qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "hw/sysbus.h"
  26#include "exec/address-spaces.h"
  27#include "intel_iommu_internal.h"
  28#include "hw/pci/pci.h"
  29#include "hw/pci/pci_bus.h"
  30#include "hw/i386/pc.h"
  31#include "hw/i386/apic-msidef.h"
  32#include "hw/boards.h"
  33#include "hw/i386/x86-iommu.h"
  34#include "hw/pci-host/q35.h"
  35#include "sysemu/kvm.h"
  36#include "hw/i386/apic_internal.h"
  37#include "kvm_i386.h"
  38#include "trace.h"
  39
  40static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  41                            uint64_t wmask, uint64_t w1cmask)
  42{
  43    stq_le_p(&s->csr[addr], val);
  44    stq_le_p(&s->wmask[addr], wmask);
  45    stq_le_p(&s->w1cmask[addr], w1cmask);
  46}
  47
  48static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  49{
  50    stq_le_p(&s->womask[addr], mask);
  51}
  52
  53static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  54                            uint32_t wmask, uint32_t w1cmask)
  55{
  56    stl_le_p(&s->csr[addr], val);
  57    stl_le_p(&s->wmask[addr], wmask);
  58    stl_le_p(&s->w1cmask[addr], w1cmask);
  59}
  60
  61static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  62{
  63    stl_le_p(&s->womask[addr], mask);
  64}
  65
  66/* "External" get/set operations */
  67static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  68{
  69    uint64_t oldval = ldq_le_p(&s->csr[addr]);
  70    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  71    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  72    stq_le_p(&s->csr[addr],
  73             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  74}
  75
  76static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  77{
  78    uint32_t oldval = ldl_le_p(&s->csr[addr]);
  79    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  80    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  81    stl_le_p(&s->csr[addr],
  82             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  83}
  84
  85static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  86{
  87    uint64_t val = ldq_le_p(&s->csr[addr]);
  88    uint64_t womask = ldq_le_p(&s->womask[addr]);
  89    return val & ~womask;
  90}
  91
  92static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  93{
  94    uint32_t val = ldl_le_p(&s->csr[addr]);
  95    uint32_t womask = ldl_le_p(&s->womask[addr]);
  96    return val & ~womask;
  97}
  98
  99/* "Internal" get/set operations */
 100static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 101{
 102    return ldq_le_p(&s->csr[addr]);
 103}
 104
 105static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 106{
 107    return ldl_le_p(&s->csr[addr]);
 108}
 109
 110static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 111{
 112    stq_le_p(&s->csr[addr], val);
 113}
 114
 115static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 116                                        uint32_t clear, uint32_t mask)
 117{
 118    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 119    stl_le_p(&s->csr[addr], new_val);
 120    return new_val;
 121}
 122
 123static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 124                                        uint64_t clear, uint64_t mask)
 125{
 126    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 127    stq_le_p(&s->csr[addr], new_val);
 128    return new_val;
 129}
 130
 131static inline void vtd_iommu_lock(IntelIOMMUState *s)
 132{
 133    qemu_mutex_lock(&s->iommu_lock);
 134}
 135
 136static inline void vtd_iommu_unlock(IntelIOMMUState *s)
 137{
 138    qemu_mutex_unlock(&s->iommu_lock);
 139}
 140
 141/* Whether the address space needs to notify new mappings */
 142static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
 143{
 144    return as->notifier_flags & IOMMU_NOTIFIER_MAP;
 145}
 146
 147/* GHashTable functions */
 148static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 149{
 150    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 151}
 152
 153static guint vtd_uint64_hash(gconstpointer v)
 154{
 155    return (guint)*(const uint64_t *)v;
 156}
 157
 158static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 159                                          gpointer user_data)
 160{
 161    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 162    uint16_t domain_id = *(uint16_t *)user_data;
 163    return entry->domain_id == domain_id;
 164}
 165
 166/* The shift of an addr for a certain level of paging structure */
 167static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 168{
 169    assert(level != 0);
 170    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 171}
 172
 173static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 174{
 175    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 176}
 177
 178static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 179                                        gpointer user_data)
 180{
 181    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 182    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 183    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 184    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 185    return (entry->domain_id == info->domain_id) &&
 186            (((entry->gfn & info->mask) == gfn) ||
 187             (entry->gfn == gfn_tlb));
 188}
 189
 190/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 191 * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
 192 */
 193static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
 194{
 195    VTDAddressSpace *vtd_as;
 196    VTDBus *vtd_bus;
 197    GHashTableIter bus_it;
 198    uint32_t devfn_it;
 199
 200    trace_vtd_context_cache_reset();
 201
 202    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 203
 204    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 205        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
 206            vtd_as = vtd_bus->dev_as[devfn_it];
 207            if (!vtd_as) {
 208                continue;
 209            }
 210            vtd_as->context_cache_entry.context_cache_gen = 0;
 211        }
 212    }
 213    s->context_cache_gen = 1;
 214}
 215
 216/* Must be called with IOMMU lock held. */
 217static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
 218{
 219    assert(s->iotlb);
 220    g_hash_table_remove_all(s->iotlb);
 221}
 222
 223static void vtd_reset_iotlb(IntelIOMMUState *s)
 224{
 225    vtd_iommu_lock(s);
 226    vtd_reset_iotlb_locked(s);
 227    vtd_iommu_unlock(s);
 228}
 229
 230static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
 231                                  uint32_t level)
 232{
 233    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 234           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 235}
 236
 237static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 238{
 239    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 240}
 241
 242/* Must be called with IOMMU lock held */
 243static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 244                                       hwaddr addr)
 245{
 246    VTDIOTLBEntry *entry;
 247    uint64_t key;
 248    int level;
 249
 250    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 251        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 252                                source_id, level);
 253        entry = g_hash_table_lookup(s->iotlb, &key);
 254        if (entry) {
 255            goto out;
 256        }
 257    }
 258
 259out:
 260    return entry;
 261}
 262
 263/* Must be with IOMMU lock held */
 264static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 265                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 266                             uint8_t access_flags, uint32_t level)
 267{
 268    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 269    uint64_t *key = g_malloc(sizeof(*key));
 270    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 271
 272    trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
 273    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 274        trace_vtd_iotlb_reset("iotlb exceeds size limit");
 275        vtd_reset_iotlb_locked(s);
 276    }
 277
 278    entry->gfn = gfn;
 279    entry->domain_id = domain_id;
 280    entry->slpte = slpte;
 281    entry->access_flags = access_flags;
 282    entry->mask = vtd_slpt_level_page_mask(level);
 283    *key = vtd_get_iotlb_key(gfn, source_id, level);
 284    g_hash_table_replace(s->iotlb, key, entry);
 285}
 286
 287/* Given the reg addr of both the message data and address, generate an
 288 * interrupt via MSI.
 289 */
 290static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 291                                   hwaddr mesg_data_reg)
 292{
 293    MSIMessage msi;
 294
 295    assert(mesg_data_reg < DMAR_REG_SIZE);
 296    assert(mesg_addr_reg < DMAR_REG_SIZE);
 297
 298    msi.address = vtd_get_long_raw(s, mesg_addr_reg);
 299    msi.data = vtd_get_long_raw(s, mesg_data_reg);
 300
 301    trace_vtd_irq_generate(msi.address, msi.data);
 302
 303    apic_get_class()->send_msi(&msi);
 304}
 305
 306/* Generate a fault event to software via MSI if conditions are met.
 307 * Notice that the value of FSTS_REG being passed to it should be the one
 308 * before any update.
 309 */
 310static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 311{
 312    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 313        pre_fsts & VTD_FSTS_IQE) {
 314        trace_vtd_err("There are previous interrupt conditions "
 315                      "to be serviced by software, fault event "
 316                      "is not generated.");
 317        return;
 318    }
 319    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 320    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 321        trace_vtd_err("Interrupt Mask set, irq is not generated.");
 322    } else {
 323        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 324        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 325    }
 326}
 327
 328/* Check if the Fault (F) field of the Fault Recording Register referenced by
 329 * @index is Set.
 330 */
 331static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 332{
 333    /* Each reg is 128-bit */
 334    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 335    addr += 8; /* Access the high 64-bit half */
 336
 337    assert(index < DMAR_FRCD_REG_NR);
 338
 339    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 340}
 341
 342/* Update the PPF field of Fault Status Register.
 343 * Should be called whenever change the F field of any fault recording
 344 * registers.
 345 */
 346static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 347{
 348    uint32_t i;
 349    uint32_t ppf_mask = 0;
 350
 351    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 352        if (vtd_is_frcd_set(s, i)) {
 353            ppf_mask = VTD_FSTS_PPF;
 354            break;
 355        }
 356    }
 357    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 358    trace_vtd_fsts_ppf(!!ppf_mask);
 359}
 360
 361static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 362{
 363    /* Each reg is 128-bit */
 364    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 365    addr += 8; /* Access the high 64-bit half */
 366
 367    assert(index < DMAR_FRCD_REG_NR);
 368
 369    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 370    vtd_update_fsts_ppf(s);
 371}
 372
 373/* Must not update F field now, should be done later */
 374static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 375                            uint16_t source_id, hwaddr addr,
 376                            VTDFaultReason fault, bool is_write)
 377{
 378    uint64_t hi = 0, lo;
 379    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 380
 381    assert(index < DMAR_FRCD_REG_NR);
 382
 383    lo = VTD_FRCD_FI(addr);
 384    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 385    if (!is_write) {
 386        hi |= VTD_FRCD_T;
 387    }
 388    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 389    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 390
 391    trace_vtd_frr_new(index, hi, lo);
 392}
 393
 394/* Try to collapse multiple pending faults from the same requester */
 395static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 396{
 397    uint32_t i;
 398    uint64_t frcd_reg;
 399    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 400
 401    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 402        frcd_reg = vtd_get_quad_raw(s, addr);
 403        if ((frcd_reg & VTD_FRCD_F) &&
 404            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 405            return true;
 406        }
 407        addr += 16; /* 128-bit for each */
 408    }
 409    return false;
 410}
 411
 412/* Log and report an DMAR (address translation) fault to software */
 413static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 414                                  hwaddr addr, VTDFaultReason fault,
 415                                  bool is_write)
 416{
 417    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 418
 419    assert(fault < VTD_FR_MAX);
 420
 421    if (fault == VTD_FR_RESERVED_ERR) {
 422        /* This is not a normal fault reason case. Drop it. */
 423        return;
 424    }
 425
 426    trace_vtd_dmar_fault(source_id, fault, addr, is_write);
 427
 428    if (fsts_reg & VTD_FSTS_PFO) {
 429        trace_vtd_err("New fault is not recorded due to "
 430                      "Primary Fault Overflow.");
 431        return;
 432    }
 433
 434    if (vtd_try_collapse_fault(s, source_id)) {
 435        trace_vtd_err("New fault is not recorded due to "
 436                      "compression of faults.");
 437        return;
 438    }
 439
 440    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 441        trace_vtd_err("Next Fault Recording Reg is used, "
 442                      "new fault is not recorded, set PFO field.");
 443        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 444        return;
 445    }
 446
 447    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 448
 449    if (fsts_reg & VTD_FSTS_PPF) {
 450        trace_vtd_err("There are pending faults already, "
 451                      "fault event is not generated.");
 452        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 453        s->next_frcd_reg++;
 454        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 455            s->next_frcd_reg = 0;
 456        }
 457    } else {
 458        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 459                                VTD_FSTS_FRI(s->next_frcd_reg));
 460        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 461        s->next_frcd_reg++;
 462        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 463            s->next_frcd_reg = 0;
 464        }
 465        /* This case actually cause the PPF to be Set.
 466         * So generate fault event (interrupt).
 467         */
 468         vtd_generate_fault_event(s, fsts_reg);
 469    }
 470}
 471
 472/* Handle Invalidation Queue Errors of queued invalidation interface error
 473 * conditions.
