qemu/hw/block/nvme.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
  13 *
  14 *  http://www.nvmexpress.org/resources/
  15 */
  16
  17/**
  18 * Usage: add options:
  19 *      -drive file=<file>,if=none,id=<drive_id>
  20 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
  21 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  22 *              num_queues=<N[optional]>
  23 *
  24 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  25 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/units.h"
  30#include "hw/block/block.h"
  31#include "hw/hw.h"
  32#include "hw/pci/msix.h"
  33#include "hw/pci/pci.h"
  34#include "sysemu/sysemu.h"
  35#include "qapi/error.h"
  36#include "qapi/visitor.h"
  37#include "sysemu/block-backend.h"
  38
  39#include "qemu/log.h"
  40#include "qemu/cutils.h"
  41#include "trace.h"
  42#include "nvme.h"
  43
  44#define NVME_GUEST_ERR(trace, fmt, ...) \
  45    do { \
  46        (trace_##trace)(__VA_ARGS__); \
  47        qemu_log_mask(LOG_GUEST_ERROR, #trace \
  48            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
  49    } while (0)
  50
  51static void nvme_process_sq(void *opaque);
  52
  53static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
  54{
  55    if (n->cmbsz && addr >= n->ctrl_mem.addr &&
  56                addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
  57        memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
  58    } else {
  59        pci_dma_read(&n->parent_obj, addr, buf, size);
  60    }
  61}
  62
  63static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
  64{
  65    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
  66}
  67
  68static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
  69{
  70    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
  71}
  72
  73static void nvme_inc_cq_tail(NvmeCQueue *cq)
  74{
  75    cq->tail++;
  76    if (cq->tail >= cq->size) {
  77        cq->tail = 0;
  78        cq->phase = !cq->phase;
  79    }
  80}
  81
  82static void nvme_inc_sq_head(NvmeSQueue *sq)
  83{
  84    sq->head = (sq->head + 1) % sq->size;
  85}
  86
  87static uint8_t nvme_cq_full(NvmeCQueue *cq)
  88{
  89    return (cq->tail + 1) % cq->size == cq->head;
  90}
  91
  92static uint8_t nvme_sq_empty(NvmeSQueue *sq)
  93{
  94    return sq->head == sq->tail;
  95}
  96
  97static void nvme_irq_check(NvmeCtrl *n)
  98{
  99    if (msix_enabled(&(n->parent_obj))) {
 100        return;
 101    }
 102    if (~n->bar.intms & n->irq_status) {
 103        pci_irq_assert(&n->parent_obj);
 104    } else {
 105        pci_irq_deassert(&n->parent_obj);
 106    }
 107}
 108
 109static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 110{
 111    if (cq->irq_enabled) {
 112        if (msix_enabled(&(n->parent_obj))) {
 113            trace_nvme_irq_msix(cq->vector);
 114            msix_notify(&(n->parent_obj), cq->vector);
 115        } else {
 116            trace_nvme_irq_pin();
 117            assert(cq->cqid < 64);
 118            n->irq_status |= 1 << cq->cqid;
 119            nvme_irq_check(n);
 120        }
 121    } else {
 122        trace_nvme_irq_masked();
 123    }
 124}
 125
 126static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 127{
 128    if (cq->irq_enabled) {
 129        if (msix_enabled(&(n->parent_obj))) {
 130            return;
 131        } else {
 132            assert(cq->cqid < 64);
 133            n->irq_status &= ~(1 << cq->cqid);
 134            nvme_irq_check(n);
 135        }
 136    }
 137}
 138
 139static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
 140                             uint64_t prp2, uint32_t len, NvmeCtrl *n)
 141{
 142    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 143    trans_len = MIN(len, trans_len);
 144    int num_prps = (len >> n->page_bits) + 1;
 145
 146    if (unlikely(!prp1)) {
 147        trace_nvme_err_invalid_prp();
 148        return NVME_INVALID_FIELD | NVME_DNR;
 149    } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
 150               prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
 151        qsg->nsg = 0;
 152        qemu_iovec_init(iov, num_prps);
 153        qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
 154    } else {
 155        pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
 156        qemu_sglist_add(qsg, prp1, trans_len);
 157    }
 158    len -= trans_len;
 159    if (len) {
 160        if (unlikely(!prp2)) {
 161            trace_nvme_err_invalid_prp2_missing();
 162            goto unmap;
 163        }
 164        if (len > n->page_size) {
 165            uint64_t prp_list[n->max_prp_ents];
 166            uint32_t nents, prp_trans;
 167            int i = 0;
 168
 169            nents = (len + n->page_size - 1) >> n->page_bits;
 170            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 171            nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 172            while (len != 0) {
 173                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 174
 175                if (i == n->max_prp_ents - 1 && len > n->page_size) {
 176                    if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
 177                        trace_nvme_err_invalid_prplist_ent(prp_ent);
 178                        goto unmap;
 179                    }
 180
 181                    i = 0;
 182                    nents = (len + n->page_size - 1) >> n->page_bits;
 183                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 184                    nvme_addr_read(n, prp_ent, (void *)prp_list,
 185                        prp_trans);
 186                    prp_ent = le64_to_cpu(prp_list[i]);
 187                }
 188
 189                if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
 190                    trace_nvme_err_invalid_prplist_ent(prp_ent);
 191                    goto unmap;
 192                }
 193
 194                trans_len = MIN(len, n->page_size);
 195                if (qsg->nsg){
 196                    qemu_sglist_add(qsg, prp_ent, trans_len);
 197                } else {
 198                    qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
 199                }
 200                len -= trans_len;
 201                i++;
 202            }
 203        } else {
 204            if (unlikely(prp2 & (n->page_size - 1))) {
