440                break;
3441            }
3442        }
3443        len -= l;
3444        buf += l;
3445        addr += l;
3446    }
3447    rcu_read_unlock();
3448}
3449
3450/* used for ROM loading : can write in RAM and ROM */
3451void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3452                                   const uint8_t *buf, int len)
3453{
3454    cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3455}
3456
3457void cpu_flush_icache_range(hwaddr start, int len)
3458{
3459    /*
3460     * This function should do the same thing as an icache flush that was
3461     * triggered from within the guest. For TCG we are always cache coherent,
3462     * so there is no need to flush anything. For KVM / Xen we need to flush
3463     * the host's instruction cache at least.
3464     */
3465    if (tcg_enabled()) {
3466        return;
3467    }
3468
3469    cpu_physical_memory_write_rom_internal(&address_space_memory,
3470                                           start, NULL, len, FLUSH_CACHE);
3471}
3472
3473typedef struct {
3474    MemoryRegion *mr;
3475    void *buffer;
3476    hwaddr addr;
3477    hwaddr len;
3478    bool in_use;
3479} BounceBuffer;
3480
3481static BounceBuffer bounce;
3482
3483typedef struct MapClient {
3484    QEMUBH *bh;
3485    QLIST_ENTRY(MapClient) link;
3486} MapClient;
3487
3488QemuMutex map_client_list_lock;
3489static QLIST_HEAD(map_client_list, MapClient) map_client_list
3490    = QLIST_HEAD_INITIALIZER(map_client_list);
3491
3492static void cpu_unregister_map_client_do(MapClient *client)
3493{
3494    QLIST_REMOVE(client, link);
3495    g_free(client);
3496}
3497
3498static void cpu_notify_map_clients_locked(void)
3499{
3500    MapClient *client;
3501
3502    while (!QLIST_EMPTY(&map_client_list)) {
3503        client = QLIST_FIRST(&map_client_list);
3504        qemu_bh_schedule(client->bh);
3505        cpu_unregister_map_client_do(client);
3506    }
3507}
3508
3509void cpu_register_map_client(QEMUBH *bh)
3510{
3511    MapClient *client = g_malloc(sizeof(*client));
3512
3513    qemu_mutex_lock(&map_client_list_lock);
3514    client->bh = bh;
3515    QLIST_INSERT_HEAD(&map_client_list, client, link);
3516    if (!atomic_read(&bounce.in_use)) {
3517        cpu_notify_map_clients_locked();
3518    }
3519    qemu_mutex_unlock(&map_client_list_lock);
3520}
3521
3522void cpu_exec_init_all(void)
3523{
3524    qemu_mutex_init(&ram_list.mutex);
3525    /* The data structures we set up here depend on knowing the page size,
3526     * so no more changes can be made after this point.
3527     * In an ideal world, nothing we did before we had finished the
3528     * machine setup would care about the target page size, and we could
3529     * do this much later, rather than requiring board models to state
3530     * up front what their requirements are.