 474 */
 475static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 476{
 477    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 478
 479    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 480    vtd_generate_fault_event(s, fsts_reg);
 481}
 482
 483/* Set the IWC field and try to generate an invalidation completion interrupt */
 484static void vtd_generate_completion_event(IntelIOMMUState *s)
 485{
 486    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 487        trace_vtd_inv_desc_wait_irq("One pending, skip current");
 488        return;
 489    }
 490    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 491    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 492    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 493        trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
 494                                    "new event not generated");
 495        return;
 496    } else {
 497        /* Generate the interrupt event */
 498        trace_vtd_inv_desc_wait_irq("Generating complete event");
 499        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 500        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 501    }
 502}
 503
 504static inline bool vtd_root_entry_present(VTDRootEntry *root)
 505{
 506    return root->val & VTD_ROOT_ENTRY_P;
 507}
 508
 509static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 510                              VTDRootEntry *re)
 511{
 512    dma_addr_t addr;
 513
 514    addr = s->root + index * sizeof(*re);
 515    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 516        trace_vtd_re_invalid(re->rsvd, re->val);
 517        re->val = 0;
 518        return -VTD_FR_ROOT_TABLE_INV;
 519    }
 520    re->val = le64_to_cpu(re->val);
 521    return 0;
 522}
 523
 524static inline bool vtd_ce_present(VTDContextEntry *context)
 525{
 526    return context->lo & VTD_CONTEXT_ENTRY_P;
 527}
 528
 529static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
 530                                           VTDContextEntry *ce)
 531{
 532    dma_addr_t addr;
 533
 534    /* we have checked that root entry is present */
 535    addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
 536    if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
 537        trace_vtd_re_invalid(root->rsvd, root->val);
 538        return -VTD_FR_CONTEXT_TABLE_INV;
 539    }
 540    ce->lo = le64_to_cpu(ce->lo);
 541    ce->hi = le64_to_cpu(ce->hi);
 542    return 0;
 543}
 544
 545static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
 546{
 547    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 548}
 549
 550static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
 551{
 552    return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
 553}
 554
 555/* Whether the pte indicates the address of the page frame */
 556static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 557{
 558    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 559}
 560
 561/* Get the content of a spte located in @base_addr[@index] */
 562static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 563{
 564    uint64_t slpte;
 565
 566    assert(index < VTD_SL_PT_ENTRY_NR);
 567
 568    if (dma_memory_read(&address_space_memory,
 569                        base_addr + index * sizeof(slpte), &slpte,
 570                        sizeof(slpte))) {
 571        slpte = (uint64_t)-1;
 572        return slpte;
 573    }
 574    slpte = le64_to_cpu(slpte);
 575    return slpte;
 576}
 577
 578/* Given an iova and the level of paging structure, return the offset
 579 * of current level.
 580 */
 581static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
 582{
 583    return (iova >> vtd_slpt_level_shift(level)) &
 584            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 585}
 586
 587/* Check Capability Register to see if the @level of page-table is supported */
 588static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 589{
 590    return VTD_CAP_SAGAW_MASK & s->cap &
 591           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 592}
 593
 594/* Get the page-table level that hardware should use for the second-level
 595 * page-table walk from the Address Width field of context-entry.
 596 */
 597static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
 598{
 599    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 600}
 601
 602static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
 603{
 604    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 605}
 606
 607static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
 608{
 609    return ce->lo & VTD_CONTEXT_ENTRY_TT;
 610}
 611
 612/* Return true if check passed, otherwise false */
 613static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
 614                                     VTDContextEntry *ce)
 615{
 616    switch (vtd_ce_get_type(ce)) {
 617    case VTD_CONTEXT_TT_MULTI_LEVEL:
 618        /* Always supported */
 619        break;
 620    case VTD_CONTEXT_TT_DEV_IOTLB:
 621        if (!x86_iommu->dt_supported) {
 622            return false;
 623        }
 624        break;
 625    case VTD_CONTEXT_TT_PASS_THROUGH:
 626        if (!x86_iommu->pt_supported) {
 627            return false;
 628        }
 629        break;
 630    default:
 631        /* Unknwon type */
 632        return false;
 633    }
 634    return true;
 635}
 636
 637static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
 638{
 639    uint32_t ce_agaw = vtd_ce_get_agaw(ce);
 640    return 1ULL << MIN(ce_agaw, aw);
 641}
 642
 643/* Return true if IOVA passes range check, otherwise false. */
 644static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
 645                                        uint8_t aw)
 646{
 647    /*
 648     * Check if @iova is above 2^X-1, where X is the minimum of MGAW
 649     * in CAP_REG and AW in context-entry.
 650     */
 651    return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
 652}
 653
 654/*
 655 * Rsvd field masks for spte:
 656 *     Index [1] to [4] 4k pages
 657 *     Index [5] to [8] large pages
 658 */
 659static uint64_t vtd_paging_entry_rsvd_field[9];
 660
 661static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 662{
 663    if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
 664        /* Maybe large page */
 665        return slpte & vtd_paging_entry_rsvd_field[level + 4];
 666    } else {
 667        return slpte & vtd_paging_entry_rsvd_field[level];
 668    }
 669}
 670
 671/* Find the VTD address space associated with a given bus number */
 672static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 673{
 674    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 675    if (!vtd_bus) {
 676        /*
 677         * Iterate over the registered buses to find the one which
 678         * currently hold this bus number, and update the bus_num
 679         * lookup table:
 680         */
 681        GHashTableIter iter;
 682
 683        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 684        while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
 685            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 686                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 687                return vtd_bus;
 688            }
 689        }
 690    }
 691    return vtd_bus;
 692}
 693
 694/* Given the @iova, get relevant @slptep. @slpte_level will be the last level
 695 * of the translation, can be used for deciding the size of large page.
 696 */
 697static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
 698                             uint64_t *slptep, uint32_t *slpte_level,
 699                             bool *reads, bool *writes, uint8_t aw_bits)
 700{
 701    dma_addr_t addr = vtd_ce_get_slpt_base(ce);
 702    uint32_t level = vtd_ce_get_level(ce);
 703    uint32_t offset;
 704    uint64_t slpte;
 705    uint64_t access_right_check;
 706
 707    if (!vtd_iova_range_check(iova, ce, aw_bits)) {
 708        trace_vtd_err_dmar_iova_overflow(iova);
 709        return -VTD_FR_ADDR_BEYOND_MGAW;
 710    }
 711
 712    /* FIXME: what is the Atomics request here? */
 713    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 714
 715    while (true) {
 716        offset = vtd_iova_level_offset(iova, level);
 717        slpte = vtd_get_slpte(addr, offset);
 718
 719        if (slpte == (uint64_t)-1) {
 720            trace_vtd_err_dmar_slpte_read_error(iova, level);
 721            if (level == vtd_ce_get_level(ce)) {
 722                /* Invalid programming of context-entry */
 723                return -VTD_FR_CONTEXT_ENTRY_INV;
 724            } else {
 725                return -VTD_FR_PAGING_ENTRY_INV;
 726            }
 727        }
 728        *reads = (*reads) && (slpte & VTD_SL_R);
 729        *writes = (*writes) && (slpte & VTD_SL_W);
 730        if (!(slpte & access_right_check)) {
 731            trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
 732            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
 733        }
 734        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 735            trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
 736            return -VTD_FR_PAGING_ENTRY_RSVD;
 737        }
 738
 739        if (vtd_is_last_slpte(slpte, level)) {
 740            *slptep = slpte;
 741            *slpte_level = level;
 742            return 0;
 743        }
 744        addr = vtd_get_slpte_addr(slpte, aw_bits);
 745        level--;
 746    }
 747}
 748
 749typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
 750
 751/**
 752 * Constant information used during page walking
 753 *
 754 * @hook_fn: hook func to be called when detected page
 755 * @private: private data to be passed into hook func
 756 * @notify_unmap: whether we should notify invalid entries
 757 * @as: VT-d address space of the device
 758 * @aw: maximum address width
 759 * @domain: domain ID of the page walk
 760 */
 761typedef struct {
 762    VTDAddressSpace *as;
 763    vtd_page_walk_hook hook_fn;
 764    void *private;
 765    bool notify_unmap;
 766    uint8_t aw;
 767    uint16_t domain_id;
 768} vtd_page_walk_info;
 769
 770static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
 771{
 772    VTDAddressSpace *as = info->as;
 773    vtd_page_walk_hook hook_fn = info->hook_fn;
 774    void *private = info->private;
 775    DMAMap target = {
 776        .iova = entry->iova,
 777        .size = entry->addr_mask,
 778        .translated_addr = entry->translated_addr,
 779        .perm = entry->perm,
 780    };
 781    DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
 782
 783    if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
 784        trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
 785        return 0;
 786    }
 787
 788    assert(hook_fn);
 789
 790    /* Update local IOVA mapped ranges */
 791    if (entry->perm) {
 792        if (mapped) {
 793            /* If it's exactly the same translation, skip */
 794            if (!memcmp(mapped, &target, sizeof(target))) {
 795                trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
 796                                                 entry->translated_addr);
 797                return 0;
 798            } else {
 799                /*
 800                 * Translation changed.  Normally this should not
 801                 * happen, but it can happen when with buggy guest
 802                 * OSes.  Note that there will be a small window that
 803                 * we don't have map at all.  But that's the best
 804                 * effort we can do.  The ideal way to emulate this is
 805                 * atomically modify the PTE to follow what has
 806                 * changed, but we can't.  One example is that vfio
 807                 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
 808                 * interface to modify a mapping (meanwhile it seems
 809                 * meaningless to even provide one).  Anyway, let's
 810                 * mark this as a TODO in case one day we'll have
 811                 * a better solution.
 812                 */
 813                IOMMUAccessFlags cache_perm = entry->perm;
 814                int ret;
 815
 816                /* Emulate an UNMAP */
 817                entry->perm = IOMMU_NONE;
 818                trace_vtd_page_walk_one(info->domain_id,
 819                                        entry->iova,
 820                                        entry->translated_addr,
 821                                        entry->addr_mask,
 822                                        entry->perm);
 823                ret = hook_fn(entry, private);
 824                if (ret) {
 825                    return ret;
 826                }
 827                /* Drop any existing mapping */
 828                iova_tree_remove(as->iova_tree, &target);
 829                /* Recover the correct permission */
 830                entry->perm = cache_perm;
 831            }
 832        }
 833        iova_tree_insert(as->iova_tree, &target);
 834    } else {
 835        if (!mapped) {
 836            /* Skip since we didn't map this range at all */
 837            trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
 838            return 0;
 839        }
 840        iova_tree_remove(as->iova_tree, &target);
 841    }
 842
 843    trace_vtd_page_walk_one(info->domain_id, entry->iova,
 844                            entry->translated_addr, entry->addr_mask,
 845                            entry->perm);
 846    return hook_fn(entry, private);
 847}
 848
 849/**
 850 * vtd_page_walk_level - walk over specific level for IOVA range
 851 *
 852 * @addr: base GPA addr to start the walk
 853 * @start: IOVA range start address
 854 * @end: IOVA range end address (start <= addr < end)
 855 * @read: whether parent level has read permission
 856 * @write: whether parent level has write permission
 857 * @info: constant information for the page walk
 858 */
 859static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
 860                               uint64_t end, uint32_t level, bool read,
 861                               bool write, vtd_page_walk_info *info)
 862{
 863    bool read_cur, write_cur, entry_valid;
 864    uint32_t offset;
 865    uint64_t slpte;
 866    uint64_t subpage_size, subpage_mask;
 867    IOMMUTLBEntry entry;
 868    uint64_t iova = start;
 869    uint64_t iova_next;
 870    int ret = 0;
 871
 872    trace_vtd_page_walk_level(addr, level, start, end);
 873
 874    subpage_size = 1ULL << vtd_slpt_level_shift(level);
 875    subpage_mask = vtd_slpt_level_page_mask(level);
 876
 877    while (iova < end) {
 878        iova_next = (iova & subpage_mask) + subpage_size;
 879
 880        offset = vtd_iova_level_offset(iova, level);
 881        slpte = vtd_get_slpte(addr, offset);
 882
 883        if (slpte == (uint64_t)-1) {
 884            trace_vtd_page_walk_skip_read(iova, iova_next);
 885            goto next;
 886        }
 887
 888        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 889            trace_vtd_page_walk_skip_reserve(iova, iova_next);
 890            goto next;
 891        }
 892
 893        /* Permissions are stacked with parents' */
 894        read_cur = read && (slpte & VTD_SL_R);
 895        write_cur = write && (slpte & VTD_SL_W);
 896
 897        /*
 898         * As long as we have either read/write permission, this is a
 899         * valid entry. The rule works for both page entries and page
 900         * table entries.