 205                trace_nvme_err_invalid_prp2_align(prp2);
 206                goto unmap;
 207            }
 208            if (qsg->nsg) {
 209                qemu_sglist_add(qsg, prp2, len);
 210            } else {
 211                qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
 212            }
 213        }
 214    }
 215    return NVME_SUCCESS;
 216
 217 unmap:
 218    qemu_sglist_destroy(qsg);
 219    return NVME_INVALID_FIELD | NVME_DNR;
 220}
 221
 222static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 223    uint64_t prp1, uint64_t prp2)
 224{
 225    QEMUSGList qsg;
 226    QEMUIOVector iov;
 227    uint16_t status = NVME_SUCCESS;
 228
 229    trace_nvme_dma_read(prp1, prp2);
 230
 231    if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
 232        return NVME_INVALID_FIELD | NVME_DNR;
 233    }
 234    if (qsg.nsg > 0) {
 235        if (unlikely(dma_buf_read(ptr, len, &qsg))) {
 236            trace_nvme_err_invalid_dma();
 237            status = NVME_INVALID_FIELD | NVME_DNR;
 238        }
 239        qemu_sglist_destroy(&qsg);
 240    } else {
 241        if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
 242            trace_nvme_err_invalid_dma();
 243            status = NVME_INVALID_FIELD | NVME_DNR;
 244        }
 245        qemu_iovec_destroy(&iov);
 246    }
 247    return status;
 248}
 249
 250static void nvme_post_cqes(void *opaque)
 251{
 252    NvmeCQueue *cq = opaque;
 253    NvmeCtrl *n = cq->ctrl;
 254    NvmeRequest *req, *next;
 255
 256    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 257        NvmeSQueue *sq;
 258        hwaddr addr;
 259
 260        if (nvme_cq_full(cq)) {
 261            break;
 262        }
 263
 264        QTAILQ_REMOVE(&cq->req_list, req, entry);
 265        sq = req->sq;
 266        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 267        req->cqe.sq_id = cpu_to_le16(sq->sqid);
 268        req->cqe.sq_head = cpu_to_le16(sq->head);
 269        addr = cq->dma_addr + cq->tail * n->cqe_size;
 270        nvme_inc_cq_tail(cq);
 271        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 272            sizeof(req->cqe));
 273        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 274    }
 275    nvme_irq_assert(n, cq);
 276}
 277
 278static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 279{
 280    assert(cq->cqid == req->sq->cqid);
 281    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 282    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 283    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 284}
 285
 286static void nvme_rw_cb(void *opaque, int ret)
 287{
 288    NvmeRequest *req = opaque;
 289    NvmeSQueue *sq = req->sq;
 290    NvmeCtrl *n = sq->ctrl;
 291    NvmeCQueue *cq = n->cq[sq->cqid];
 292
 293    if (!ret) {
 294        block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
 295        req->status = NVME_SUCCESS;
 296    } else {
 297        block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
 298        req->status = NVME_INTERNAL_DEV_ERROR;
 299    }
 300    if (req->has_sg) {
 301        qemu_sglist_destroy(&req->qsg);
 302    }
 303    nvme_enqueue_req_completion(cq, req);
 304}
 305
 306static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 307    NvmeRequest *req)
 308{
 309    req->has_sg = false;
 310    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 311         BLOCK_ACCT_FLUSH);
 312    req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
 313
 314    return NVME_NO_COMPLETE;
 315}
 316
 317static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 318    NvmeRequest *req)
 319{
 320    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 321    const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 322    const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 323    uint64_t slba = le64_to_cpu(rw->slba);
 324    uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
 325    uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
 326    uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
 327
 328    if (unlikely(slba + nlb > ns->id_ns.nsze)) {
 329        trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 330        return NVME_LBA_RANGE | NVME_DNR;
 331    }
 332
 333    req->has_sg = false;
 334    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 335                     BLOCK_ACCT_WRITE);
 336    req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
 337                                        BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
 338    return NVME_NO_COMPLETE;
 339}
 340
 341static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 342    NvmeRequest *req)
 343{
 344    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 345    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
 346    uint64_t slba = le64_to_cpu(rw->slba);
 347    uint64_t prp1 = le64_to_cpu(rw->prp1);
 348    uint64_t prp2 = le64_to_cpu(rw->prp2);
 349
 350    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 351    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 352    uint64_t data_size = (uint64_t)nlb << data_shift;
 353    uint64_t data_offset = slba << data_shift;
 354    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
 355    enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
 356
 357    trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
 358
 359    if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
 360        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 361        trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 362        return NVME_LBA_RANGE | NVME_DNR;
 363    }
 364
 365    if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
 366        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 367        return NVME_INVALID_FIELD | NVME_DNR;
 368    }
 369
 370    dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
 371    if (req->qsg.nsg > 0) {
 372        req->has_sg = true;
 373        req->aiocb = is_write ?
 374            dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 375                          nvme_rw_cb, req) :
 376            dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 377                         nvme_rw_cb, req);
 378    } else {
 379        req->has_sg = false;
 380        req->aiocb = is_write ?