3531     */
3532    finalize_target_page_bits();
3533    io_mem_init();
3534    memory_map_init();
3535    qemu_mutex_init(&map_client_list_lock);
3536}
3537
3538void cpu_unregister_map_client(QEMUBH *bh)
3539{
3540    MapClient *client;
3541
3542    qemu_mutex_lock(&map_client_list_lock);
3543    QLIST_FOREACH(client, &map_client_list, link) {
3544        if (client->bh == bh) {
3545            cpu_unregister_map_client_do(client);
3546            break;
3547        }
3548    }
3549    qemu_mutex_unlock(&map_client_list_lock);
3550}
3551
3552static void cpu_notify_map_clients(void)
3553{
3554    qemu_mutex_lock(&map_client_list_lock);
3555    cpu_notify_map_clients_locked();
3556    qemu_mutex_unlock(&map_client_list_lock);
3557}
3558
3559static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3560                                  bool is_write, MemTxAttrs attrs)
3561{
3562    MemoryRegion *mr;
3563    hwaddr l, xlat;
3564
3565    while (len > 0) {
3566        l = len;
3567        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3568        if (!memory_access_is_direct(mr, is_write)) {
3569            l = memory_access_size(mr, l, addr);
3570            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3571                return false;
3572            }
3573        }
3574
3575        len -= l;
3576        addr += l;
3577    }
3578    return true;
3579}
3580
3581bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3582                                int len, bool is_write,
3583                                MemTxAttrs attrs)
3584{
3585    FlatView *fv;
3586    bool result;
3587
3588    rcu_read_lock();
3589    fv = address_space_to_flatview(as);
3590    result = flatview_access_valid(fv, addr, len, is_write, attrs);
3591    rcu_read_unlock();
3592    return result;
3593}
3594
3595static hwaddr
3596flatview_extend_translation(FlatView *fv, hwaddr addr,
3597                            hwaddr target_len,
3598                            MemoryRegion *mr, hwaddr base, hwaddr len,
3599                            bool is_write, MemTxAttrs attrs)
3600{
3601    hwaddr done = 0;
3602    hwaddr xlat;
3603    MemoryRegion *this_mr;
3604
3605    for (;;) {
3606        target_len -= len;
3607        addr += len;
3608        done += len;
3609        if (target_len == 0) {
3610            return done;
3611        }
3612
3613        len = target_len;
3614        this_mr = flatview_translate(fv, addr, &xlat,
3615                                     &len, is_write, attrs);
3616        if (this_mr != mr || xlat != base + done) {
3617            return done;
3618        }
3619    }
3620}
3621
3622/* Map a physical memory region into a host virtual address.
3623 * May map a subset of the requested range, given by and returned in *plen.
3624 * May return NULL if resources needed to perform the mapping are exhausted.
3625 * Use only for reads OR writes - not for read-modify-write operations.
3626 * Use cpu_register_map_client() to know when retrying the map operation is
3627 * likely to succeed.
3628 */
3629void *address_space_map(AddressSpace *as,
3630                        hwaddr addr,
3631                        hwaddr *plen,
3632                        bool is_write,
3633                        MemTxAttrs attrs)
3634{
3635    hwaddr len = *plen;
3636    hwaddr l, xlat;
3637    MemoryRegion *mr;
3638    void *ptr;
3639    FlatView *fv;
3640
3641    if (len == 0) {
3642        return NULL;
3643    }
3644
3645    l = len;
3646    rcu_read_lock();
3647    fv = address_space_to_flatview(as);
3648    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3649
3650    if (!memory_access_is_direct(mr, is_write)) {
3651        if (atomic_xchg(&bounce.in_use, true)) {
3652            rcu_read_unlock();
3653            return NULL;
3654        }
3655        /* Avoid unbounded allocations */
3656        l = MIN(l, TARGET_PAGE_SIZE);
3657        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3658        bounce.addr = addr;
3659        bounce.len = l;
3660
3661        memory_region_ref(mr);
3662        bounce.mr = mr;
3663        if (!is_write) {
3664            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3665                               bounce.buffer, l);
3666        }
3667
3668        rcu_read_unlock();
3669        *plen = l;
3670        return bounce.buffer;
3671    }
3672
3673
3674    memory_region_ref(mr);
3675    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3676                                        l, is_write, attrs);
3677    ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3678    rcu_read_unlock();
3679
3680    return ptr;
3681}
3682
3683/* Unmaps a memory region previously mapped by address_space_map().
3684 * Will also mark the memory as dirty if is_write == 1.  access_len gives
3685 * the amount of memory that was actually read or written by the caller.