 901         */
 902        entry_valid = read_cur | write_cur;
 903
 904        if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
 905            /*
 906             * This is a valid PDE (or even bigger than PDE).  We need
 907             * to walk one further level.
 908             */
 909            ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
 910                                      iova, MIN(iova_next, end), level - 1,
 911                                      read_cur, write_cur, info);
 912        } else {
 913            /*
 914             * This means we are either:
 915             *
 916             * (1) the real page entry (either 4K page, or huge page)
 917             * (2) the whole range is invalid
 918             *
 919             * In either case, we send an IOTLB notification down.
 920             */
 921            entry.target_as = &address_space_memory;
 922            entry.iova = iova & subpage_mask;
 923            entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
 924            entry.addr_mask = ~subpage_mask;
 925            /* NOTE: this is only meaningful if entry_valid == true */
 926            entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
 927            ret = vtd_page_walk_one(&entry, info);
 928        }
 929
 930        if (ret < 0) {
 931            return ret;
 932        }
 933
 934next:
 935        iova = iova_next;
 936    }
 937
 938    return 0;
 939}
 940
 941/**
 942 * vtd_page_walk - walk specific IOVA range, and call the hook
 943 *
 944 * @ce: context entry to walk upon
 945 * @start: IOVA address to start the walk
 946 * @end: IOVA range end address (start <= addr < end)
 947 * @info: page walking information struct
 948 */
 949static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
 950                         vtd_page_walk_info *info)
 951{
 952    dma_addr_t addr = vtd_ce_get_slpt_base(ce);
 953    uint32_t level = vtd_ce_get_level(ce);
 954
 955    if (!vtd_iova_range_check(start, ce, info->aw)) {
 956        return -VTD_FR_ADDR_BEYOND_MGAW;
 957    }
 958
 959    if (!vtd_iova_range_check(end, ce, info->aw)) {
 960        /* Fix end so that it reaches the maximum */
 961        end = vtd_iova_limit(ce, info->aw);
 962    }
 963
 964    return vtd_page_walk_level(addr, start, end, level, true, true, info);
 965}
 966
 967/* Map a device to its corresponding domain (context-entry) */
 968static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
 969                                    uint8_t devfn, VTDContextEntry *ce)
 970{
 971    VTDRootEntry re;
 972    int ret_fr;
 973    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
 974
 975    ret_fr = vtd_get_root_entry(s, bus_num, &re);
 976    if (ret_fr) {
 977        return ret_fr;
 978    }
 979
 980    if (!vtd_root_entry_present(&re)) {
 981        /* Not error - it's okay we don't have root entry. */
 982        trace_vtd_re_not_present(bus_num);
 983        return -VTD_FR_ROOT_ENTRY_P;
 984    }
 985
 986    if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
 987        trace_vtd_re_invalid(re.rsvd, re.val);
 988        return -VTD_FR_ROOT_ENTRY_RSVD;
 989    }
 990
 991    ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
 992    if (ret_fr) {
 993        return ret_fr;
 994    }
 995
 996    if (!vtd_ce_present(ce)) {
 997        /* Not error - it's okay we don't have context entry. */
 998        trace_vtd_ce_not_present(bus_num, devfn);
 999        return -VTD_FR_CONTEXT_ENTRY_P;
1000    }
1001
1002    if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1003               (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1004        trace_vtd_ce_invalid(ce->hi, ce->lo);
1005        return -VTD_FR_CONTEXT_ENTRY_RSVD;
1006    }
1007
1008    /* Check if the programming of context-entry is valid */
1009    if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1010        trace_vtd_ce_invalid(ce->hi, ce->lo);
1011        return -VTD_FR_CONTEXT_ENTRY_INV;
1012    }
1013
1014    /* Do translation type check */
1015    if (!vtd_ce_type_check(x86_iommu, ce)) {
1016        trace_vtd_ce_invalid(ce->hi, ce->lo);
1017        return -VTD_FR_CONTEXT_ENTRY_INV;
1018    }
1019
1020    return 0;
1021}
1022
1023static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1024                                     void *private)
1025{
1026    memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1027    return 0;
1028}
1029
1030/* If context entry is NULL, we'll try to fetch it on our own. */
1031static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1032                                            VTDContextEntry *ce,
1033                                            hwaddr addr, hwaddr size)
1034{
1035    IntelIOMMUState *s = vtd_as->iommu_state;
1036    vtd_page_walk_info info = {
1037        .hook_fn = vtd_sync_shadow_page_hook,
1038        .private = (void *)&vtd_as->iommu,
1039        .notify_unmap = true,
1040        .aw = s->aw_bits,
1041        .as = vtd_as,
1042    };
1043    VTDContextEntry ce_cache;
1044    int ret;
1045
1046    if (ce) {
1047        /* If the caller provided context entry, use it */
1048        ce_cache = *ce;
1049    } else {
1050        /* If the caller didn't provide ce, try to fetch */
1051        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1052                                       vtd_as->devfn, &ce_cache);
1053        if (ret) {
1054            /*
1055             * This should not really happen, but in case it happens,
1056             * we just skip the sync for this time.  After all we even
1057             * don't have the root table pointer!
1058             */
1059            trace_vtd_err("Detected invalid context entry when "
1060                          "trying to sync shadow page table");
1061            return 0;
1062        }
1063    }
1064
1065    info.domain_id = VTD_CONTEXT_ENTRY_DID(ce_cache.hi);
1066
1067    return vtd_page_walk(&ce_cache, addr, addr + size, &info);
1068}
1069
1070static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1071{
1072    return vtd_sync_shadow_page_table_range(vtd_as, NULL, 0, UINT64_MAX);
1073}
1074
1075/*
1076 * Fetch translation type for specific device. Returns <0 if error
1077 * happens, otherwise return the shifted type to check against
1078 * VTD_CONTEXT_TT_*.
1079 */
1080static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1081{
1082    IntelIOMMUState *s;
1083    VTDContextEntry ce;
1084    int ret;
1085
1086    s = as->iommu_state;
1087
1088    ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1089                                   as->devfn, &ce);
1090    if (ret) {
1091        return ret;
1092    }
1093
1094    return vtd_ce_get_type(&ce);
1095}
1096
1097static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1098{
1099    int ret;
1100
1101    assert(as);
1102
1103    ret = vtd_dev_get_trans_type(as);
1104    if (ret < 0) {
1105        /*
1106         * Possibly failed to parse the context entry for some reason
1107         * (e.g., during init, or any guest configuration errors on
1108         * context entries). We should assume PT not enabled for
1109         * safety.
1110         */
1111        return false;
1112    }
1113
1114    return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1115}
1116
1117/* Return whether the device is using IOMMU translation. */
1118static bool vtd_switch_address_space(VTDAddressSpace *as)
1119{
1120    bool use_iommu;
1121    /* Whether we need to take the BQL on our own */
1122    bool take_bql = !qemu_mutex_iothread_locked();
1123
1124    assert(as);
1125
1126    use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1127
1128    trace_vtd_switch_address_space(pci_bus_num(as->bus),
1129                                   VTD_PCI_SLOT(as->devfn),
1130                                   VTD_PCI_FUNC(as->devfn),
1131                                   use_iommu);
1132
1133    /*
1134     * It's possible that we reach here without BQL, e.g., when called
1135     * from vtd_pt_enable_fast_path(). However the memory APIs need
1136     * it. We'd better make sure we have had it already, or, take it.
1137     */
1138    if (take_bql) {
1139        qemu_mutex_lock_iothread();
1140    }
1141
1142    /* Turn off first then on the other */
1143    if (use_iommu) {
1144        memory_region_set_enabled(&as->sys_alias, false);
1145        memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1146    } else {
1147        memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1148        memory_region_set_enabled(&as->sys_alias, true);
1149    }
1150
1151    if (take_bql) {
1152        qemu_mutex_unlock_iothread();
1153    }
1154
1155    return use_iommu;
1156}
1157
1158static void vtd_switch_address_space_all(IntelIOMMUState *s)
1159{
1160    GHashTableIter iter;
1161    VTDBus *vtd_bus;
1162    int i;
1163
1164    g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1165    while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1166        for (i = 0; i < PCI_DEVFN_MAX; i++) {
1167            if (!vtd_bus->dev_as[i]) {
1168                continue;
1169            }
1170            vtd_switch_address_space(vtd_bus->dev_as[i]);
1171        }
1172    }
1173}
1174
1175static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1176{
1177    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1178}
1179
1180static const bool vtd_qualified_faults[] = {
1181    [VTD_FR_RESERVED] = false,
1182    [VTD_FR_ROOT_ENTRY_P] = false,
1183    [VTD_FR_CONTEXT_ENTRY_P] = true,
1184    [VTD_FR_CONTEXT_ENTRY_INV] = true,
1185    [VTD_FR_ADDR_BEYOND_MGAW] = true,
1186    [VTD_FR_WRITE] = true,
1187    [VTD_FR_READ] = true,
1188    [VTD_FR_PAGING_ENTRY_INV] = true,
1189    [VTD_FR_ROOT_TABLE_INV] = false,
1190    [VTD_FR_CONTEXT_TABLE_INV] = false,
1191    [VTD_FR_ROOT_ENTRY_RSVD] = false,
1192    [VTD_FR_PAGING_ENTRY_RSVD] = true,
1193    [VTD_FR_CONTEXT_ENTRY_TT] = true,
1194    [VTD_FR_RESERVED_ERR] = false,
1195    [VTD_FR_MAX] = false,
1196};
1197
1198/* To see if a fault condition is "qualified", which is reported to software
1199 * only if the FPD field in the context-entry used to process the faulting
1200 * request is 0.
1201 */
1202static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1203{
1204    return vtd_qualified_faults[fault];
1205}
1206
1207static inline bool vtd_is_interrupt_addr(hwaddr addr)
1208{
1209    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1210}
1211
1212static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1213{
1214    VTDBus *vtd_bus;
1215    VTDAddressSpace *vtd_as;
1216    bool success = false;
1217
1218    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1219    if (!vtd_bus) {
1220        goto out;
1221    }
1222
1223    vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1224    if (!vtd_as) {
1225        goto out;
1226    }
1227
1228    if (vtd_switch_address_space(vtd_as) == false) {
1229        /* We switched off IOMMU region successfully. */
1230        success = true;
1231    }
1232
1233out:
1234    trace_vtd_pt_enable_fast_path(source_id, success);
1235}
1236
1237/* Map dev to context-entry then do a paging-structures walk to do a iommu
1238 * translation.
1239 *
1240 * Called from RCU critical section.
1241 *
1242 * @bus_num: The bus number
1243 * @devfn: The devfn, which is the  combined of device and function number
1244 * @is_write: The access is a write operation
1245 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1246 *
1247 * Returns true if translation is successful, otherwise false.
1248 */
1249static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1250                                   uint8_t devfn, hwaddr addr, bool is_write,
1251                                   IOMMUTLBEntry *entry)
1252{
1253    IntelIOMMUState *s = vtd_as->iommu_state;
1254    VTDContextEntry ce;
1255    uint8_t bus_num = pci_bus_num(bus);
1256    VTDContextCacheEntry *cc_entry;
1257    uint64_t slpte, page_mask;
1258    uint32_t level;
1259    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1260    int ret_fr;
1261    bool is_fpd_set = false;
1262    bool reads = true;
1263    bool writes = true;
1264    uint8_t access_flags;
1265    VTDIOTLBEntry *iotlb_entry;
1266
1267    /*
1268     * We have standalone memory region for interrupt addresses, we
1269     * should never receive translation requests in this region.