 381            blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 382                            req) :
 383            blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 384                           req);
 385    }
 386
 387    return NVME_NO_COMPLETE;
 388}
 389
 390static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 391{
 392    NvmeNamespace *ns;
 393    uint32_t nsid = le32_to_cpu(cmd->nsid);
 394
 395    if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
 396        trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
 397        return NVME_INVALID_NSID | NVME_DNR;
 398    }
 399
 400    ns = &n->namespaces[nsid - 1];
 401    switch (cmd->opcode) {
 402    case NVME_CMD_FLUSH:
 403        return nvme_flush(n, ns, cmd, req);
 404    case NVME_CMD_WRITE_ZEROS:
 405        return nvme_write_zeros(n, ns, cmd, req);
 406    case NVME_CMD_WRITE:
 407    case NVME_CMD_READ:
 408        return nvme_rw(n, ns, cmd, req);
 409    default:
 410        trace_nvme_err_invalid_opc(cmd->opcode);
 411        return NVME_INVALID_OPCODE | NVME_DNR;
 412    }
 413}
 414
 415static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
 416{
 417    n->sq[sq->sqid] = NULL;
 418    timer_del(sq->timer);
 419    timer_free(sq->timer);
 420    g_free(sq->io_req);
 421    if (sq->sqid) {
 422        g_free(sq);
 423    }
 424}
 425
 426static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
 427{
 428    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 429    NvmeRequest *req, *next;
 430    NvmeSQueue *sq;
 431    NvmeCQueue *cq;
 432    uint16_t qid = le16_to_cpu(c->qid);
 433
 434    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
 435        trace_nvme_err_invalid_del_sq(qid);
 436        return NVME_INVALID_QID | NVME_DNR;
 437    }
 438
 439    trace_nvme_del_sq(qid);
 440
 441    sq = n->sq[qid];
 442    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
 443        req = QTAILQ_FIRST(&sq->out_req_list);
 444        assert(req->aiocb);
 445        blk_aio_cancel(req->aiocb);
 446    }
 447    if (!nvme_check_cqid(n, sq->cqid)) {
 448        cq = n->cq[sq->cqid];
 449        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
 450
 451        nvme_post_cqes(cq);
 452        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 453            if (req->sq == sq) {
 454                QTAILQ_REMOVE(&cq->req_list, req, entry);
 455                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 456            }
 457        }
 458    }
 459
 460    nvme_free_sq(sq, n);
 461    return NVME_SUCCESS;
 462}
 463
 464static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
 465    uint16_t sqid, uint16_t cqid, uint16_t size)
 466{
 467    int i;
 468    NvmeCQueue *cq;
 469
 470    sq->ctrl = n;
 471    sq->dma_addr = dma_addr;
 472    sq->sqid = sqid;
 473    sq->size = size;
 474    sq->cqid = cqid;
 475    sq->head = sq->tail = 0;
 476    sq->io_req = g_new(NvmeRequest, sq->size);
 477
 478    QTAILQ_INIT(&sq->req_list);
 479    QTAILQ_INIT(&sq->out_req_list);
 480    for (i = 0; i < sq->size; i++) {
 481        sq->io_req[i].sq = sq;
 482        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
 483    }
 484    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
 485
 486    assert(n->cq[cqid]);
 487    cq = n->cq[cqid];
 488    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
 489    n->sq[sqid] = sq;
 490}
 491
 492static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
 493{
 494    NvmeSQueue *sq;
 495    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
 496
 497    uint16_t cqid = le16_to_cpu(c->cqid);
 498    uint16_t sqid = le16_to_cpu(c->sqid);
 499    uint16_t qsize = le16_to_cpu(c->qsize);
 500    uint16_t qflags = le16_to_cpu(c->sq_flags);
 501    uint64_t prp1 = le64_to_cpu(c->prp1);
 502
 503    trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
 504
 505    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
 506        trace_nvme_err_invalid_create_sq_cqid(cqid);
 507        return NVME_INVALID_CQID | NVME_DNR;
 508    }
 509    if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
 510        trace_nvme_err_invalid_create_sq_sqid(sqid);
 511        return NVME_INVALID_QID | NVME_DNR;
 512    }
 513    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
 514        trace_nvme_err_invalid_create_sq_size(qsize);
 515        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 516    }
 517    if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
 518        trace_nvme_err_invalid_create_sq_addr(prp1);
 519        return NVME_INVALID_FIELD | NVME_DNR;
 520    }
 521    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
 522        trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
 523        return NVME_INVALID_FIELD | NVME_DNR;
 524    }
 525    sq = g_malloc0(sizeof(*sq));
 526    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
 527    return NVME_SUCCESS;
 528}
 529
 530static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
 531{
 532    n->cq[cq->cqid] = NULL;
 533    timer_del(cq->timer);
 534    timer_free(cq->timer);
 535    msix_vector_unuse(&n->parent_obj, cq->vector);
 536    if (cq->cqid) {
 537        g_free(cq);
 538    }
 539}
 540
 541static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
 542{
 543    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 544    NvmeCQueue *cq;
 545    uint16_t qid = le16_to_cpu(c->qid);
 546
 547    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
 548        trace_nvme_err_invalid_del_cq_cqid(qid);
 549        return NVME_INVALID_CQID | NVME_DNR;
 550    }
 551
 552    cq = n->cq[qid];
 553    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
 554        trace_nvme_err_invalid_del_cq_notempty(qid);
 555        return NVME_INVALID_QUEUE_DEL;
 556    }
 557    trace_nvme_del_cq(qid);
 558    nvme_free_cq(cq, n);
 559    return NVME_SUCCESS;
 560}
 561
 562static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
