qemu/hw/arm/iotkit.c
<<
>>
Prefs
   1/*
   2 * Arm IoT Kit
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "qapi/error.h"
  15#include "trace.h"
  16#include "hw/sysbus.h"
  17#include "hw/registerfields.h"
  18#include "hw/arm/iotkit.h"
  19#include "hw/misc/unimp.h"
  20#include "hw/arm/arm.h"
  21
  22/* Create an alias region of @size bytes starting at @base
  23 * which mirrors the memory starting at @orig.
  24 */
  25static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
  26                       hwaddr base, hwaddr size, hwaddr orig)
  27{
  28    memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
  29    /* The alias is even lower priority than unimplemented_device regions */
  30    memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
  31}
  32
  33static void irq_status_forwarder(void *opaque, int n, int level)
  34{
  35    qemu_irq destirq = opaque;
  36
  37    qemu_set_irq(destirq, level);
  38}
  39
  40static void nsccfg_handler(void *opaque, int n, int level)
  41{
  42    IoTKit *s = IOTKIT(opaque);
  43
  44    s->nsccfg = level;
  45}
  46
  47static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
  48{
  49    /* Each of the 4 AHB and 4 APB PPCs that might be present in a
  50     * system using the IoTKit has a collection of control lines which
  51     * are provided by the security controller and which we want to
  52     * expose as control lines on the IoTKit device itself, so the
  53     * code using the IoTKit can wire them up to the PPCs.
  54     */
  55    SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
  56    DeviceState *iotkitdev = DEVICE(s);
  57    DeviceState *dev_secctl = DEVICE(&s->secctl);
  58    DeviceState *dev_splitter = DEVICE(splitter);
  59    char *name;
  60
  61    name = g_strdup_printf("%s_nonsec", ppcname);
  62    qdev_pass_gpios(dev_secctl, iotkitdev, name);
  63    g_free(name);
  64    name = g_strdup_printf("%s_ap", ppcname);
  65    qdev_pass_gpios(dev_secctl, iotkitdev, name);
  66    g_free(name);
  67    name = g_strdup_printf("%s_irq_enable", ppcname);
  68    qdev_pass_gpios(dev_secctl, iotkitdev, name);
  69    g_free(name);
  70    name = g_strdup_printf("%s_irq_clear", ppcname);
  71    qdev_pass_gpios(dev_secctl, iotkitdev, name);
  72    g_free(name);
  73
  74    /* irq_status is a little more tricky, because we need to
  75     * split it so we can send it both to the security controller
  76     * and to our OR gate for the NVIC interrupt line.
  77     * Connect up the splitter's outputs, and create a GPIO input
  78     * which will pass the line state to the input splitter.
  79     */
  80    name = g_strdup_printf("%s_irq_status", ppcname);
  81    qdev_connect_gpio_out(dev_splitter, 0,
  82                          qdev_get_gpio_in_named(dev_secctl,
  83                                                 name, 0));
  84    qdev_connect_gpio_out(dev_splitter, 1,
  85                          qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
  86    s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
  87    qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
  88                                        s->irq_status_in[ppcnum], name, 1);
  89    g_free(name);
  90}
  91
  92static void iotkit_forward_sec_resp_cfg(IoTKit *s)
  93{
  94    /* Forward the 3rd output from the splitter device as a
  95     * named GPIO output of the iotkit object.