1270     */
1271    assert(!vtd_is_interrupt_addr(addr));
1272
1273    vtd_iommu_lock(s);
1274
1275    cc_entry = &vtd_as->context_cache_entry;
1276
1277    /* Try to fetch slpte form IOTLB */
1278    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1279    if (iotlb_entry) {
1280        trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1281                                 iotlb_entry->domain_id);
1282        slpte = iotlb_entry->slpte;
1283        access_flags = iotlb_entry->access_flags;
1284        page_mask = iotlb_entry->mask;
1285        goto out;
1286    }
1287
1288    /* Try to fetch context-entry from cache first */
1289    if (cc_entry->context_cache_gen == s->context_cache_gen) {
1290        trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1291                               cc_entry->context_entry.lo,
1292                               cc_entry->context_cache_gen);
1293        ce = cc_entry->context_entry;
1294        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1295    } else {
1296        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1297        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1298        if (ret_fr) {
1299            ret_fr = -ret_fr;
1300            if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1301                trace_vtd_fault_disabled();
1302            } else {
1303                vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1304            }
1305            goto error;
1306        }
1307        /* Update context-cache */
1308        trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1309                                  cc_entry->context_cache_gen,
1310                                  s->context_cache_gen);
1311        cc_entry->context_entry = ce;
1312        cc_entry->context_cache_gen = s->context_cache_gen;
1313    }
1314
1315    /*
1316     * We don't need to translate for pass-through context entries.
1317     * Also, let's ignore IOTLB caching as well for PT devices.
1318     */
1319    if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1320        entry->iova = addr & VTD_PAGE_MASK_4K;
1321        entry->translated_addr = entry->iova;
1322        entry->addr_mask = ~VTD_PAGE_MASK_4K;
1323        entry->perm = IOMMU_RW;
1324        trace_vtd_translate_pt(source_id, entry->iova);
1325
1326        /*
1327         * When this happens, it means firstly caching-mode is not
1328         * enabled, and this is the first passthrough translation for
1329         * the device. Let's enable the fast path for passthrough.
1330         *
1331         * When passthrough is disabled again for the device, we can
1332         * capture it via the context entry invalidation, then the
1333         * IOMMU region can be swapped back.
1334         */
1335        vtd_pt_enable_fast_path(s, source_id);
1336        vtd_iommu_unlock(s);
1337        return true;
1338    }
1339
1340    ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1341                               &reads, &writes, s->aw_bits);
1342    if (ret_fr) {
1343        ret_fr = -ret_fr;
1344        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1345            trace_vtd_fault_disabled();
1346        } else {
1347            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1348        }
1349        goto error;
1350    }
1351
1352    page_mask = vtd_slpt_level_page_mask(level);
1353    access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1354    vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1355                     access_flags, level);
1356out:
1357    vtd_iommu_unlock(s);
1358    entry->iova = addr & page_mask;
1359    entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1360    entry->addr_mask = ~page_mask;
1361    entry->perm = access_flags;
1362    return true;
1363
1364error:
1365    vtd_iommu_unlock(s);
1366    entry->iova = 0;
1367    entry->translated_addr = 0;
1368    entry->addr_mask = 0;
1369    entry->perm = IOMMU_NONE;
1370    return false;
1371}
1372
1373static void vtd_root_table_setup(IntelIOMMUState *s)
1374{
1375    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1376    s->root_extended = s->root & VTD_RTADDR_RTT;
1377    s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1378
1379    trace_vtd_reg_dmar_root(s->root, s->root_extended);
1380}
1381
1382static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1383                               uint32_t index, uint32_t mask)
1384{
1385    x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1386}
1387
1388static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1389{
1390    uint64_t value = 0;
1391    value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1392    s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1393    s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1394    s->intr_eime = value & VTD_IRTA_EIME;
1395
1396    /* Notify global invalidation */
1397    vtd_iec_notify_all(s, true, 0, 0);
1398
1399    trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1400}
1401
1402static void vtd_iommu_replay_all(IntelIOMMUState *s)
1403{
1404    VTDAddressSpace *vtd_as;
1405
1406    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1407        vtd_sync_shadow_page_table(vtd_as);
1408    }
1409}
1410
1411static void vtd_context_global_invalidate(IntelIOMMUState *s)
1412{
1413    trace_vtd_inv_desc_cc_global();
1414    /* Protects context cache */
1415    vtd_iommu_lock(s);
1416    s->context_cache_gen++;
1417    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1418        vtd_reset_context_cache_locked(s);
1419    }
1420    vtd_iommu_unlock(s);
1421    vtd_switch_address_space_all(s);
1422    /*
1423     * From VT-d spec 6.5.2.1, a global context entry invalidation
1424     * should be followed by a IOTLB global invalidation, so we should
1425     * be safe even without this. Hoewever, let's replay the region as
1426     * well to be safer, and go back here when we need finer tunes for
1427     * VT-d emulation codes.
1428     */
1429    vtd_iommu_replay_all(s);
1430}
1431
1432/* Do a context-cache device-selective invalidation.
1433 * @func_mask: FM field after shifting
1434 */
1435static void vtd_context_device_invalidate(IntelIOMMUState *s,
1436                                          uint16_t source_id,
1437                                          uint16_t func_mask)
1438{
1439    uint16_t mask;
1440    VTDBus *vtd_bus;
1441    VTDAddressSpace *vtd_as;
1442    uint8_t bus_n, devfn;
1443    uint16_t devfn_it;
1444
1445    trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1446
1447    switch (func_mask & 3) {
1448    case 0:
1449        mask = 0;   /* No bits in the SID field masked */
1450        break;
1451    case 1:
1452        mask = 4;   /* Mask bit 2 in the SID field */
1453        break;
1454    case 2:
1455        mask = 6;   /* Mask bit 2:1 in the SID field */
1456        break;
1457    case 3:
1458        mask = 7;   /* Mask bit 2:0 in the SID field */
1459        break;
1460    }
1461    mask = ~mask;
1462
1463    bus_n = VTD_SID_TO_BUS(source_id);
1464    vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1465    if (vtd_bus) {
1466        devfn = VTD_SID_TO_DEVFN(source_id);
1467        for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1468            vtd_as = vtd_bus->dev_as[devfn_it];
1469            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1470                trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1471                                             VTD_PCI_FUNC(devfn_it));
1472                vtd_iommu_lock(s);
1473                vtd_as->context_cache_entry.context_cache_gen = 0;
1474                vtd_iommu_unlock(s);
1475                /*
1476                 * Do switch address space when needed, in case if the
1477                 * device passthrough bit is switched.
1478                 */
1479                vtd_switch_address_space(vtd_as);
1480                /*
1481                 * So a device is moving out of (or moving into) a
1482                 * domain, resync the shadow page table.
1483                 * This won't bring bad even if we have no such
1484                 * notifier registered - the IOMMU notification
1485                 * framework will skip MAP notifications if that
1486                 * happened.
1487                 */
1488                vtd_sync_shadow_page_table(vtd_as);
1489            }
1490        }
1491    }
1492}
1493
1494/* Context-cache invalidation
1495 * Returns the Context Actual Invalidation Granularity.
1496 * @val: the content of the CCMD_REG
1497 */
1498static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1499{
1500    uint64_t caig;
1501    uint64_t type = val & VTD_CCMD_CIRG_MASK;
1502
1503    switch (type) {
1504    case VTD_CCMD_DOMAIN_INVL:
1505        /* Fall through */
1506    case VTD_CCMD_GLOBAL_INVL:
1507        caig = VTD_CCMD_GLOBAL_INVL_A;
1508        vtd_context_global_invalidate(s);
1509        break;
1510
1511    case VTD_CCMD_DEVICE_INVL:
1512        caig = VTD_CCMD_DEVICE_INVL_A;
1513        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1514        break;
1515
1516    default:
1517        trace_vtd_err("Context cache invalidate type error.");
1518        caig = 0;
1519    }
1520    return caig;
1521}
1522
1523static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1524{
1525    trace_vtd_inv_desc_iotlb_global();
1526    vtd_reset_iotlb(s);
1527    vtd_iommu_replay_all(s);
1528}
1529
1530static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1531{
1532    VTDContextEntry ce;
1533    VTDAddressSpace *vtd_as;
1534
1535    trace_vtd_inv_desc_iotlb_domain(domain_id);
1536
1537    vtd_iommu_lock(s);
1538    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1539                                &domain_id);
1540    vtd_iommu_unlock(s);
1541
1542    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1543        if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1544                                      vtd_as->devfn, &ce) &&
1545            domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1546            vtd_sync_shadow_page_table(vtd_as);
1547        }
1548    }
1549}
1550
1551static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1552                                           uint16_t domain_id, hwaddr addr,
1553                                           uint8_t am)
1554{
1555    VTDAddressSpace *vtd_as;
1556    VTDContextEntry ce;
1557    int ret;
1558    hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1559
1560    QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1561        ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1562                                       vtd_as->devfn, &ce);
1563        if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1564            if (vtd_as_has_map_notifier(vtd_as)) {
1565                /*
1566                 * As long as we have MAP notifications registered in
1567                 * any of our IOMMU notifiers, we need to sync the
1568                 * shadow page table.
1569                 */
1570                vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1571            } else {
1572                /*
1573                 * For UNMAP-only notifiers, we don't need to walk the
1574                 * page tables.  We just deliver the PSI down to
1575                 * invalidate caches.
1576                 */
1577                IOMMUTLBEntry entry = {
1578                    .target_as = &address_space_memory,
1579                    .iova = addr,
1580                    .translated_addr = 0,
1581                    .addr_mask = size - 1,
1582                    .perm = IOMMU_NONE,
1583                };
1584                memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1585            }
1586        }
1587    }
1588}
1589
1590static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1591                                      hwaddr addr, uint8_t am)
1592{
1593    VTDIOTLBPageInvInfo info;
1594
1595    trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1596
1597    assert(am <= VTD_MAMV);
1598    info.domain_id = domain_id;
1599    info.addr = addr;
1600    info.mask = ~((1 << am) - 1);
1601    vtd_iommu_lock(s);
1602    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1603    vtd_iommu_unlock(s);
1604    vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1605}
1606
1607/* Flush IOTLB
1608 * Returns the IOTLB Actual Invalidation Granularity.
1609 * @val: the content of the IOTLB_REG
1610 */
1611static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1612{
1613    uint64_t iaig;
1614    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1615    uint16_t domain_id;
1616    hwaddr addr;
1617    uint8_t am;
1618
1619    switch (type) {
1620    case VTD_TLB_GLOBAL_FLUSH:
1621        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1622        vtd_iotlb_global_invalidate(s);
1623        break;
1624
1625    case VTD_TLB_DSI_FLUSH:
1626        domain_id = VTD_TLB_DID(val);
1627        iaig = VTD_TLB_DSI_FLUSH_A;
1628        vtd_iotlb_domain_invalidate(s, domain_id);
1629        break;
1630
1631    case VTD_TLB_PSI_FLUSH:
1632        domain_id = VTD_TLB_DID(val);
1633        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1634        am = VTD_IVA_AM(addr);
1635        addr = VTD_IVA_ADDR(addr);
1636        if (am > VTD_MAMV) {
1637            trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1638            iaig = 0;
1639            break;
1640        }
1641        iaig = VTD_TLB_PSI_FLUSH_A;
1642        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1643        break;
1644
1645    default:
1646        trace_vtd_err("IOTLB flush: invalid granularity.");
1647        iaig = 0;
1648    }
1649    return iaig;
1650}
1651
1652static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1653
1654static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1655{
1656    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1657           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1658}
1659
1660static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1661{
1662    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1663
1664    trace_vtd_inv_qi_enable(en);
1665
1666    if (en) {
1667        s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1668        /* 2^(x+8) entries */
1669        s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1670        s->qi_enabled = true;
1671        trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1672        /* Ok - report back to driver */
1673        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1674
1675        if (s->iq_tail != 0) {
1676            /*
1677             * This is a spec violation but Windows guests are known to set up
1678             * Queued Invalidation this way so we allow the write and process
1679             * Invalidation Descriptors right away.