3686 */
3687void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3688                         int is_write, hwaddr access_len)
3689{
3690    if (buffer != bounce.buffer) {
3691        MemoryRegion *mr;
3692        ram_addr_t addr1;
3693
3694        mr = memory_region_from_host(buffer, &addr1);
3695        assert(mr != NULL);
3696        if (is_write) {
3697            invalidate_and_set_dirty(mr, addr1, access_len);
3698        }
3699        if (xen_enabled()) {
3700            xen_invalidate_map_cache_entry(buffer);
3701        }
3702        memory_region_unref(mr);
3703        return;
3704    }
3705    if (is_write) {
3706        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3707                            bounce.buffer, access_len);
3708    }
3709    qemu_vfree(bounce.buffer);
3710    bounce.buffer = NULL;
3711    memory_region_unref(bounce.mr);
3712    atomic_mb_set(&bounce.in_use, false);
3713    cpu_notify_map_clients();
3714}
3715
3716void *cpu_physical_memory_map(hwaddr addr,
3717                              hwaddr *plen,
3718                              int is_write)
3719{
3720    return address_space_map(&address_space_memory, addr, plen, is_write,
3721                             MEMTXATTRS_UNSPECIFIED);
3722}
3723
3724void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3725                               int is_write, hwaddr access_len)
3726{
3727    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3728}
3729
3730#define ARG1_DECL                AddressSpace *as
3731#define ARG1                     as
3732#define SUFFIX
3733#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3734#define RCU_READ_LOCK(...)       rcu_read_lock()
3735#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3736#include "memory_ldst.inc.c"
3737
3738int64_t address_space_cache_init(MemoryRegionCache *cache,
3739                                 AddressSpace *as,
3740                                 hwaddr addr,
3741                                 hwaddr len,
3742                                 bool is_write)
3743{
3744    AddressSpaceDispatch *d;
3745    hwaddr l;
3746    MemoryRegion *mr;
3747
3748    assert(len > 0);
3749
3750    l = len;
3751    cache->fv = address_space_get_flatview(as);
3752    d = flatview_to_dispatch(cache->fv);
3753    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3754
3755    mr = cache->mrs.mr;
3756    memory_region_ref(mr);
3757    if (memory_access_is_direct(mr, is_write)) {
3758        /* We don't care about the memory attributes here as we're only
3759         * doing this if we found actual RAM, which behaves the same
3760         * regardless of attributes; so UNSPECIFIED is fine.
3761         */
3762        l = flatview_extend_translation(cache->fv, addr, len, mr,
3763                                        cache->xlat, l, is_write,
3764                                        MEMTXATTRS_UNSPECIFIED);
3765        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3766    } else {
3767        cache->ptr = NULL;
3768    }
3769
3770    cache->len = l;
3771    cache->is_write = is_write;
3772    return l;
3773}
3774
3775void address_space_cache_invalidate(MemoryRegionCache *cache,
3776                                    hwaddr addr,
3777                                    hwaddr access_len)
3778{
3779    assert(cache->is_write);
3780    if (likely(cache->ptr)) {
3781        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3782    }
3783}
3784
3785void address_space_cache_destroy(MemoryRegionCache *cache)
3786{
3787    if (!cache->mrs.mr) {
3788        return;
3789    }
3790
3791    if (xen_enabled()) {
3792        xen_invalidate_map_cache_entry(cache->ptr);
3793    }
3794    memory_region_unref(cache->mrs.mr);
3795    flatview_unref(cache->fv);
3796    cache->mrs.mr = NULL;
3797    cache->fv = NULL;
3798}
3799
3800/* Called from RCU critical section.  This function has the same
3801 * semantics as address_space_translate, but it only works on a
3802 * predefined range of a MemoryRegion that was mapped with
3803 * address_space_cache_init.