 563    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
 564{
 565    cq->ctrl = n;
 566    cq->cqid = cqid;
 567    cq->size = size;
 568    cq->dma_addr = dma_addr;
 569    cq->phase = 1;
 570    cq->irq_enabled = irq_enabled;
 571    cq->vector = vector;
 572    cq->head = cq->tail = 0;
 573    QTAILQ_INIT(&cq->req_list);
 574    QTAILQ_INIT(&cq->sq_list);
 575    msix_vector_use(&n->parent_obj, cq->vector);
 576    n->cq[cqid] = cq;
 577    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
 578}
 579
 580static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
 581{
 582    NvmeCQueue *cq;
 583    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
 584    uint16_t cqid = le16_to_cpu(c->cqid);
 585    uint16_t vector = le16_to_cpu(c->irq_vector);
 586    uint16_t qsize = le16_to_cpu(c->qsize);
 587    uint16_t qflags = le16_to_cpu(c->cq_flags);
 588    uint64_t prp1 = le64_to_cpu(c->prp1);
 589
 590    trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
 591                         NVME_CQ_FLAGS_IEN(qflags) != 0);
 592
 593    if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
 594        trace_nvme_err_invalid_create_cq_cqid(cqid);
 595        return NVME_INVALID_CQID | NVME_DNR;
 596    }
 597    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
 598        trace_nvme_err_invalid_create_cq_size(qsize);
 599        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 600    }
 601    if (unlikely(!prp1)) {
 602        trace_nvme_err_invalid_create_cq_addr(prp1);
 603        return NVME_INVALID_FIELD | NVME_DNR;
 604    }
 605    if (unlikely(vector > n->num_queues)) {
 606        trace_nvme_err_invalid_create_cq_vector(vector);
 607        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 608    }
 609    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
 610        trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
 611        return NVME_INVALID_FIELD | NVME_DNR;
 612    }
 613
 614    cq = g_malloc0(sizeof(*cq));
 615    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
 616        NVME_CQ_FLAGS_IEN(qflags));
 617    return NVME_SUCCESS;
 618}
 619
 620static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
 621{
 622    uint64_t prp1 = le64_to_cpu(c->prp1);
 623    uint64_t prp2 = le64_to_cpu(c->prp2);
 624
 625    trace_nvme_identify_ctrl();
 626
 627    return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
 628        prp1, prp2);
 629}
 630
 631static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
 632{
 633    NvmeNamespace *ns;
 634    uint32_t nsid = le32_to_cpu(c->nsid);
 635    uint64_t prp1 = le64_to_cpu(c->prp1);
 636    uint64_t prp2 = le64_to_cpu(c->prp2);
 637
 638    trace_nvme_identify_ns(nsid);
 639
 640    if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
 641        trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
 642        return NVME_INVALID_NSID | NVME_DNR;
 643    }
 644
 645    ns = &n->namespaces[nsid - 1];
 646
 647    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
 648        prp1, prp2);
 649}
 650
 651static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
 652{
 653    static const int data_len = 4 * KiB;
 654    uint32_t min_nsid = le32_to_cpu(c->nsid);
 655    uint64_t prp1 = le64_to_cpu(c->prp1);
 656    uint64_t prp2 = le64_to_cpu(c->prp2);
 657    uint32_t *list;
 658    uint16_t ret;
 659    int i, j = 0;
 660
 661    trace_nvme_identify_nslist(min_nsid);
 662
 663    list = g_malloc0(data_len);
 664    for (i = 0; i < n->num_namespaces; i++) {
 665        if (i < min_nsid) {
 666            continue;
 667        }
 668        list[j++] = cpu_to_le32(i + 1);
 669        if (j == data_len / sizeof(uint32_t)) {
 670            break;
 671        }
 672    }
 673    ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
 674    g_free(list);
 675    return ret;
 676}
 677
 678
 679static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
 680{
 681    NvmeIdentify *c = (NvmeIdentify *)cmd;
 682
 683    switch (le32_to_cpu(c->cns)) {
 684    case 0x00:
 685        return nvme_identify_ns(n, c);
 686    case 0x01:
 687        return nvme_identify_ctrl(n, c);
 688    case 0x02:
 689        return nvme_identify_nslist(n, c);
 690    default:
 691        trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
 692        return NVME_INVALID_FIELD | NVME_DNR;
 693    }
 694}
 695
 696static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 697{
 698    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 699    uint32_t result;
 700
 701    switch (dw10) {
 702    case NVME_VOLATILE_WRITE_CACHE:
 703        result = blk_enable_write_cache(n->conf.blk);
 704        trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
 705        break;
 706    case NVME_NUMBER_OF_QUEUES:
 707        result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 708        trace_nvme_getfeat_numq(result);
 709        break;
 710    default:
 711        trace_nvme_err_invalid_getfeat(dw10);
 712        return NVME_INVALID_FIELD | NVME_DNR;
 713    }
 714
 715    req->cqe.result = result;
 716    return NVME_SUCCESS;
 717}
 718
 719static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 720{
 721    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 722    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 723
 724    switch (dw10) {
 725    case NVME_VOLATILE_WRITE_CACHE:
 726        blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
 727        break;
 728    case NVME_NUMBER_OF_QUEUES:
 729        trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
 730                                ((dw11 >> 16) & 0xFFFF) + 1,
 731                                n->num_queues - 1, n->num_queues - 1);
 732        req->cqe.result =
 733            cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 734        break;
 735    default:
 736        trace_nvme_err_invalid_setfeat(dw10);
 737        return NVME_INVALID_FIELD | NVME_DNR;
 738    }
 739    return NVME_SUCCESS;
 740}
 741
 742static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 743{