1680             */
1681            trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1682            if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1683                vtd_fetch_inv_desc(s);
1684            }
1685        }
1686    } else {
1687        if (vtd_queued_inv_disable_check(s)) {
1688            /* disable Queued Invalidation */
1689            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1690            s->iq_head = 0;
1691            s->qi_enabled = false;
1692            /* Ok - report back to driver */
1693            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1694        } else {
1695            trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1696        }
1697    }
1698}
1699
1700/* Set Root Table Pointer */
1701static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1702{
1703    vtd_root_table_setup(s);
1704    /* Ok - report back to driver */
1705    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1706}
1707
1708/* Set Interrupt Remap Table Pointer */
1709static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1710{
1711    vtd_interrupt_remap_table_setup(s);
1712    /* Ok - report back to driver */
1713    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1714}
1715
1716/* Handle Translation Enable/Disable */
1717static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1718{
1719    if (s->dmar_enabled == en) {
1720        return;
1721    }
1722
1723    trace_vtd_dmar_enable(en);
1724
1725    if (en) {
1726        s->dmar_enabled = true;
1727        /* Ok - report back to driver */
1728        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1729    } else {
1730        s->dmar_enabled = false;
1731
1732        /* Clear the index of Fault Recording Register */
1733        s->next_frcd_reg = 0;
1734        /* Ok - report back to driver */
1735        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1736    }
1737
1738    vtd_switch_address_space_all(s);
1739}
1740
1741/* Handle Interrupt Remap Enable/Disable */
1742static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1743{
1744    trace_vtd_ir_enable(en);
1745
1746    if (en) {
1747        s->intr_enabled = true;
1748        /* Ok - report back to driver */
1749        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1750    } else {
1751        s->intr_enabled = false;
1752        /* Ok - report back to driver */
1753        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1754    }
1755}
1756
1757/* Handle write to Global Command Register */
1758static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1759{
1760    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1761    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1762    uint32_t changed = status ^ val;
1763
1764    trace_vtd_reg_write_gcmd(status, val);
1765    if (changed & VTD_GCMD_TE) {
1766        /* Translation enable/disable */
1767        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1768    }
1769    if (val & VTD_GCMD_SRTP) {
1770        /* Set/update the root-table pointer */
1771        vtd_handle_gcmd_srtp(s);
1772    }
1773    if (changed & VTD_GCMD_QIE) {
1774        /* Queued Invalidation Enable */
1775        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1776    }
1777    if (val & VTD_GCMD_SIRTP) {
1778        /* Set/update the interrupt remapping root-table pointer */
1779        vtd_handle_gcmd_sirtp(s);
1780    }
1781    if (changed & VTD_GCMD_IRE) {
1782        /* Interrupt remap enable/disable */
1783        vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1784    }
1785}
1786
1787/* Handle write to Context Command Register */
1788static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1789{
1790    uint64_t ret;
1791    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1792
1793    /* Context-cache invalidation request */
1794    if (val & VTD_CCMD_ICC) {
1795        if (s->qi_enabled) {
1796            trace_vtd_err("Queued Invalidation enabled, "
1797                          "should not use register-based invalidation");
1798            return;
1799        }
1800        ret = vtd_context_cache_invalidate(s, val);
1801        /* Invalidation completed. Change something to show */
1802        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1803        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1804                                      ret);
1805    }
1806}
1807
1808/* Handle write to IOTLB Invalidation Register */
1809static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1810{
1811    uint64_t ret;
1812    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1813
1814    /* IOTLB invalidation request */
1815    if (val & VTD_TLB_IVT) {
1816        if (s->qi_enabled) {
1817            trace_vtd_err("Queued Invalidation enabled, "
1818                          "should not use register-based invalidation.");
1819            return;
1820        }
1821        ret = vtd_iotlb_flush(s, val);
1822        /* Invalidation completed. Change something to show */
1823        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1824        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1825                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1826    }
1827}
1828
1829/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1830static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1831                             VTDInvDesc *inv_desc)
1832{
1833    dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1834    if (dma_memory_read(&address_space_memory, addr, inv_desc,
1835        sizeof(*inv_desc))) {
1836        trace_vtd_err("Read INV DESC failed.");
1837        inv_desc->lo = 0;
1838        inv_desc->hi = 0;
1839        return false;
1840    }
1841    inv_desc->lo = le64_to_cpu(inv_desc->lo);
1842    inv_desc->hi = le64_to_cpu(inv_desc->hi);
1843    return true;
1844}
1845
1846static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1847{
1848    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1849        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1850        trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1851        return false;
1852    }
1853    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1854        /* Status Write */
1855        uint32_t status_data = (uint32_t)(inv_desc->lo >>
1856                               VTD_INV_DESC_WAIT_DATA_SHIFT);
1857
1858        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1859
1860        /* FIXME: need to be masked with HAW? */
1861        dma_addr_t status_addr = inv_desc->hi;
1862        trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1863        status_data = cpu_to_le32(status_data);
1864        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1865                             sizeof(status_data))) {
1866            trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1867            return false;
1868        }
1869    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1870        /* Interrupt flag */
1871        vtd_generate_completion_event(s);
1872    } else {
1873        trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1874        return false;
1875    }
1876    return true;
1877}
1878
1879static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1880                                           VTDInvDesc *inv_desc)
1881{
1882    uint16_t sid, fmask;
1883
1884    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1885        trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1886        return false;
1887    }
1888    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1889    case VTD_INV_DESC_CC_DOMAIN:
1890        trace_vtd_inv_desc_cc_domain(
1891            (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1892        /* Fall through */
1893    case VTD_INV_DESC_CC_GLOBAL:
1894        vtd_context_global_invalidate(s);
1895        break;
1896
1897    case VTD_INV_DESC_CC_DEVICE:
1898        sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1899        fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1900        vtd_context_device_invalidate(s, sid, fmask);
1901        break;
1902
1903    default:
1904        trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1905        return false;
1906    }
1907    return true;
1908}
1909
1910static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1911{
1912    uint16_t domain_id;
1913    uint8_t am;
1914    hwaddr addr;
1915
1916    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1917        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1918        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1919        return false;
1920    }
1921
1922    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1923    case VTD_INV_DESC_IOTLB_GLOBAL:
1924        vtd_iotlb_global_invalidate(s);
1925        break;
1926
1927    case VTD_INV_DESC_IOTLB_DOMAIN:
1928        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1929        vtd_iotlb_domain_invalidate(s, domain_id);
1930        break;
1931
1932    case VTD_INV_DESC_IOTLB_PAGE:
1933        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1934        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1935        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1936        if (am > VTD_MAMV) {
1937            trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1938            return false;
1939        }
1940        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1941        break;
1942
1943    default:
1944        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1945        return false;
1946    }
1947    return true;
1948}
1949
1950static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1951                                     VTDInvDesc *inv_desc)
1952{
1953    trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1954                           inv_desc->iec.index,
1955                           inv_desc->iec.index_mask);
1956
1957    vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1958                       inv_desc->iec.index,
1959                       inv_desc->iec.index_mask);
1960    return true;
1961}
1962
1963static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1964                                          VTDInvDesc *inv_desc)
1965{
1966    VTDAddressSpace *vtd_dev_as;
1967    IOMMUTLBEntry entry;
1968    struct VTDBus *vtd_bus;
1969    hwaddr addr;
1970    uint64_t sz;
1971    uint16_t sid;
1972    uint8_t devfn;
1973    bool size;
1974    uint8_t bus_num;
1975
1976    addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1977    sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1978    devfn = sid & 0xff;
1979    bus_num = sid >> 8;
1980    size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1981
1982    if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1983        (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1984        trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1985        return false;
1986    }
1987
1988    vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1989    if (!vtd_bus) {
1990        goto done;
1991    }
1992
1993    vtd_dev_as = vtd_bus->dev_as[devfn];
1994    if (!vtd_dev_as) {
1995        goto done;
1996    }
1997
1998    /* According to ATS spec table 2.4:
1999     * S = 0, bits 15:12 = xxxx     range size: 4K
2000     * S = 1, bits 15:12 = xxx0     range size: 8K
2001     * S = 1, bits 15:12 = xx01     range size: 16K
2002     * S = 1, bits 15:12 = x011     range size: 32K
2003     * S = 1, bits 15:12 = 0111     range size: 64K
2004     * ...
2005     */
2006    if (size) {
2007        sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2008        addr &= ~(sz - 1);
2009    } else {
2010        sz = VTD_PAGE_SIZE;
2011    }
2012
2013    entry.target_as = &vtd_dev_as->as;
2014    entry.addr_mask = sz - 1;
2015    entry.iova = addr;
2016    entry.perm = IOMMU_NONE;
2017    entry.translated_addr = 0;
2018    memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2019
2020done:
2021    return true;
2022}
2023
2024static bool vtd_process_inv_desc(IntelIOMMUState *s)
2025{
2026    VTDInvDesc inv_desc;
2027    uint8_t desc_type;
2028
2029    trace_vtd_inv_qi_head(s->iq_head);
2030    if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2031        s->iq_last_desc_type = VTD_INV_DESC_NONE;
2032        return false;
2033    }
2034    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2035    /* FIXME: should update at first or at last? */
2036    s->iq_last_desc_type = desc_type;
2037
2038    switch (desc_type) {
2039    case VTD_INV_DESC_CC:
2040        trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2041        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2042            return false;
2043        }
2044        break;
2045
2046    case VTD_INV_DESC_IOTLB:
2047        trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2048        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2049            return false;
2050        }
2051        break;
2052
2053    case VTD_INV_DESC_WAIT:
2054        trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2055        if (!vtd_process_wait_desc(s, &inv_desc)) {
2056            return false;
2057        }
2058        break;
2059
2060    case VTD_INV_DESC_IEC:
2061        trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2062        if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2063            return false;
2064        }
2065        break;
2066
2067    case VTD_INV_DESC_DEVICE:
2068        trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2069        if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2070            return false;
2071        }
2072        break;
2073
2074    default:
2075        trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
2076        return false;
2077    }
2078    s->iq_head++;
2079    if (s->iq_head == s->iq_size) {
2080        s->iq_head = 0;
2081    }
2082    return true;
2083}
2084
2085/* Try to fetch and process more Invalidation Descriptors */
2086static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2087{
2088    trace_vtd_inv_qi_fetch();
2089
2090    if (s->iq_tail >= s->iq_size) {
2091        /* Detects an invalid Tail pointer */
2092        trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
2093        vtd_handle_inv_queue_error(s);
2094        return;
2095    }
2096    while (s->iq_head != s->iq_tail) {
2097        if (!vtd_process_inv_desc(s)) {
2098            /* Invalidation Queue Errors */
2099            vtd_handle_inv_queue_error(s);
2100            break;
2101        }
2102        /* Must update the IQH_REG in time */
2103        vtd_set_quad_raw(s, DMAR_IQH_REG,
2104                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2105                         VTD_IQH_QH_MASK);
2106    }
2107}
2108
2109/* Handle write to Invalidation Queue Tail Register */
2110static void vtd_handle_iqt_write(IntelIOMMUState *s)
2111{
2112    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2113
2114    s->iq_tail = VTD_IQT_QT(val);
2115    trace_vtd_inv_qi_tail(s->iq_tail);
2116
2117    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2118        /* Process Invalidation Queue here */
2119        vtd_fetch_inv_desc(s);
2120    }
2121}
2122
2123static void vtd_handle_fsts_write(IntelIOMMUState *s)
2124{
2125    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2126    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2127    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2128
2129    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2130        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2131        trace_vtd_fsts_clear_ip();
2132    }
2133    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2134     * Descriptors if there are any when Queued Invalidation is enabled?
2135     */
2136}
2137
2138static void vtd_handle_fectl_write(IntelIOMMUState *s)
2139{
2140    uint32_t fectl_reg;
2141    /* FIXME: when software clears the IM field, check the IP field. But do we
2142     * need to compare the old value and the new value to conclude that
2143     * software clears the IM field? Or just check if the IM field is zero?