3804 */
3805static inline MemoryRegion *address_space_translate_cached(
3806    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3807    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3808{
3809    MemoryRegionSection section;
3810    MemoryRegion *mr;
3811    IOMMUMemoryRegion *iommu_mr;
3812    AddressSpace *target_as;
3813
3814    assert(!cache->ptr);
3815    *xlat = addr + cache->xlat;
3816
3817    mr = cache->mrs.mr;
3818    iommu_mr = memory_region_get_iommu(mr);
3819    if (!iommu_mr) {
3820        /* MMIO region.  */
3821        return mr;
3822    }
3823
3824    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3825                                            NULL, is_write, true,
3826                                            &target_as, attrs);
3827    return section.mr;
3828}
3829
3830/* Called from RCU critical section. address_space_read_cached uses this
3831 * out of line function when the target is an MMIO or IOMMU region.
3832 */
3833void
3834address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3835                                   void *buf, int len)
3836{
3837    hwaddr addr1, l;
3838    MemoryRegion *mr;
3839
3840    l = len;
3841    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3842                                        MEMTXATTRS_UNSPECIFIED);
3843    flatview_read_continue(cache->fv,
3844                           addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3845                           addr1, l, mr);
3846}
3847
3848/* Called from RCU critical section. address_space_write_cached uses this
3849 * out of line function when the target is an MMIO or IOMMU region.
3850 */
3851void
3852address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3853                                    const void *buf, int len)
3854{
3855    hwaddr addr1, l;
3856    MemoryRegion *mr;
3857
3858    l = len;
3859    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3860                                        MEMTXATTRS_UNSPECIFIED);
3861    flatview_write_continue(cache->fv,
3862                            addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3863                            addr1, l, mr);
3864}
3865
3866#define ARG1_DECL                MemoryRegionCache *cache
3867#define ARG1                     cache
3868#define SUFFIX                   _cached_slow
3869#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3870#define RCU_READ_LOCK()          ((void)0)
3871#define RCU_READ_UNLOCK()        ((void)0)
3872#include "memory_ldst.inc.c"
3873
3874/* virtual memory access for debug (includes writing to ROM) */
3875int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3876                        uint8_t *buf, int len, int is_write)
3877{
3878    int l;
3879    hwaddr phys_addr;
3880    target_ulong page;
3881
3882    cpu_synchronize_state(cpu);
3883    while (len > 0) {
3884        int asidx;
3885        MemTxAttrs attrs;
3886
3887        page = addr & TARGET_PAGE_MASK;
3888        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3889        asidx = cpu_asidx_from_attrs(cpu, attrs);
3890        /* if no physical page mapped, return an error */
3891        if (phys_addr == -1)
3892            return -1;
3893        l = (page + TARGET_PAGE_SIZE) - addr;
3894        if (l > len)
3895            l = len;
3896        phys_addr += (addr & ~TARGET_PAGE_MASK);
3897        if (is_write) {
3898            cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3899                                          phys_addr, buf, l);
3900        } else {
3901            address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3902                             MEMTXATTRS_UNSPECIFIED,
3903                             buf, l, 0);
3904        }
3905        len -= l;
3906        buf += l;
3907        addr += l;
3908    }
3909    return 0;
3910}
3911
3912/*
3913 * Allows code that needs to deal with migration bitmaps etc to still be built
3914 * target independent.
3915 */
3916size_t qemu_target_page_size(void)
3917{
3918    return TARGET_PAGE_SIZE;
3919}
3920
3921int qemu_target_page_bits(void)
3922{
3923    return TARGET_PAGE_BITS;
3924}
3925
3926int qemu_target_page_bits_min(void)
3927{
3928    return TARGET_PAGE_BITS_MIN;
3929}
3930#endif
3931
3932/*
3933 * A helper function for the _utterly broken_ virtio device model to find out if
3934 * it's running on a big endian machine. Don't do this at home kids!