 744    switch (cmd->opcode) {
 745    case NVME_ADM_CMD_DELETE_SQ:
 746        return nvme_del_sq(n, cmd);
 747    case NVME_ADM_CMD_CREATE_SQ:
 748        return nvme_create_sq(n, cmd);
 749    case NVME_ADM_CMD_DELETE_CQ:
 750        return nvme_del_cq(n, cmd);
 751    case NVME_ADM_CMD_CREATE_CQ:
 752        return nvme_create_cq(n, cmd);
 753    case NVME_ADM_CMD_IDENTIFY:
 754        return nvme_identify(n, cmd);
 755    case NVME_ADM_CMD_SET_FEATURES:
 756        return nvme_set_feature(n, cmd, req);
 757    case NVME_ADM_CMD_GET_FEATURES:
 758        return nvme_get_feature(n, cmd, req);
 759    default:
 760        trace_nvme_err_invalid_admin_opc(cmd->opcode);
 761        return NVME_INVALID_OPCODE | NVME_DNR;
 762    }
 763}
 764
 765static void nvme_process_sq(void *opaque)
 766{
 767    NvmeSQueue *sq = opaque;
 768    NvmeCtrl *n = sq->ctrl;
 769    NvmeCQueue *cq = n->cq[sq->cqid];
 770
 771    uint16_t status;
 772    hwaddr addr;
 773    NvmeCmd cmd;
 774    NvmeRequest *req;
 775
 776    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
 777        addr = sq->dma_addr + sq->head * n->sqe_size;
 778        nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
 779        nvme_inc_sq_head(sq);
 780
 781        req = QTAILQ_FIRST(&sq->req_list);
 782        QTAILQ_REMOVE(&sq->req_list, req, entry);
 783        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
 784        memset(&req->cqe, 0, sizeof(req->cqe));
 785        req->cqe.cid = cmd.cid;
 786
 787        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
 788            nvme_admin_cmd(n, &cmd, req);
 789        if (status != NVME_NO_COMPLETE) {
 790            req->status = status;
 791            nvme_enqueue_req_completion(cq, req);
 792        }
 793    }
 794}
 795
 796static void nvme_clear_ctrl(NvmeCtrl *n)
 797{
 798    int i;
 799
 800    for (i = 0; i < n->num_queues; i++) {
 801        if (n->sq[i] != NULL) {
 802            nvme_free_sq(n->sq[i], n);
 803        }
 804    }
 805    for (i = 0; i < n->num_queues; i++) {
 806        if (n->cq[i] != NULL) {
 807            nvme_free_cq(n->cq[i], n);
 808        }
 809    }
 810
 811    blk_flush(n->conf.blk);
 812    n->bar.cc = 0;
 813}
 814
 815static int nvme_start_ctrl(NvmeCtrl *n)
 816{
 817    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
 818    uint32_t page_size = 1 << page_bits;
 819
 820    if (unlikely(n->cq[0])) {
 821        trace_nvme_err_startfail_cq();
 822        return -1;
 823    }
 824    if (unlikely(n->sq[0])) {
 825        trace_nvme_err_startfail_sq();
 826        return -1;
 827    }
 828    if (unlikely(!n->bar.asq)) {
 829        trace_nvme_err_startfail_nbarasq();
 830        return -1;
 831    }
 832    if (unlikely(!n->bar.acq)) {
 833        trace_nvme_err_startfail_nbaracq();
 834        return -1;
 835    }
 836    if (unlikely(n->bar.asq & (page_size - 1))) {
 837        trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
 838        return -1;
 839    }
 840    if (unlikely(n->bar.acq & (page_size - 1))) {
 841        trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
 842        return -1;
 843    }
 844    if (unlikely(NVME_CC_MPS(n->bar.cc) <
 845                 NVME_CAP_MPSMIN(n->bar.cap))) {
 846        trace_nvme_err_startfail_page_too_small(
 847                    NVME_CC_MPS(n->bar.cc),
 848                    NVME_CAP_MPSMIN(n->bar.cap));
 849        return -1;
 850    }
 851    if (unlikely(NVME_CC_MPS(n->bar.cc) >
 852                 NVME_CAP_MPSMAX(n->bar.cap))) {
 853        trace_nvme_err_startfail_page_too_large(
 854                    NVME_CC_MPS(n->bar.cc),
 855                    NVME_CAP_MPSMAX(n->bar.cap));
 856        return -1;
 857    }
 858    if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
 859                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
 860        trace_nvme_err_startfail_cqent_too_small(
 861                    NVME_CC_IOCQES(n->bar.cc),
 862                    NVME_CTRL_CQES_MIN(n->bar.cap));
 863        return -1;
 864    }
 865    if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
 866                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
 867        trace_nvme_err_startfail_cqent_too_large(
 868                    NVME_CC_IOCQES(n->bar.cc),
 869                    NVME_CTRL_CQES_MAX(n->bar.cap));
 870        return -1;
 871    }
 872    if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
 873                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
 874        trace_nvme_err_startfail_sqent_too_small(
 875                    NVME_CC_IOSQES(n->bar.cc),
 876                    NVME_CTRL_SQES_MIN(n->bar.cap));
 877        return -1;
 878    }
 879    if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
 880                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
 881        trace_nvme_err_startfail_sqent_too_large(
 882                    NVME_CC_IOSQES(n->bar.cc),
 883                    NVME_CTRL_SQES_MAX(n->bar.cap));
 884        return -1;
 885    }
 886    if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
 887        trace_nvme_err_startfail_asqent_sz_zero();
 888        return -1;
 889    }
 890    if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
 891        trace_nvme_err_startfail_acqent_sz_zero();
 892        return -1;
 893    }
 894
 895    n->page_bits = page_bits;
 896    n->page_size = page_size;
 897    n->max_prp_ents = n->page_size / sizeof(uint64_t);
 898    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
 899    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
 900    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
 901        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
 902    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
 903        NVME_AQA_ASQS(n->bar.aqa) + 1);
 904
 905    return 0;
 906}
 907
 908static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
 909    unsigned size)
 910{