2144     */
2145    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2146
2147    trace_vtd_reg_write_fectl(fectl_reg);
2148
2149    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2150        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2151        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2152    }
2153}
2154
2155static void vtd_handle_ics_write(IntelIOMMUState *s)
2156{
2157    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2158    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2159
2160    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2161        trace_vtd_reg_ics_clear_ip();
2162        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2163    }
2164}
2165
2166static void vtd_handle_iectl_write(IntelIOMMUState *s)
2167{
2168    uint32_t iectl_reg;
2169    /* FIXME: when software clears the IM field, check the IP field. But do we
2170     * need to compare the old value and the new value to conclude that
2171     * software clears the IM field? Or just check if the IM field is zero?
2172     */
2173    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2174
2175    trace_vtd_reg_write_iectl(iectl_reg);
2176
2177    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2178        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2179        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2180    }
2181}
2182
2183static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2184{
2185    IntelIOMMUState *s = opaque;
2186    uint64_t val;
2187
2188    trace_vtd_reg_read(addr, size);
2189
2190    if (addr + size > DMAR_REG_SIZE) {
2191        trace_vtd_err("Read MMIO over range.");
2192        return (uint64_t)-1;
2193    }
2194
2195    switch (addr) {
2196    /* Root Table Address Register, 64-bit */
2197    case DMAR_RTADDR_REG:
2198        if (size == 4) {
2199            val = s->root & ((1ULL << 32) - 1);
2200        } else {
2201            val = s->root;
2202        }
2203        break;
2204
2205    case DMAR_RTADDR_REG_HI:
2206        assert(size == 4);
2207        val = s->root >> 32;
2208        break;
2209
2210    /* Invalidation Queue Address Register, 64-bit */
2211    case DMAR_IQA_REG:
2212        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2213        if (size == 4) {
2214            val = val & ((1ULL << 32) - 1);
2215        }
2216        break;
2217
2218    case DMAR_IQA_REG_HI:
2219        assert(size == 4);
2220        val = s->iq >> 32;
2221        break;
2222
2223    default:
2224        if (size == 4) {
2225            val = vtd_get_long(s, addr);
2226        } else {
2227            val = vtd_get_quad(s, addr);
2228        }
2229    }
2230
2231    return val;
2232}
2233
2234static void vtd_mem_write(void *opaque, hwaddr addr,
2235                          uint64_t val, unsigned size)
2236{
2237    IntelIOMMUState *s = opaque;
2238
2239    trace_vtd_reg_write(addr, size, val);
2240
2241    if (addr + size > DMAR_REG_SIZE) {
2242        trace_vtd_err("Write MMIO over range.");
2243        return;
2244    }
2245
2246    switch (addr) {
2247    /* Global Command Register, 32-bit */
2248    case DMAR_GCMD_REG:
2249        vtd_set_long(s, addr, val);
2250        vtd_handle_gcmd_write(s);
2251        break;
2252
2253    /* Context Command Register, 64-bit */
2254    case DMAR_CCMD_REG:
2255        if (size == 4) {
2256            vtd_set_long(s, addr, val);
2257        } else {
2258            vtd_set_quad(s, addr, val);
2259            vtd_handle_ccmd_write(s);
2260        }
2261        break;
2262
2263    case DMAR_CCMD_REG_HI:
2264        assert(size == 4);
2265        vtd_set_long(s, addr, val);
2266        vtd_handle_ccmd_write(s);
2267        break;
2268
2269    /* IOTLB Invalidation Register, 64-bit */
2270    case DMAR_IOTLB_REG:
2271        if (size == 4) {
2272            vtd_set_long(s, addr, val);
2273        } else {
2274            vtd_set_quad(s, addr, val);
2275            vtd_handle_iotlb_write(s);
2276        }
2277        break;
2278
2279    case DMAR_IOTLB_REG_HI:
2280        assert(size == 4);
2281        vtd_set_long(s, addr, val);
2282        vtd_handle_iotlb_write(s);
2283        break;
2284
2285    /* Invalidate Address Register, 64-bit */
2286    case DMAR_IVA_REG:
2287        if (size == 4) {
2288            vtd_set_long(s, addr, val);
2289        } else {
2290            vtd_set_quad(s, addr, val);
2291        }
2292        break;
2293
2294    case DMAR_IVA_REG_HI:
2295        assert(size == 4);
2296        vtd_set_long(s, addr, val);
2297        break;
2298
2299    /* Fault Status Register, 32-bit */
2300    case DMAR_FSTS_REG:
2301        assert(size == 4);
2302        vtd_set_long(s, addr, val);
2303        vtd_handle_fsts_write(s);
2304        break;
2305
2306    /* Fault Event Control Register, 32-bit */
2307    case DMAR_FECTL_REG:
2308        assert(size == 4);
2309        vtd_set_long(s, addr, val);
2310        vtd_handle_fectl_write(s);
2311        break;
2312
2313    /* Fault Event Data Register, 32-bit */
2314    case DMAR_FEDATA_REG:
2315        assert(size == 4);
2316        vtd_set_long(s, addr, val);
2317        break;
2318
2319    /* Fault Event Address Register, 32-bit */
2320    case DMAR_FEADDR_REG:
2321        if (size == 4) {
2322            vtd_set_long(s, addr, val);
2323        } else {
2324            /*
2325             * While the register is 32-bit only, some guests (Xen...) write to
2326             * it with 64-bit.
2327             */
2328            vtd_set_quad(s, addr, val);
2329        }
2330        break;
2331
2332    /* Fault Event Upper Address Register, 32-bit */
2333    case DMAR_FEUADDR_REG:
2334        assert(size == 4);
2335        vtd_set_long(s, addr, val);
2336        break;
2337
2338    /* Protected Memory Enable Register, 32-bit */
2339    case DMAR_PMEN_REG:
2340        assert(size == 4);
2341        vtd_set_long(s, addr, val);
2342        break;
2343
2344    /* Root Table Address Register, 64-bit */
2345    case DMAR_RTADDR_REG:
2346        if (size == 4) {
2347            vtd_set_long(s, addr, val);
2348        } else {
2349            vtd_set_quad(s, addr, val);
2350        }
2351        break;
2352
2353    case DMAR_RTADDR_REG_HI:
2354        assert(size == 4);
2355        vtd_set_long(s, addr, val);
2356        break;
2357
2358    /* Invalidation Queue Tail Register, 64-bit */
2359    case DMAR_IQT_REG:
2360        if (size == 4) {
2361            vtd_set_long(s, addr, val);
2362        } else {
2363            vtd_set_quad(s, addr, val);
2364        }
2365        vtd_handle_iqt_write(s);
2366        break;
2367
2368    case DMAR_IQT_REG_HI:
2369        assert(size == 4);
2370        vtd_set_long(s, addr, val);
2371        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2372        break;
2373
2374    /* Invalidation Queue Address Register, 64-bit */
2375    case DMAR_IQA_REG:
2376        if (size == 4) {
2377            vtd_set_long(s, addr, val);
2378        } else {
2379            vtd_set_quad(s, addr, val);
2380        }
2381        break;
2382
2383    case DMAR_IQA_REG_HI:
2384        assert(size == 4);
2385        vtd_set_long(s, addr, val);
2386        break;
2387
2388    /* Invalidation Completion Status Register, 32-bit */
2389    case DMAR_ICS_REG:
2390        assert(size == 4);
2391        vtd_set_long(s, addr, val);
2392        vtd_handle_ics_write(s);
2393        break;
2394
2395    /* Invalidation Event Control Register, 32-bit */
2396    case DMAR_IECTL_REG:
2397        assert(size == 4);
2398        vtd_set_long(s, addr, val);
2399        vtd_handle_iectl_write(s);
2400        break;
2401
2402    /* Invalidation Event Data Register, 32-bit */
2403    case DMAR_IEDATA_REG:
2404        assert(size == 4);
2405        vtd_set_long(s, addr, val);
2406        break;
2407
2408    /* Invalidation Event Address Register, 32-bit */
2409    case DMAR_IEADDR_REG:
2410        assert(size == 4);
2411        vtd_set_long(s, addr, val);
2412        break;
2413
2414    /* Invalidation Event Upper Address Register, 32-bit */
2415    case DMAR_IEUADDR_REG:
2416        assert(size == 4);
2417        vtd_set_long(s, addr, val);
2418        break;
2419
2420    /* Fault Recording Registers, 128-bit */
2421    case DMAR_FRCD_REG_0_0:
2422        if (size == 4) {
2423            vtd_set_long(s, addr, val);
2424        } else {
2425            vtd_set_quad(s, addr, val);
2426        }
2427        break;
2428
2429    case DMAR_FRCD_REG_0_1:
2430        assert(size == 4);
2431        vtd_set_long(s, addr, val);
2432        break;
2433
2434    case DMAR_FRCD_REG_0_2:
2435        if (size == 4) {
2436            vtd_set_long(s, addr, val);
2437        } else {
2438            vtd_set_quad(s, addr, val);
2439            /* May clear bit 127 (Fault), update PPF */
2440            vtd_update_fsts_ppf(s);
2441        }
2442        break;
2443
2444    case DMAR_FRCD_REG_0_3:
2445        assert(size == 4);
2446        vtd_set_long(s, addr, val);
2447        /* May clear bit 127 (Fault), update PPF */
2448        vtd_update_fsts_ppf(s);
2449        break;
2450
2451    case DMAR_IRTA_REG:
2452        if (size == 4) {
2453            vtd_set_long(s, addr, val);
2454        } else {
2455            vtd_set_quad(s, addr, val);
2456        }
2457        break;
2458
2459    case DMAR_IRTA_REG_HI:
2460        assert(size == 4);
2461        vtd_set_long(s, addr, val);
2462        break;
2463
2464    default:
2465        if (size == 4) {
2466            vtd_set_long(s, addr, val);
2467        } else {
2468            vtd_set_quad(s, addr, val);
2469        }
2470    }
2471}
2472
2473static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2474                                         IOMMUAccessFlags flag, int iommu_idx)
2475{
2476    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2477    IntelIOMMUState *s = vtd_as->iommu_state;
2478    IOMMUTLBEntry iotlb = {
2479        /* We'll fill in the rest later. */
2480        .target_as = &address_space_memory,
2481    };
2482    bool success;
2483
2484    if (likely(s->dmar_enabled)) {
2485        success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2486                                         addr, flag & IOMMU_WO, &iotlb);
2487    } else {
2488        /* DMAR disabled, passthrough, use 4k-page*/
2489        iotlb.iova = addr & VTD_PAGE_MASK_4K;
2490        iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2491        iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2492        iotlb.perm = IOMMU_RW;
2493        success = true;
2494    }
2495
2496    if (likely(success)) {
2497        trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2498                                 VTD_PCI_SLOT(vtd_as->devfn),
2499                                 VTD_PCI_FUNC(vtd_as->devfn),
2500                                 iotlb.iova, iotlb.translated_addr,
2501                                 iotlb.addr_mask);
2502    } else {
2503        trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2504                                     VTD_PCI_SLOT(vtd_as->devfn),
2505                                     VTD_PCI_FUNC(vtd_as->devfn),
2506                                     iotlb.iova);
2507    }
2508
2509    return iotlb;
2510}
2511
2512static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2513                                          IOMMUNotifierFlag old,
2514                                          IOMMUNotifierFlag new)
2515{
2516    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2517    IntelIOMMUState *s = vtd_as->iommu_state;
2518
2519    if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2520        error_report("We need to set caching-mode=1 for intel-iommu to enable "
2521                     "device assignment with IOMMU protection.");
2522        exit(1);
2523    }
2524
2525    /* Update per-address-space notifier flags */
2526    vtd_as->notifier_flags = new;
2527
2528    if (old == IOMMU_NOTIFIER_NONE) {
2529        QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2530    } else if (new == IOMMU_NOTIFIER_NONE) {
2531        QLIST_REMOVE(vtd_as, next);
2532    }
2533}
2534
2535static int vtd_post_load(void *opaque, int version_id)
2536{
2537    IntelIOMMUState *iommu = opaque;
2538
2539    /*
2540     * Memory regions are dynamically turned on/off depending on
2541     * context entry configurations from the guest. After migration,
2542     * we need to make sure the memory regions are still correct.