  96     */
  97    DeviceState *dev = DEVICE(s);
  98    DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
  99
 100    qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
 101    s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
 102                                           s->sec_resp_cfg, 1);
 103    qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
 104}
 105
 106static void iotkit_init(Object *obj)
 107{
 108    IoTKit *s = IOTKIT(obj);
 109    int i;
 110
 111    memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
 112
 113    sysbus_init_child_obj(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
 114                          TYPE_ARMV7M);
 115    qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
 116                         ARM_CPU_TYPE_NAME("cortex-m33"));
 117
 118    sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
 119                          TYPE_IOTKIT_SECCTL);
 120    sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
 121                          TYPE_TZ_PPC);
 122    sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
 123                          TYPE_TZ_PPC);
 124    sysbus_init_child_obj(obj, "mpc", &s->mpc, sizeof(s->mpc), TYPE_TZ_MPC);
 125    object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
 126                            sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
 127                            &error_abort, NULL);
 128
 129    for (i = 0; i < ARRAY_SIZE(s->mpc_irq_splitter); i++) {
 130        char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
 131        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
 132
 133        object_initialize_child(obj, name, splitter, sizeof(*splitter),
 134                                TYPE_SPLIT_IRQ, &error_abort, NULL);
 135        g_free(name);
 136    }
 137    sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
 138                          TYPE_CMSDK_APB_TIMER);
 139    sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
 140                          TYPE_CMSDK_APB_TIMER);
 141    sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
 142                          TYPE_UNIMPLEMENTED_DEVICE);
 143    object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
 144                            sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
 145                            &error_abort, NULL);
 146    object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
 147                            sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
 148                            &error_abort, NULL);
 149    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
 150        char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
 151        SplitIRQ *splitter = &s->ppc_irq_splitter[i];
 152
 153        object_initialize_child(obj, name, splitter, sizeof(*splitter),
 154                                TYPE_SPLIT_IRQ, &error_abort, NULL);
 155        g_free(name);
 156    }
 157    sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
 158                          TYPE_UNIMPLEMENTED_DEVICE);
 159}
 160
 161static void iotkit_exp_irq(void *opaque, int n, int level)
 162{
 163    IoTKit *s = IOTKIT(opaque);
 164
 165    qemu_set_irq(s->exp_irqs[n], level);
 166}
 167
 168static void iotkit_mpcexp_status(void *opaque, int n, int level)
 169{
 170    IoTKit *s = IOTKIT(opaque);
 171    qemu_set_irq(s->mpcexp_status_in[n], level);
 172}
 173
 174static void iotkit_realize(DeviceState *dev, Error **errp)
 175{
 176    IoTKit *s = IOTKIT(dev);
 177    int i;
 178    MemoryRegion *mr;
 179    Error *err = NULL;
 180    SysBusDevice *sbd_apb_ppc0;
 181    SysBusDevice *sbd_secctl;
 182    DeviceState *dev_apb_ppc0;
 183    DeviceState *dev_apb_ppc1;
 184    DeviceState *dev_secctl;
 185    DeviceState *dev_splitter;
 186
 187    if (!s->board_memory) {
 188        error_setg(errp, "memory property was not set");
 189        return;
 190    }
 191
 192    if (!s->mainclk_frq) {
 193        error_setg(errp, "MAINCLK property was not set");
 194        return;
 195    }
 196
 197    /* Handling of which devices should be available only to secure
 198     * code is usually done differently for M profile than for A profile.
 199     * Instead of putting some devices only into the secure address space,
 200     * devices exist in both address spaces but with hard-wired security
 201     * permissions that will cause the CPU to fault for non-secure accesses.
 202     *
 203     * The IoTKit has an IDAU (Implementation Defined Access Unit),
 204     * which specifies hard-wired security permissions for different
 205     * areas of the physical address space. For the IoTKit IDAU, the
 206     * top 4 bits of the physical address are the IDAU region ID, and
 207     * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
 208     * region, otherwise it is an S region.
 209     *
 210     * The various devices and RAMs are generally all mapped twice,
 211     * once into a region that the IDAU defines as secure and once
 212     * into a non-secure region. They sit behind either a Memory
 213     * Protection Controller (for RAM) or a Peripheral Protection
 214     * Controller (for devices), which allow a more fine grained
 215     * configuration of whether non-secure accesses are permitted.
 216     *
 217     * (The other place that guest software can configure security
 218     * permissions is in the architected SAU (Security Attribution
 219     * Unit), which is entirely inside the CPU. The IDAU can upgrade
 220     * the security attributes for a region to more restrictive than
 221     * the SAU specifies, but cannot downgrade them.)
 222     *
 223     * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
 224     * 0x20000000..0x2007ffff  32KB FPGA block RAM
 225     * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
 226     * 0x40000000..0x4000ffff  base peripheral region 1
 227     * 0x40010000..0x4001ffff  CPU peripherals (none for IoTKit)
 228     * 0x40020000..0x4002ffff  system control element peripherals
 229     * 0x40080000..0x400fffff  base peripheral region 2
 230     * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
 231     */
 232
 233    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
 234
 235    qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
 236    /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
 237     * register in the IoT Kit System Control Register block, and the
 238     * initial value of that is in turn specifiable by the FPGA that
 239     * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
 240     * and simply set the CPU's init-svtor to the IoT Kit default value.