 911    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
 912        NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
 913                       "MMIO write not 32-bit aligned,"
 914                       " offset=0x%"PRIx64"", offset);
 915        /* should be ignored, fall through for now */
 916    }
 917
 918    if (unlikely(size < sizeof(uint32_t))) {
 919        NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
 920                       "MMIO write smaller than 32-bits,"
 921                       " offset=0x%"PRIx64", size=%u",
 922                       offset, size);
 923        /* should be ignored, fall through for now */
 924    }
 925
 926    switch (offset) {
 927    case 0xc:   /* INTMS */
 928        if (unlikely(msix_enabled(&(n->parent_obj)))) {
 929            NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
 930                           "undefined access to interrupt mask set"
 931                           " when MSI-X is enabled");
 932            /* should be ignored, fall through for now */
 933        }
 934        n->bar.intms |= data & 0xffffffff;
 935        n->bar.intmc = n->bar.intms;
 936        trace_nvme_mmio_intm_set(data & 0xffffffff,
 937                                 n->bar.intmc);
 938        nvme_irq_check(n);
 939        break;
 940    case 0x10:  /* INTMC */
 941        if (unlikely(msix_enabled(&(n->parent_obj)))) {
 942            NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
 943                           "undefined access to interrupt mask clr"
 944                           " when MSI-X is enabled");
 945            /* should be ignored, fall through for now */
 946        }
 947        n->bar.intms &= ~(data & 0xffffffff);
 948        n->bar.intmc = n->bar.intms;
 949        trace_nvme_mmio_intm_clr(data & 0xffffffff,
 950                                 n->bar.intmc);
 951        nvme_irq_check(n);
 952        break;
 953    case 0x14:  /* CC */
 954        trace_nvme_mmio_cfg(data & 0xffffffff);
 955        /* Windows first sends data, then sends enable bit */
 956        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
 957            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
 958        {
 959            n->bar.cc = data;
 960        }
 961
 962        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
 963            n->bar.cc = data;
 964            if (unlikely(nvme_start_ctrl(n))) {
 965                trace_nvme_err_startfail();
 966                n->bar.csts = NVME_CSTS_FAILED;
 967            } else {
 968                trace_nvme_mmio_start_success();
 969                n->bar.csts = NVME_CSTS_READY;
 970            }
 971        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
 972            trace_nvme_mmio_stopped();
 973            nvme_clear_ctrl(n);
 974            n->bar.csts &= ~NVME_CSTS_READY;
 975        }
 976        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
 977            trace_nvme_mmio_shutdown_set();
 978            nvme_clear_ctrl(n);
 979            n->bar.cc = data;
 980            n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
 981        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
 982            trace_nvme_mmio_shutdown_cleared();
 983            n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
 984            n->bar.cc = data;
 985        }
 986        break;
 987    case 0x1C:  /* CSTS */
 988        if (data & (1 << 4)) {
 989            NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
 990                           "attempted to W1C CSTS.NSSRO"
 991                           " but CAP.NSSRS is zero (not supported)");
 992        } else if (data != 0) {
 993            NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
 994                           "attempted to set a read only bit"
 995                           " of controller status");
 996        }
 997        break;
 998    case 0x20:  /* NSSR */
 999        if (data == 0x4E564D65) {
1000            trace_nvme_ub_mmiowr_ssreset_unsupported();
1001        } else {
1002            /* The spec says that writes of other values have no effect */
1003            return;
1004        }
1005        break;
1006    case 0x24:  /* AQA */
1007        n->bar.aqa = data & 0xffffffff;
1008        trace_nvme_mmio_aqattr(data & 0xffffffff);
1009        break;
1010    case 0x28:  /* ASQ */
1011        n->bar.asq = data;
1012        trace_nvme_mmio_asqaddr(data);
1013        break;
1014    case 0x2c:  /* ASQ hi */
1015        n->bar.asq |= data << 32;
1016        trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1017        break;
1018    case 0x30:  /* ACQ */
1019        trace_nvme_mmio_acqaddr(data);
1020        n->bar.acq = data;
1021        break;
1022    case 0x34:  /* ACQ hi */
1023        n->bar.acq |= data << 32;
1024        trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1025        break;
1026    case 0x38:  /* CMBLOC */
1027        NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1028                       "invalid write to reserved CMBLOC"
1029                       " when CMBSZ is zero, ignored");
1030        return;
1031    case 0x3C:  /* CMBSZ */
1032        NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1033                       "invalid write to read only CMBSZ, ignored");
1034        return;
1035    default:
1036        NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1037                       "invalid MMIO write,"
1038                       " offset=0x%"PRIx64", data=%"PRIx64"",
1039                       offset, data);
1040        break;
1041    }
1042}
1043
1044static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1045{
1046    NvmeCtrl *n = (NvmeCtrl *)opaque;
1047    uint8_t *ptr = (uint8_t *)&n->bar;
1048    uint64_t val = 0;
1049
1050    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1051        NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1052                       "MMIO read not 32-bit aligned,"