2543     */
2544    vtd_switch_address_space_all(iommu);
2545
2546    return 0;
2547}
2548
2549static const VMStateDescription vtd_vmstate = {
2550    .name = "iommu-intel",
2551    .version_id = 1,
2552    .minimum_version_id = 1,
2553    .priority = MIG_PRI_IOMMU,
2554    .post_load = vtd_post_load,
2555    .fields = (VMStateField[]) {
2556        VMSTATE_UINT64(root, IntelIOMMUState),
2557        VMSTATE_UINT64(intr_root, IntelIOMMUState),
2558        VMSTATE_UINT64(iq, IntelIOMMUState),
2559        VMSTATE_UINT32(intr_size, IntelIOMMUState),
2560        VMSTATE_UINT16(iq_head, IntelIOMMUState),
2561        VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2562        VMSTATE_UINT16(iq_size, IntelIOMMUState),
2563        VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2564        VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2565        VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2566        VMSTATE_BOOL(root_extended, IntelIOMMUState),
2567        VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2568        VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2569        VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2570        VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2571        VMSTATE_END_OF_LIST()
2572    }
2573};
2574
2575static const MemoryRegionOps vtd_mem_ops = {
2576    .read = vtd_mem_read,
2577    .write = vtd_mem_write,
2578    .endianness = DEVICE_LITTLE_ENDIAN,
2579    .impl = {
2580        .min_access_size = 4,
2581        .max_access_size = 8,
2582    },
2583    .valid = {
2584        .min_access_size = 4,
2585        .max_access_size = 8,
2586    },
2587};
2588
2589static Property vtd_properties[] = {
2590    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2591    DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2592                            ON_OFF_AUTO_AUTO),
2593    DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2594    DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2595                      VTD_HOST_ADDRESS_WIDTH),
2596    DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2597    DEFINE_PROP_END_OF_LIST(),
2598};
2599
2600/* Read IRTE entry with specific index */
2601static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2602                        VTD_IR_TableEntry *entry, uint16_t sid)
2603{
2604    static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2605        {0xffff, 0xfffb, 0xfff9, 0xfff8};
2606    dma_addr_t addr = 0x00;
2607    uint16_t mask, source_id;
2608    uint8_t bus, bus_max, bus_min;
2609
2610    addr = iommu->intr_root + index * sizeof(*entry);
2611    if (dma_memory_read(&address_space_memory, addr, entry,
2612                        sizeof(*entry))) {
2613        trace_vtd_err("Memory read failed for IRTE.");
2614        return -VTD_FR_IR_ROOT_INVAL;
2615    }
2616
2617    trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2618                          le64_to_cpu(entry->data[0]));
2619
2620    if (!entry->irte.present) {
2621        trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2622                           le64_to_cpu(entry->data[0]));
2623        return -VTD_FR_IR_ENTRY_P;
2624    }
2625
2626    if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2627        entry->irte.__reserved_2) {
2628        trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2629                           le64_to_cpu(entry->data[0]));
2630        return -VTD_FR_IR_IRTE_RSVD;
2631    }
2632
2633    if (sid != X86_IOMMU_SID_INVALID) {
2634        /* Validate IRTE SID */
2635        source_id = le32_to_cpu(entry->irte.source_id);
2636        switch (entry->irte.sid_vtype) {
2637        case VTD_SVT_NONE:
2638            break;
2639
2640        case VTD_SVT_ALL:
2641            mask = vtd_svt_mask[entry->irte.sid_q];
2642            if ((source_id & mask) != (sid & mask)) {
2643                trace_vtd_err_irte_sid(index, sid, source_id);
2644                return -VTD_FR_IR_SID_ERR;
2645            }
2646            break;
2647
2648        case VTD_SVT_BUS:
2649            bus_max = source_id >> 8;
2650            bus_min = source_id & 0xff;
2651            bus = sid >> 8;
2652            if (bus > bus_max || bus < bus_min) {
2653                trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2654                return -VTD_FR_IR_SID_ERR;
2655            }
2656            break;
2657
2658        default:
2659            trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2660            /* Take this as verification failure. */
2661            return -VTD_FR_IR_SID_ERR;
2662            break;
2663        }
2664    }
2665
2666    return 0;
2667}
2668
2669/* Fetch IRQ information of specific IR index */
2670static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2671                             VTDIrq *irq, uint16_t sid)
2672{
2673    VTD_IR_TableEntry irte = {};
2674    int ret = 0;
2675
2676    ret = vtd_irte_get(iommu, index, &irte, sid);
2677    if (ret) {
2678        return ret;
2679    }
2680
2681    irq->trigger_mode = irte.irte.trigger_mode;
2682    irq->vector = irte.irte.vector;
2683    irq->delivery_mode = irte.irte.delivery_mode;
2684    irq->dest = le32_to_cpu(irte.irte.dest_id);
2685    if (!iommu->intr_eime) {
2686#define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2687#define  VTD_IR_APIC_DEST_SHIFT        (8)
2688        irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2689            VTD_IR_APIC_DEST_SHIFT;
2690    }
2691    irq->dest_mode = irte.irte.dest_mode;
2692    irq->redir_hint = irte.irte.redir_hint;
2693
2694    trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2695                       irq->delivery_mode, irq->dest, irq->dest_mode);
2696
2697    return 0;
2698}
2699
2700/* Generate one MSI message from VTDIrq info */
2701static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2702{
2703    VTD_MSIMessage msg = {};
2704
2705    /* Generate address bits */
2706    msg.dest_mode = irq->dest_mode;
2707    msg.redir_hint = irq->redir_hint;
2708    msg.dest = irq->dest;
2709    msg.__addr_hi = irq->dest & 0xffffff00;
2710    msg.__addr_head = cpu_to_le32(0xfee);
2711    /* Keep this from original MSI address bits */
2712    msg.__not_used = irq->msi_addr_last_bits;
2713
2714    /* Generate data bits */
2715    msg.vector = irq->vector;
2716    msg.delivery_mode = irq->delivery_mode;
2717    msg.level = 1;
2718    msg.trigger_mode = irq->trigger_mode;
2719
2720    msg_out->address = msg.msi_addr;
2721    msg_out->data = msg.msi_data;
2722}
2723
2724/* Interrupt remapping for MSI/MSI-X entry */
2725static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2726                                   MSIMessage *origin,
2727                                   MSIMessage *translated,
2728                                   uint16_t sid)
2729{
2730    int ret = 0;
2731    VTD_IR_MSIAddress addr;
2732    uint16_t index;
2733    VTDIrq irq = {};
2734
2735    assert(origin && translated);
2736
2737    trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2738
2739    if (!iommu || !iommu->intr_enabled) {
2740        memcpy(translated, origin, sizeof(*origin));
2741        goto out;
2742    }
2743
2744    if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2745        trace_vtd_err("MSI address high 32 bits non-zero when "
2746                      "Interrupt Remapping enabled.");
2747        return -VTD_FR_IR_REQ_RSVD;
2748    }
2749
2750    addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2751    if (addr.addr.__head != 0xfee) {
2752        trace_vtd_err("MSI addr low 32 bit invalid.");
2753        return -VTD_FR_IR_REQ_RSVD;
2754    }
2755
2756    /* This is compatible mode. */
2757    if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2758        memcpy(translated, origin, sizeof(*origin));
2759        goto out;
2760    }
2761
2762    index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2763
2764#define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2765#define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2766
2767    if (addr.addr.sub_valid) {
2768        /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2769        index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2770    }
2771
2772    ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2773    if (ret) {
2774        return ret;
2775    }
2776
2777    if (addr.addr.sub_valid) {
2778        trace_vtd_ir_remap_type("MSI");
2779        if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2780            trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2781            return -VTD_FR_IR_REQ_RSVD;
2782        }
2783    } else {
2784        uint8_t vector = origin->data & 0xff;
2785        uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2786
2787        trace_vtd_ir_remap_type("IOAPIC");
2788        /* IOAPIC entry vector should be aligned with IRTE vector
2789         * (see vt-d spec 5.1.5.1). */
2790        if (vector != irq.vector) {
2791            trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2792        }
2793
2794        /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2795         * (see vt-d spec 5.1.5.1). */
2796        if (trigger_mode != irq.trigger_mode) {
2797            trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2798                                      irq.trigger_mode);
2799        }
2800    }
2801
2802    /*
2803     * We'd better keep the last two bits, assuming that guest OS
2804     * might modify it. Keep it does not hurt after all.
2805     */
2806    irq.msi_addr_last_bits = addr.addr.__not_care;
2807
2808    /* Translate VTDIrq to MSI message */
2809    vtd_generate_msi_message(&irq, translated);
2810
2811out:
2812    trace_vtd_ir_remap_msi(origin->address, origin->data,
2813                           translated->address, translated->data);
2814    return 0;
2815}
2816
2817static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2818                         MSIMessage *dst, uint16_t sid)
2819{
2820    return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2821                                   src, dst, sid);
2822}
2823
2824static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2825                                   uint64_t *data, unsigned size,
2826                                   MemTxAttrs attrs)
2827{
2828    return MEMTX_OK;
2829}
2830
2831static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2832                                    uint64_t value, unsigned size,
2833                                    MemTxAttrs attrs)
2834{
2835    int ret = 0;
2836    MSIMessage from = {}, to = {};
2837    uint16_t sid = X86_IOMMU_SID_INVALID;
2838
2839    from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2840    from.data = (uint32_t) value;
2841
2842    if (!attrs.unspecified) {
2843        /* We have explicit Source ID */
2844        sid = attrs.requester_id;
2845    }
2846
2847    ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2848    if (ret) {
2849        /* TODO: report error */
2850        /* Drop this interrupt */
2851        return MEMTX_ERROR;
2852    }
2853
2854    apic_get_class()->send_msi(&to);
2855
2856    return MEMTX_OK;
2857}
2858
2859static const MemoryRegionOps vtd_mem_ir_ops = {
2860    .read_with_attrs = vtd_mem_ir_read,
2861    .write_with_attrs = vtd_mem_ir_write,
2862    .endianness = DEVICE_LITTLE_ENDIAN,
2863    .impl = {
2864        .min_access_size = 4,
2865        .max_access_size = 4,
2866    },
2867    .valid = {
2868        .min_access_size = 4,
2869        .max_access_size = 4,
2870    },
2871};
2872
2873VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2874{
2875    uintptr_t key = (uintptr_t)bus;
2876    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2877    VTDAddressSpace *vtd_dev_as;
2878    char name[128];
2879
2880    if (!vtd_bus) {
2881        uintptr_t *new_key = g_malloc(sizeof(*new_key));
2882        *new_key = (uintptr_t)bus;
2883        /* No corresponding free() */
2884        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2885                            PCI_DEVFN_MAX);
2886        vtd_bus->bus = bus;
2887        g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2888    }
2889
2890    vtd_dev_as = vtd_bus->dev_as[devfn];
2891
2892    if (!vtd_dev_as) {
2893        snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2894        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2895
2896        vtd_dev_as->bus = bus;
2897        vtd_dev_as->devfn = (uint8_t)devfn;
2898        vtd_dev_as->iommu_state = s;
2899        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2900        vtd_dev_as->iova_tree = iova_tree_new();
2901
2902        /*
2903         * Memory region relationships looks like (Address range shows
2904         * only lower 32 bits to make it short in length...):
2905         *
2906         * |-----------------+-------------------+----------|
2907         * | Name            | Address range     | Priority |
2908         * |-----------------+-------------------+----------+
2909         * | vtd_root        | 00000000-ffffffff |        0 |
2910         * |  intel_iommu    | 00000000-ffffffff |        1 |
2911         * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2912         * |  intel_iommu_ir | fee00000-feefffff |       64 |
2913         * |-----------------+-------------------+----------|
2914         *
2915         * We enable/disable DMAR by switching enablement for
2916         * vtd_sys_alias and intel_iommu regions. IR region is always
2917         * enabled.