3935 */
3936bool target_words_bigendian(void);
3937bool target_words_bigendian(void)
3938{
3939#if defined(TARGET_WORDS_BIGENDIAN)
3940    return true;
3941#else
3942    return false;
3943#endif
3944}
3945
3946#ifndef CONFIG_USER_ONLY
3947bool cpu_physical_memory_is_io(hwaddr phys_addr)
3948{
3949    MemoryRegion*mr;
3950    hwaddr l = 1;
3951    bool res;
3952
3953    rcu_read_lock();
3954    mr = address_space_translate(&address_space_memory,
3955                                 phys_addr, &phys_addr, &l, false,
3956                                 MEMTXATTRS_UNSPECIFIED);
3957
3958    res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3959    rcu_read_unlock();
3960    return res;
3961}
3962
3963int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3964{
3965    RAMBlock *block;
3966    int ret = 0;
3967
3968    rcu_read_lock();
3969    RAMBLOCK_FOREACH(block) {
3970        ret = func(block->idstr, block->host, block->offset,
3971                   block->used_length, opaque);
3972        if (ret) {
3973            break;
3974        }
3975    }
3976    rcu_read_unlock();
3977    return ret;
3978}
3979
3980int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3981{
3982    RAMBlock *block;
3983    int ret = 0;
3984
3985    rcu_read_lock();
3986    RAMBLOCK_FOREACH(block) {
3987        if (!qemu_ram_is_migratable(block)) {
3988            continue;
3989        }
3990        ret = func(block->idstr, block->host, block->offset,
3991                   block->used_length, opaque);
3992        if (ret) {
3993            break;
3994        }
3995    }
3996    rcu_read_unlock();
3997    return ret;
3998}
3999
4000/*
4001 * Unmap pages of memory from start to start+length such that
4002 * they a) read as 0, b) Trigger whatever fault mechanism
4003 * the OS provides for postcopy.
4004 * The pages must be unmapped by the end of the function.
4005 * Returns: 0 on success, none-0 on failure
4006 *
4007 */
4008int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4009{
4010    int ret = -1;
4011
4012    uint8_t *host_startaddr = rb->host + start;
4013
4014    if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4015        error_report("ram_block_discard_range: Unaligned start address: %p",
4016                     host_startaddr);
4017        goto err;
4018    }
4019
4020    if ((start + length) <= rb->used_length) {
4021        bool need_madvise, need_fallocate;
4022        uint8_t *host_endaddr = host_startaddr + length;
4023        if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4024            error_report("ram_block_discard_range: Unaligned end address: %p",
4025                         host_endaddr);
4026            goto err;
4027        }
4028
4029        errno = ENOTSUP; /* If we are missing MADVISE etc */
4030
4031        /* The logic here is messy;
4032         *    madvise DONTNEED fails for hugepages
4033         *    fallocate works on hugepages and shmem
4034         */
4035        need_madvise = (rb->page_size == qemu_host_page_size);
4036        need_fallocate = rb->fd != -1;
4037        if (need_fallocate) {
4038            /* For a file, this causes the area of the file to be zero'd
4039             * if read, and for hugetlbfs also causes it to be unmapped
4040             * so a userfault will trigger.
4041             */
4042#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4043            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4044                            start, length);
4045            if (ret) {
4046                ret = -errno;
4047                error_report("ram_block_discard_range: Failed to fallocate "
4048                             "%s:%" PRIx64 " +%zx (%d)",
4049                             rb->idstr, start, length, ret);
4050                goto err;
4051            }
4052#else
4053            ret = -ENOSYS;
4054            error_report("ram_block_discard_range: fallocate not available/file"
4055                         "%s:%" PRIx64 " +%zx (%d)",
4056                         rb->idstr, start, length, ret);
4057            goto err;
4058#endif
4059        }
4060        if (need_madvise) {
4061            /* For normal RAM this causes it to be unmapped,
4062             * for shared memory it causes the local mapping to disappear
4063             * and to fall back on the file contents (which we just
4064             * fallocate'd away).