1053                       " offset=0x%"PRIx64"", addr);
1054        /* should RAZ, fall through for now */
1055    } else if (unlikely(size < sizeof(uint32_t))) {
1056        NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1057                       "MMIO read smaller than 32-bits,"
1058                       " offset=0x%"PRIx64"", addr);
1059        /* should RAZ, fall through for now */
1060    }
1061
1062    if (addr < sizeof(n->bar)) {
1063        memcpy(&val, ptr + addr, size);
1064    } else {
1065        NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1066                       "MMIO read beyond last register,"
1067                       " offset=0x%"PRIx64", returning 0", addr);
1068    }
1069
1070    return val;
1071}
1072
1073static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1074{
1075    uint32_t qid;
1076
1077    if (unlikely(addr & ((1 << 2) - 1))) {
1078        NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1079                       "doorbell write not 32-bit aligned,"
1080                       " offset=0x%"PRIx64", ignoring", addr);
1081        return;
1082    }
1083
1084    if (((addr - 0x1000) >> 2) & 1) {
1085        /* Completion queue doorbell write */
1086
1087        uint16_t new_head = val & 0xffff;
1088        int start_sqs;
1089        NvmeCQueue *cq;
1090
1091        qid = (addr - (0x1000 + (1 << 2))) >> 3;
1092        if (unlikely(nvme_check_cqid(n, qid))) {
1093            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1094                           "completion queue doorbell write"
1095                           " for nonexistent queue,"
1096                           " sqid=%"PRIu32", ignoring", qid);
1097            return;
1098        }
1099
1100        cq = n->cq[qid];
1101        if (unlikely(new_head >= cq->size)) {
1102            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1103                           "completion queue doorbell write value"
1104                           " beyond queue size, sqid=%"PRIu32","
1105                           " new_head=%"PRIu16", ignoring",
1106                           qid, new_head);
1107            return;
1108        }
1109
1110        start_sqs = nvme_cq_full(cq) ? 1 : 0;
1111        cq->head = new_head;
1112        if (start_sqs) {
1113            NvmeSQueue *sq;
1114            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1115                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1116            }
1117            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1118        }
1119
1120        if (cq->tail == cq->head) {
1121            nvme_irq_deassert(n, cq);
1122        }
1123    } else {
1124        /* Submission queue doorbell write */
1125
1126        uint16_t new_tail = val & 0xffff;
1127        NvmeSQueue *sq;
1128
1129        qid = (addr - 0x1000) >> 3;
1130        if (unlikely(nvme_check_sqid(n, qid))) {
1131            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1132                           "submission queue doorbell write"
1133                           " for nonexistent queue,"
1134                           " sqid=%"PRIu32", ignoring", qid);
1135            return;
1136        }
1137
1138        sq = n->sq[qid];
1139        if (unlikely(new_tail >= sq->size)) {
1140            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1141                           "submission queue doorbell write value"
1142                           " beyond queue size, sqid=%"PRIu32","
1143                           " new_tail=%"PRIu16", ignoring",
1144                           qid, new_tail);
1145            return;
1146        }
1147
1148        sq->tail = new_tail;
1149        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1150    }
1151}
1152
1153static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1154    unsigned size)
1155{
1156    NvmeCtrl *n = (NvmeCtrl *)opaque;
1157    if (addr < sizeof(n->bar)) {
1158        nvme_write_bar(n, addr, data, size);
1159    } else if (addr >= 0x1000) {
1160        nvme_process_db(n, addr, data);
1161    }
1162}
1163
1164static const MemoryRegionOps nvme_mmio_ops = {
1165    .read = nvme_mmio_read,
1166    .write = nvme_mmio_write,
1167    .endianness = DEVICE_LITTLE_ENDIAN,
1168    .impl = {
1169        .min_access_size = 2,
1170        .max_access_size = 8,
1171    },
1172};
1173
1174static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1175    unsigned size)
1176{
1177    NvmeCtrl *n = (NvmeCtrl *)opaque;
1178    memcpy(&n->cmbuf[addr], &data, size);
1179}
1180
1181static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1182{
1183    uint64_t val;
1184    NvmeCtrl *n = (NvmeCtrl *)opaque;
1185
1186    memcpy(&val, &n->cmbuf[addr], size);
1187    return val;
1188}
1189
1190static const MemoryRegionOps nvme_cmb_ops = {
1191    .read = nvme_cmb_read,
1192    .write = nvme_cmb_write,
1193    .endianness = DEVICE_LITTLE_ENDIAN,
1194    .impl = {
1195        .min_access_size = 2,
1196        .max_access_size = 8,
1197    },
1198};
1199
1200static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1201{
1202    NvmeCtrl *n = NVME(pci_dev);
1203    NvmeIdCtrl *id = &n->id_ctrl;
1204
1205    int i;
1206    int64_t bs_size;
1207    uint8_t *pci_conf;
1208
1209    if (!n->conf.blk) {
1210        error_setg(errp, "drive property not set");
1211        return;
1212    }
1213
1214    bs_size = blk_getlength(n->conf.blk);
1215    if (bs_size < 0) {
1216        error_setg(errp, "could not get backing file size");
1217        return;
1218    }
1219
1220    blkconf_serial(&n->conf, &n->serial);
1221    if (!n->serial) {
1222        error_setg(errp, "serial property not set");
1223        return;
1224    }
1225    blkconf_blocksizes(&n->conf);
1226    if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1227                                       false, errp)) {
1228        return;
1229    }
1230
1231    pci_conf = pci_dev->config;
1232    pci_conf[PCI_INTERRUPT_PIN] = 1;
1233    pci_config_set_prog_interface(pci_dev->config, 0x2);