 241     */
 242    qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
 243    object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
 244                             "memory", &err);
 245    if (err) {
 246        error_propagate(errp, err);
 247        return;
 248    }
 249    object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
 250    if (err) {
 251        error_propagate(errp, err);
 252        return;
 253    }
 254    object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
 255    if (err) {
 256        error_propagate(errp, err);
 257        return;
 258    }
 259
 260    /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
 261    s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
 262    for (i = 0; i < s->exp_numirq; i++) {
 263        s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
 264    }
 265    qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
 266
 267    /* Set up the big aliases first */
 268    make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
 269    make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
 270    /* The 0x50000000..0x5fffffff region is not a pure alias: it has
 271     * a few extra devices that only appear there (generally the
 272     * control interfaces for the protection controllers).
 273     * We implement this by mapping those devices over the top of this
 274     * alias MR at a higher priority.
 275     */
 276    make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
 277
 278
 279    /* Security controller */
 280    object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
 281    if (err) {
 282        error_propagate(errp, err);
 283        return;
 284    }
 285    sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
 286    dev_secctl = DEVICE(&s->secctl);
 287    sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
 288    sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
 289
 290    s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
 291    qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
 292
 293    /* The sec_resp_cfg output from the security controller must be split into
 294     * multiple lines, one for each of the PPCs within the IoTKit and one
 295     * that will be an output from the IoTKit to the system.
 296     */
 297    object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
 298                            "num-lines", &err);
 299    if (err) {
 300        error_propagate(errp, err);
 301        return;
 302    }
 303    object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
 304                             "realized", &err);
 305    if (err) {
 306        error_propagate(errp, err);
 307        return;
 308    }
 309    dev_splitter = DEVICE(&s->sec_resp_splitter);
 310    qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
 311                                qdev_get_gpio_in(dev_splitter, 0));
 312
 313    /* This RAM lives behind the Memory Protection Controller */
 314    memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
 315    if (err) {
 316        error_propagate(errp, err);
 317        return;
 318    }
 319    object_property_set_link(OBJECT(&s->mpc), OBJECT(&s->sram0),
 320                             "downstream", &err);
 321    if (err) {
 322        error_propagate(errp, err);
 323        return;
 324    }
 325    object_property_set_bool(OBJECT(&s->mpc), true, "realized", &err);
 326    if (err) {
 327        error_propagate(errp, err);
 328        return;
 329    }
 330    /* Map the upstream end of the MPC into the right place... */
 331    memory_region_add_subregion(&s->container, 0x20000000,
 332                                sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
 333                                                       1));
 334    /* ...and its register interface */
 335    memory_region_add_subregion(&s->container, 0x50083000,
 336                                sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
 337                                                       0));
 338
 339    /* We must OR together lines from the MPC splitters to go to the NVIC */
 340    object_property_set_int(OBJECT(&s->mpc_irq_orgate),
 341                            IOTS_NUM_EXP_MPC + IOTS_NUM_MPC, "num-lines", &err);
 342    if (err) {
 343        error_propagate(errp, err);
 344        return;
 345    }
 346    object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
 347                             "realized", &err);
 348    if (err) {
 349        error_propagate(errp, err);
 350        return;
 351    }
 352    qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
 353                          qdev_get_gpio_in(DEVICE(&s->armv7m), 9));
 354
 355    /* Devices behind APB PPC0:
 356     *   0x40000000: timer0
 357     *   0x40001000: timer1
 358     *   0x40002000: dual timer
 359     * We must configure and realize each downstream device and connect
 360     * it to the appropriate PPC port; then we can realize the PPC and
 361     * map its upstream ends to the right place in the container.