2918         */
2919        memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2920                                 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2921                                 "intel_iommu_dmar",
2922                                 UINT64_MAX);
2923        memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2924                                 "vtd_sys_alias", get_system_memory(),
2925                                 0, memory_region_size(get_system_memory()));
2926        memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2927                              &vtd_mem_ir_ops, s, "intel_iommu_ir",
2928                              VTD_INTERRUPT_ADDR_SIZE);
2929        memory_region_init(&vtd_dev_as->root, OBJECT(s),
2930                           "vtd_root", UINT64_MAX);
2931        memory_region_add_subregion_overlap(&vtd_dev_as->root,
2932                                            VTD_INTERRUPT_ADDR_FIRST,
2933                                            &vtd_dev_as->iommu_ir, 64);
2934        address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2935        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2936                                            &vtd_dev_as->sys_alias, 1);
2937        memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2938                                            MEMORY_REGION(&vtd_dev_as->iommu),
2939                                            1);
2940        vtd_switch_address_space(vtd_dev_as);
2941    }
2942    return vtd_dev_as;
2943}
2944
2945/* Unmap the whole range in the notifier's scope. */
2946static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2947{
2948    IOMMUTLBEntry entry;
2949    hwaddr size;
2950    hwaddr start = n->start;
2951    hwaddr end = n->end;
2952    IntelIOMMUState *s = as->iommu_state;
2953    DMAMap map;
2954
2955    /*
2956     * Note: all the codes in this function has a assumption that IOVA
2957     * bits are no more than VTD_MGAW bits (which is restricted by
2958     * VT-d spec), otherwise we need to consider overflow of 64 bits.
2959     */
2960
2961    if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2962        /*
2963         * Don't need to unmap regions that is bigger than the whole
2964         * VT-d supported address space size
2965         */
2966        end = VTD_ADDRESS_SIZE(s->aw_bits);
2967    }
2968
2969    assert(start <= end);
2970    size = end - start;
2971
2972    if (ctpop64(size) != 1) {
2973        /*
2974         * This size cannot format a correct mask. Let's enlarge it to
2975         * suite the minimum available mask.
2976         */
2977        int n = 64 - clz64(size);
2978        if (n > s->aw_bits) {
2979            /* should not happen, but in case it happens, limit it */
2980            n = s->aw_bits;
2981        }
2982        size = 1ULL << n;
2983    }
2984
2985    entry.target_as = &address_space_memory;
2986    /* Adjust iova for the size */
2987    entry.iova = n->start & ~(size - 1);
2988    /* This field is meaningless for unmap */
2989    entry.translated_addr = 0;
2990    entry.perm = IOMMU_NONE;
2991    entry.addr_mask = size - 1;
2992
2993    trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2994                             VTD_PCI_SLOT(as->devfn),
2995                             VTD_PCI_FUNC(as->devfn),
2996                             entry.iova, size);
2997
2998    map.iova = entry.iova;
2999    map.size = entry.addr_mask;
3000    iova_tree_remove(as->iova_tree, &map);
3001
3002    memory_region_notify_one(n, &entry);
3003}
3004
3005static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3006{
3007    VTDAddressSpace *vtd_as;
3008    IOMMUNotifier *n;
3009
3010    QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3011        IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3012            vtd_address_space_unmap(vtd_as, n);
3013        }
3014    }
3015}
3016
3017static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3018{
3019    memory_region_notify_one((IOMMUNotifier *)private, entry);
3020    return 0;
3021}
3022
3023static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3024{
3025    VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3026    IntelIOMMUState *s = vtd_as->iommu_state;
3027    uint8_t bus_n = pci_bus_num(vtd_as->bus);
3028    VTDContextEntry ce;
3029
3030    /*
3031     * The replay can be triggered by either a invalidation or a newly
3032     * created entry. No matter what, we release existing mappings
3033     * (it means flushing caches for UNMAP-only registers).
3034     */
3035    vtd_address_space_unmap(vtd_as, n);
3036
3037    if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3038        trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3039                                  PCI_FUNC(vtd_as->devfn),
3040                                  VTD_CONTEXT_ENTRY_DID(ce.hi),
3041                                  ce.hi, ce.lo);
3042        if (vtd_as_has_map_notifier(vtd_as)) {
3043            /* This is required only for MAP typed notifiers */
3044            vtd_page_walk_info info = {
3045                .hook_fn = vtd_replay_hook,
3046                .private = (void *)n,
3047                .notify_unmap = false,
3048                .aw = s->aw_bits,
3049                .as = vtd_as,
3050                .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3051            };
3052
3053            vtd_page_walk(&ce, 0, ~0ULL, &info);
3054        }
3055    } else {
3056        trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3057                                    PCI_FUNC(vtd_as->devfn));
3058    }
3059
3060    return;
3061}
3062
3063/* Do the initialization. It will also be called when reset, so pay
3064 * attention when adding new initialization stuff.
3065 */
3066static void vtd_init(IntelIOMMUState *s)
3067{
3068    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3069
3070    memset(s->csr, 0, DMAR_REG_SIZE);
3071    memset(s->wmask, 0, DMAR_REG_SIZE);
3072    memset(s->w1cmask, 0, DMAR_REG_SIZE);
3073    memset(s->womask, 0, DMAR_REG_SIZE);
3074
3075    s->root = 0;
3076    s->root_extended = false;
3077    s->dmar_enabled = false;
3078    s->iq_head = 0;
3079    s->iq_tail = 0;
3080    s->iq = 0;
3081    s->iq_size = 0;
3082    s->qi_enabled = false;
3083    s->iq_last_desc_type = VTD_INV_DESC_NONE;
3084    s->next_frcd_reg = 0;
3085    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3086             VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3087             VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3088    if (s->aw_bits == VTD_HOST_AW_48BIT) {
3089        s->cap |= VTD_CAP_SAGAW_48bit;
3090    }
3091    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3092
3093    /*
3094     * Rsvd field masks for spte
3095     */
3096    vtd_paging_entry_rsvd_field[0] = ~0ULL;
3097    vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3098    vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3099    vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3100    vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3101    vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3102    vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3103    vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3104    vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3105
3106    if (x86_iommu->intr_supported) {
3107        s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3108        if (s->intr_eim == ON_OFF_AUTO_ON) {
3109            s->ecap |= VTD_ECAP_EIM;
3110        }
3111        assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3112    }
3113
3114    if (x86_iommu->dt_supported) {
3115        s->ecap |= VTD_ECAP_DT;
3116    }
3117
3118    if (x86_iommu->pt_supported) {
3119        s->ecap |= VTD_ECAP_PT;
3120    }
3121
3122    if (s->caching_mode) {
3123        s->cap |= VTD_CAP_CM;
3124    }
3125
3126    vtd_iommu_lock(s);
3127    vtd_reset_context_cache_locked(s);
3128    vtd_reset_iotlb_locked(s);
3129    vtd_iommu_unlock(s);
3130
3131    /* Define registers with default values and bit semantics */
3132    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3133    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3134    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3135    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3136    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3137    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3138    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3139    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3140    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3141
3142    /* Advanced Fault Logging not supported */
3143    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3144    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3145    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3146    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3147
3148    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3149     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3150     */
3151    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3152
3153    /* Treated as RO for implementations that PLMR and PHMR fields reported
3154     * as Clear in the CAP_REG.
3155     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3156     */
3157    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3158
3159    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3160    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3161    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3162    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3163    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3164    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3165    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3166    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3167    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3168
3169    /* IOTLB registers */
3170    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3171    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3172    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3173
3174    /* Fault Recording Registers, 128-bit */
3175    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3176    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3177
3178    /*
3179     * Interrupt remapping registers.
3180     */
3181    vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3182}
3183
3184/* Should not reset address_spaces when reset because devices will still use
3185 * the address space they got at first (won't ask the bus again).
3186 */
3187static void vtd_reset(DeviceState *dev)
3188{
3189    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3190
3191    vtd_init(s);
3192
3193    /*
3194     * When device reset, throw away all mappings and external caches
3195     */
3196    vtd_address_space_unmap_all(s);
3197}
3198
3199static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3200{
3201    IntelIOMMUState *s = opaque;
3202    VTDAddressSpace *vtd_as;
3203
3204    assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3205
3206    vtd_as = vtd_find_add_as(s, bus, devfn);
3207    return &vtd_as->as;
3208}
3209
3210static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3211{
3212    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3213
3214    /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3215    if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3216        !kvm_irqchip_is_split()) {
3217        error_setg(errp, "Intel Interrupt Remapping cannot work with "
3218                         "kernel-irqchip=on, please use 'split|off'.");
3219        return false;
3220    }
3221    if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3222        error_setg(errp, "eim=on cannot be selected without intremap=on");
3223        return false;
3224    }
3225
3226    if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3227        s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3228                      && x86_iommu->intr_supported ?
3229                                              ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3230    }
3231    if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3232        if (!kvm_irqchip_in_kernel()) {
3233            error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3234            return false;
3235        }
3236        if (!kvm_enable_x2apic()) {
3237            error_setg(errp, "eim=on requires support on the KVM side"
3238                             "(X2APIC_API, first shipped in v4.7)");
3239            return false;
3240        }
3241    }
3242
3243    /* Currently only address widths supported are 39 and 48 bits */
3244    if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3245        (s->aw_bits != VTD_HOST_AW_48BIT)) {
3246        error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3247                   VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3248        return false;
3249    }
3250
3251    return true;
3252}
3253
3254static void vtd_realize(DeviceState *dev, Error **errp)
3255{
3256    MachineState *ms = MACHINE(qdev_get_machine());
3257    PCMachineState *pcms = PC_MACHINE(ms);
3258    PCIBus *bus = pcms->bus;
3259    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3260    X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3261
3262    x86_iommu->type = TYPE_INTEL;
3263
3264    if (!vtd_decide_config(s, errp)) {
3265        return;
3266    }
3267
3268    QLIST_INIT(&s->vtd_as_with_notifiers);
3269    qemu_mutex_init(&s->iommu_lock);
3270    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3271    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3272                          "intel_iommu", DMAR_REG_SIZE);
3273    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3274    /* No corresponding destroy */
3275    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3276                                     g_free, g_free);
3277    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3278                                              g_free, g_free);
3279    vtd_init(s);
3280    sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3281    pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3282    /* Pseudo address space under root PCI bus. */
3283    pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3284}
3285
3286static void vtd_class_init(ObjectClass *klass, void *data)
3287{
3288    DeviceClass *dc = DEVICE_CLASS(klass);
3289    X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3290
3291    dc->reset = vtd_reset;
3292    dc->vmsd = &vtd_vmstate;
3293    dc->props = vtd_properties;
3294    dc->hotpluggable = false;
3295    x86_class->realize = vtd_realize;
3296    x86_class->int_remap = vtd_int_remap;
3297    /* Supported by the pc-q35-* machine types */
3298    dc->user_creatable = true;
3299}
3300
3301static const TypeInfo vtd_info = {
3302    .name          = TYPE_INTEL_IOMMU_DEVICE,
3303    .parent        = TYPE_X86_IOMMU_DEVICE,
3304    .instance_size = sizeof(IntelIOMMUState),
3305    .class_init    = vtd_class_init,
3306};
3307
3308static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3309                                                     void *data)
3310{
3311    IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3312
3313    imrc->translate = vtd_iommu_translate;
3314    imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3315    imrc->replay = vtd_iommu_replay;
3316}
3317
3318static const TypeInfo vtd_iommu_memory_region_info = {
3319    .parent = TYPE_IOMMU_MEMORY_REGION,
3320    .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3321    .class_init = vtd_iommu_memory_region_class_init,
3322};
3323
3324static void vtd_register_types(void)
3325{
3326    type_register_static(&vtd_info);
3327    type_register_static(&vtd_iommu_memory_region_info);
3328}
3329
3330type_init(vtd_register_types)
3331