1234    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1235    pcie_endpoint_cap_init(&n->parent_obj, 0x80);
1236
1237    n->num_namespaces = 1;
1238    n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1239    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1240
1241    n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1242    n->sq = g_new0(NvmeSQueue *, n->num_queues);
1243    n->cq = g_new0(NvmeCQueue *, n->num_queues);
1244
1245    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1246                          "nvme", n->reg_size);
1247    pci_register_bar(&n->parent_obj, 0,
1248        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1249        &n->iomem);
1250    msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
1251
1252    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1253    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1254    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1255    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1256    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1257    id->rab = 6;
1258    id->ieee[0] = 0x00;
1259    id->ieee[1] = 0x02;
1260    id->ieee[2] = 0xb3;
1261    id->oacs = cpu_to_le16(0);
1262    id->frmw = 7 << 1;
1263    id->lpa = 1 << 0;
1264    id->sqes = (0x6 << 4) | 0x6;
1265    id->cqes = (0x4 << 4) | 0x4;
1266    id->nn = cpu_to_le32(n->num_namespaces);
1267    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
1268    id->psd[0].mp = cpu_to_le16(0x9c4);
1269    id->psd[0].enlat = cpu_to_le32(0x10);
1270    id->psd[0].exlat = cpu_to_le32(0x4);
1271    if (blk_enable_write_cache(n->conf.blk)) {
1272        id->vwc = 1;
1273    }
1274
1275    n->bar.cap = 0;
1276    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1277    NVME_CAP_SET_CQR(n->bar.cap, 1);
1278    NVME_CAP_SET_AMS(n->bar.cap, 1);
1279    NVME_CAP_SET_TO(n->bar.cap, 0xf);
1280    NVME_CAP_SET_CSS(n->bar.cap, 1);
1281    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1282
1283    n->bar.vs = 0x00010200;
1284    n->bar.intmc = n->bar.intms = 0;
1285
1286    if (n->cmb_size_mb) {
1287
1288        NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1289        NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1290
1291        NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1292        NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1293        NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1294        NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1295        NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1296        NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1297        NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1298
1299        n->cmbloc = n->bar.cmbloc;
1300        n->cmbsz = n->bar.cmbsz;
1301
1302        n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1303        memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1304                              "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1305        pci_register_bar(&n->parent_obj, NVME_CMBLOC_BIR(n->bar.cmbloc),
1306            PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1307            PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1308
1309    }
1310
1311    for (i = 0; i < n->num_namespaces; i++) {
1312        NvmeNamespace *ns = &n->namespaces[i];
1313        NvmeIdNs *id_ns = &ns->id_ns;
1314        id_ns->nsfeat = 0;
1315        id_ns->nlbaf = 0;
1316        id_ns->flbas = 0;
1317        id_ns->mc = 0;
1318        id_ns->dpc = 0;
1319        id_ns->dps = 0;
1320        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1321        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1322            cpu_to_le64(n->ns_size >>
1323                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1324    }
1325}
1326
1327static void nvme_exit(PCIDevice *pci_dev)
1328{
1329    NvmeCtrl *n = NVME(pci_dev);
1330
1331    nvme_clear_ctrl(n);
1332    g_free(n->namespaces);
1333    g_free(n->cq);
1334    g_free(n->sq);
1335    if (n->cmbsz) {
1336        memory_region_unref(&n->ctrl_mem);
1337    }
1338
1339    msix_uninit_exclusive_bar(pci_dev);
1340}
1341
1342static Property nvme_props[] = {
1343    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1344    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1345    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1346    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1347    DEFINE_PROP_END_OF_LIST(),
1348};
1349
1350static const VMStateDescription nvme_vmstate = {
1351    .name = "nvme",
1352    .unmigratable = 1,
1353};
1354
1355static void nvme_class_init(ObjectClass *oc, void *data)
1356{
1357    DeviceClass *dc = DEVICE_CLASS(oc);
1358    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1359
1360    pc->realize = nvme_realize;
1361    pc->exit = nvme_exit;
1362    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1363    pc->vendor_id = PCI_VENDOR_ID_INTEL;
1364    pc->device_id = 0x5845;
1365    pc->revision = 2;
1366
1367    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1368    dc->desc = "Non-Volatile Memory Express";
1369    dc->props = nvme_props;
1370    dc->vmsd = &nvme_vmstate;
1371}
1372
1373static void nvme_instance_init(Object *obj)
1374{
1375    NvmeCtrl *s = NVME(obj);
1376
1377    device_add_bootindex_property(obj, &s->conf.bootindex,
1378                                  "bootindex", "/namespace@1,0",
1379                                  DEVICE(obj), &error_abort);
1380}
1381
1382static const TypeInfo nvme_info = {
1383    .name          = "nvme",
1384    .parent        = TYPE_PCI_DEVICE,
1385    .instance_size = sizeof(NvmeCtrl),
1386    .class_init    = nvme_class_init,
1387    .instance_init = nvme_instance_init,
1388    .interfaces = (InterfaceInfo[]) {
1389        { INTERFACE_PCIE_DEVICE },
1390        { }
1391    },
1392};
1393
1394static void nvme_register_types(void)
1395{
1396    type_register_static(&nvme_info);
1397}
1398
1399type_init(nvme_register_types)
1400