 362     */
 363    qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
 364    object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
 365    if (err) {
 366        error_propagate(errp, err);
 367        return;
 368    }
 369    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
 370                       qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
 371    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
 372    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
 373    if (err) {
 374        error_propagate(errp, err);
 375        return;
 376    }
 377
 378    qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
 379    object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
 380    if (err) {
 381        error_propagate(errp, err);
 382        return;
 383    }
 384    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
 385                       qdev_get_gpio_in(DEVICE(&s->armv7m), 4));
 386    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
 387    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
 388    if (err) {
 389        error_propagate(errp, err);
 390        return;
 391    }
 392
 393    qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer");
 394    qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000);
 395    object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
 396    if (err) {
 397        error_propagate(errp, err);
 398        return;
 399    }
 400    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
 401    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
 402    if (err) {
 403        error_propagate(errp, err);
 404        return;
 405    }
 406
 407    object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
 408    if (err) {
 409        error_propagate(errp, err);
 410        return;
 411    }
 412
 413    sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
 414    dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
 415
 416    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
 417    memory_region_add_subregion(&s->container, 0x40000000, mr);
 418    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
 419    memory_region_add_subregion(&s->container, 0x40001000, mr);
 420    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
 421    memory_region_add_subregion(&s->container, 0x40002000, mr);
 422    for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
 423        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
 424                                    qdev_get_gpio_in_named(dev_apb_ppc0,
 425                                                           "cfg_nonsec", i));
 426        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
 427                                    qdev_get_gpio_in_named(dev_apb_ppc0,
 428                                                           "cfg_ap", i));
 429    }
 430    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
 431                                qdev_get_gpio_in_named(dev_apb_ppc0,
 432                                                       "irq_enable", 0));
 433    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
 434                                qdev_get_gpio_in_named(dev_apb_ppc0,
 435                                                       "irq_clear", 0));
 436    qdev_connect_gpio_out(dev_splitter, 0,
 437                          qdev_get_gpio_in_named(dev_apb_ppc0,
 438                                                 "cfg_sec_resp", 0));
 439
 440    /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
 441     * ones) are sent individually to the security controller, and also
 442     * ORed together to give a single combined PPC interrupt to the NVIC.
 443     */
 444    object_property_set_int(OBJECT(&s->ppc_irq_orgate),
 445                            NUM_PPCS, "num-lines", &err);
 446    if (err) {
 447        error_propagate(errp, err);
 448        return;
 449    }
 450    object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
 451                             "realized", &err);
 452    if (err) {
 453        error_propagate(errp, err);
 454        return;
 455    }
 456    qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
 457                          qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
 458
 459    /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
 460
 461    /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
 462    /* Devices behind APB PPC1:
 463     *   0x4002f000: S32K timer
 464     */
 465    qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER");
 466    qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000);
 467    object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
 468    if (err) {
 469        error_propagate(errp, err);
 470        return;
 471    }
 472    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
 473    object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
 474    if (err) {
 475        error_propagate(errp, err);
 476        return;
 477    }
 478
 479    object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
 480    if (err) {
 481        error_propagate(errp, err);
 482        return;
 483    }
 484    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
 485    memory_region_add_subregion(&s->container, 0x4002f000, mr);
 486
 487    dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
 488    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
 489                                qdev_get_gpio_in_named(dev_apb_ppc1,
 490                                                       "cfg_nonsec", 0));
 491    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
 492                                qdev_get_gpio_in_named(dev_apb_ppc1,
 493                                                       "cfg_ap", 0));
 494    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
 495                                qdev_get_gpio_in_named(dev_apb_ppc1,
 496                                                       "irq_enable", 0));
 497    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
 498                                qdev_get_gpio_in_named(dev_apb_ppc1,
 499                                                       "irq_clear", 0));
 500    qdev_connect_gpio_out(dev_splitter, 1,
 501                          qdev_get_gpio_in_named(dev_apb_ppc1,
 502                                                 "cfg_sec_resp", 0));
 503
 504    /* Using create_unimplemented_device() maps the stub into the
 505     * system address space rather than into our container, but the
 506     * overall effect to the guest is the same.