4065             */
4066#if defined(CONFIG_MADVISE)
4067            ret =  madvise(host_startaddr, length, MADV_DONTNEED);
4068            if (ret) {
4069                ret = -errno;
4070                error_report("ram_block_discard_range: Failed to discard range "
4071                             "%s:%" PRIx64 " +%zx (%d)",
4072                             rb->idstr, start, length, ret);
4073                goto err;
4074            }
4075#else
4076            ret = -ENOSYS;
4077            error_report("ram_block_discard_range: MADVISE not available"
4078                         "%s:%" PRIx64 " +%zx (%d)",
4079                         rb->idstr, start, length, ret);
4080            goto err;
4081#endif
4082        }
4083        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4084                                      need_madvise, need_fallocate, ret);
4085    } else {
4086        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4087                     "/%zx/" RAM_ADDR_FMT")",
4088                     rb->idstr, start, length, rb->used_length);
4089    }
4090
4091err:
4092    return ret;
4093}
4094
4095#endif
4096
4097void page_size_init(void)
4098{
4099    /* NOTE: we can always suppose that qemu_host_page_size >=
4100       TARGET_PAGE_SIZE */
4101    if (qemu_host_page_size == 0) {
4102        qemu_host_page_size = qemu_real_host_page_size;
4103    }
4104    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4105        qemu_host_page_size = TARGET_PAGE_SIZE;
4106    }
4107    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4108}
4109
4110#if !defined(CONFIG_USER_ONLY)
4111
4112static void mtree_print_phys_entries(fprintf_function mon, void *f,
4113                                     int start, int end, int skip, int ptr)
4114{
4115    if (start == end - 1) {
4116        mon(f, "\t%3d      ", start);
4117    } else {
4118        mon(f, "\t%3d..%-3d ", start, end - 1);
4119    }
4120    mon(f, " skip=%d ", skip);
4121    if (ptr == PHYS_MAP_NODE_NIL) {
4122        mon(f, " ptr=NIL");
4123    } else if (!skip) {
4124        mon(f, " ptr=#%d", ptr);
4125    } else {
4126        mon(f, " ptr=[%d]", ptr);
4127    }
4128    mon(f, "\n");
4129}
4130
4131#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4132                           int128_sub((size), int128_one())) : 0)
4133
4134void mtree_print_dispatch(fprintf_function mon, void *f,
4135                          AddressSpaceDispatch *d, MemoryRegion *root)
4136{
4137    int i;
4138
4139    mon(f, "  Dispatch\n");
4140    mon(f, "    Physical sections\n");
4141
4142    for (i = 0; i < d->map.sections_nb; ++i) {
4143        MemoryRegionSection *s = d->map.sections + i;
4144        const char *names[] = { " [unassigned]", " [not dirty]",
4145                                " [ROM]", " [watch]" };
4146
4147        mon(f, "      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4148            i,
4149            s->offset_within_address_space,
4150            s->offset_within_address_space + MR_SIZE(s->mr->size),
4151            s->mr->name ? s->mr->name : "(noname)",
4152            i < ARRAY_SIZE(names) ? names[i] : "",
4153            s->mr == root ? " [ROOT]" : "",
4154            s == d->mru_section ? " [MRU]" : "",
4155            s->mr->is_iommu ? " [iommu]" : "");
4156
4157        if (s->mr->alias) {
4158            mon(f, " alias=%s", s->mr->alias->name ?
4159                    s->mr->alias->name : "noname");
4160        }
4161        mon(f, "\n");
4162    }
4163
4164    mon(f, "    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4165               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4166    for (i = 0; i < d->map.nodes_nb; ++i) {
4167        int j, jprev;
4168        PhysPageEntry prev;
4169        Node *n = d->map.nodes + i;
4170
4171        mon(f, "      [%d]\n", i);
4172
4173        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4174            PhysPageEntry *pe = *n + j;
4175
4176            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4177                continue;
4178            }
4179
4180            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4181
4182            jprev = j;
4183            prev = *pe;
4184        }
4185
4186        if (jprev != ARRAY_SIZE(*n)) {
4187            mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4188        }
4189    }
4190}
4191
4192#endif
4193