 507     */
 508    create_unimplemented_device("SYSINFO", 0x40020000, 0x1000);
 509
 510    create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000);
 511    create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000);
 512
 513    /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
 514
 515    create_unimplemented_device("NS watchdog", 0x40081000, 0x1000);
 516    create_unimplemented_device("S watchdog", 0x50081000, 0x1000);
 517
 518    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
 519        Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
 520
 521        object_property_set_int(splitter, 2, "num-lines", &err);
 522        if (err) {
 523            error_propagate(errp, err);
 524            return;
 525        }
 526        object_property_set_bool(splitter, true, "realized", &err);
 527        if (err) {
 528            error_propagate(errp, err);
 529            return;
 530        }
 531    }
 532
 533    for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
 534        char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
 535
 536        iotkit_forward_ppc(s, ppcname, i);
 537        g_free(ppcname);
 538    }
 539
 540    for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
 541        char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
 542
 543        iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
 544        g_free(ppcname);
 545    }
 546
 547    for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
 548        /* Wire up IRQ splitter for internal PPCs */
 549        DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
 550        char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
 551                                         i - NUM_EXTERNAL_PPCS);
 552        TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
 553
 554        qdev_connect_gpio_out(devs, 0,
 555                              qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
 556        qdev_connect_gpio_out(devs, 1,
 557                              qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
 558        qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
 559                                    qdev_get_gpio_in(devs, 0));
 560        g_free(gpioname);
 561    }
 562
 563    /* Wire up the splitters for the MPC IRQs */
 564    for (i = 0; i < IOTS_NUM_EXP_MPC + IOTS_NUM_MPC; i++) {
 565        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
 566        DeviceState *dev_splitter = DEVICE(splitter);
 567
 568        object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
 569        if (err) {
 570            error_propagate(errp, err);
 571            return;
 572        }
 573        object_property_set_bool(OBJECT(splitter), true, "realized", &err);
 574        if (err) {
 575            error_propagate(errp, err);
 576            return;
 577        }
 578
 579        if (i < IOTS_NUM_EXP_MPC) {
 580            /* Splitter input is from GPIO input line */
 581            s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
 582            qdev_connect_gpio_out(dev_splitter, 0,
 583                                  qdev_get_gpio_in_named(dev_secctl,
 584                                                         "mpcexp_status", i));
 585        } else {
 586            /* Splitter input is from our own MPC */
 587            qdev_connect_gpio_out_named(DEVICE(&s->mpc), "irq", 0,
 588                                        qdev_get_gpio_in(dev_splitter, 0));
 589            qdev_connect_gpio_out(dev_splitter, 0,
 590                                  qdev_get_gpio_in_named(dev_secctl,
 591                                                         "mpc_status", 0));
 592        }
 593
 594        qdev_connect_gpio_out(dev_splitter, 1,
 595                              qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
 596    }
 597    /* Create GPIO inputs which will pass the line state for our
 598     * mpcexp_irq inputs to the correct splitter devices.
 599     */
 600    qdev_init_gpio_in_named(dev, iotkit_mpcexp_status, "mpcexp_status",
 601                            IOTS_NUM_EXP_MPC);
 602
 603    iotkit_forward_sec_resp_cfg(s);
 604
 605    system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
 606}
 607
 608static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
 609                              int *iregion, bool *exempt, bool *ns, bool *nsc)
 610{
 611    /* For IoTKit systems the IDAU responses are simple logical functions
 612     * of the address bits. The NSC attribute is guest-adjustable via the
 613     * NSCCFG register in the security controller.
 614     */
 615    IoTKit *s = IOTKIT(ii);
 616    int region = extract32(address, 28, 4);
 617
 618    *ns = !(region & 1);
 619    *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
 620    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
 621    *exempt = (address & 0xeff00000) == 0xe0000000;
 622    *iregion = region;
 623}
 624
 625static const VMStateDescription iotkit_vmstate = {
 626    .name = "iotkit",
 627    .version_id = 1,
 628    .minimum_version_id = 1,
 629    .fields = (VMStateField[]) {
 630        VMSTATE_UINT32(nsccfg, IoTKit),
 631        VMSTATE_END_OF_LIST()
 632    }
 633};
 634
 635static Property iotkit_properties[] = {
 636    DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
 637                     MemoryRegion *),
 638    DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
 639    DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
 640    DEFINE_PROP_END_OF_LIST()
 641};
 642
 643static void iotkit_reset(DeviceState *dev)
 644{
 645    IoTKit *s = IOTKIT(dev);
 646
 647    s->nsccfg = 0;
 648}
 649
 650static void iotkit_class_init(ObjectClass *klass, void *data)
 651{
 652    DeviceClass *dc = DEVICE_CLASS(klass);
 653    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
 654
 655    dc->realize = iotkit_realize;
 656    dc->vmsd = &iotkit_vmstate;
 657    dc->props = iotkit_properties;
 658    dc->reset = iotkit_reset;
 659    iic->check = iotkit_idau_check;
 660}
 661
 662static const TypeInfo iotkit_info = {
 663    .name = TYPE_IOTKIT,
 664    .parent = TYPE_SYS_BUS_DEVICE,
 665    .instance_size = sizeof(IoTKit),
 666    .instance_init = iotkit_init,
 667    .class_init = iotkit_class_init,
 668    .interfaces = (InterfaceInfo[]) {
 669        { TYPE_IDAU_INTERFACE },
 670        { }
 671    }
 672};
 673
 674static void iotkit_register_types(void)
 675{
 676    type_register_static(&iotkit_info);
 677}
 678
 679type_init(iotkit_register_types);
 680