qemu/hw/riscv/virt.c
<<
>>
Prefs
   1/*
   2 * QEMU RISC-V VirtIO Board
   3 *
   4 * Copyright (c) 2017 SiFive, Inc.
   5 *
   6 * RISC-V machine with 16550a UART and VirtIO MMIO
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms and conditions of the GNU General Public License,
  10 * version 2 or later, as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope it will be useful, but WITHOUT
  13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  15 * more details.
  16 *
  17 * You should have received a copy of the GNU General Public License along with
  18 * this program.  If not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/units.h"
  23#include "qemu/log.h"
  24#include "qemu/error-report.h"
  25#include "qapi/error.h"
  26#include "hw/hw.h"
  27#include "hw/boards.h"
  28#include "hw/loader.h"
  29#include "hw/sysbus.h"
  30#include "hw/char/serial.h"
  31#include "target/riscv/cpu.h"
  32#include "hw/riscv/riscv_htif.h"
  33#include "hw/riscv/riscv_hart.h"
  34#include "hw/riscv/sifive_plic.h"
  35#include "hw/riscv/sifive_clint.h"
  36#include "hw/riscv/sifive_test.h"
  37#include "hw/riscv/virt.h"
  38#include "chardev/char.h"
  39#include "sysemu/arch_init.h"
  40#include "sysemu/device_tree.h"
  41#include "exec/address-spaces.h"
  42#include "elf.h"
  43
  44#include <libfdt.h>
  45
  46static const struct MemmapEntry {
  47    hwaddr base;
  48    hwaddr size;
  49} virt_memmap[] = {
  50    [VIRT_DEBUG] =    {        0x0,      0x100 },
  51    [VIRT_MROM] =     {     0x1000,    0x11000 },
  52    [VIRT_TEST] =     {   0x100000,     0x1000 },
  53    [VIRT_CLINT] =    {  0x2000000,    0x10000 },
  54    [VIRT_PLIC] =     {  0xc000000,  0x4000000 },
  55    [VIRT_UART0] =    { 0x10000000,      0x100 },
  56    [VIRT_VIRTIO] =   { 0x10001000,     0x1000 },
  57    [VIRT_DRAM] =     { 0x80000000,        0x0 },
  58};
  59
  60static uint64_t load_kernel(const char *kernel_filename)
  61{
  62    uint64_t kernel_entry, kernel_high;
  63
  64    if (load_elf(kernel_filename, NULL, NULL,
  65                 &kernel_entry, NULL, &kernel_high,
  66                 0, EM_RISCV, 1, 0) < 0) {
  67        error_report("qemu: could not load kernel '%s'", kernel_filename);
  68        exit(1);
  69    }
  70    return kernel_entry;
  71}
  72
  73static hwaddr load_initrd(const char *filename, uint64_t mem_size,
  74                          uint64_t kernel_entry, hwaddr *start)
  75{
  76    int size;
  77
  78    /* We want to put the initrd far enough into RAM that when the
  79     * kernel is uncompressed it will not clobber the initrd. However
  80     * on boards without much RAM we must ensure that we still leave
  81     * enough room for a decent sized initrd, and on boards with large
  82     * amounts of RAM we must avoid the initrd being so far up in RAM
  83     * that it is outside lowmem and inaccessible to the kernel.
  84     * So for boards with less  than 256MB of RAM we put the initrd
  85     * halfway into RAM, and for boards with 256MB of RAM or more we put
  86     * the initrd at 128MB.
  87     */
  88    *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
  89
  90    size = load_ramdisk(filename, *start, mem_size - *start);
  91    if (size == -1) {
  92        size = load_image_targphys(filename, *start, mem_size - *start);
  93        if (size == -1) {
  94            error_report("qemu: could not load ramdisk '%s'", filename);
  95            exit(1);
  96        }
  97    }
  98    return *start + size;
  99}
 100
 101static void *create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap,
 102    uint64_t mem_size, const char *cmdline)
 103{
 104    void *fdt;
 105    int cpu;
 106    uint32_t *cells;
 107    char *nodename;
 108    uint32_t plic_phandle, phandle = 1;
 109    int i;
 110
 111    fdt = s->fdt = create_device_tree(&s->fdt_size);
 112    if (!fdt) {
 113        error_report("create_device_tree() failed");
 114        exit(1);
 115    }
 116
 117    qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
 118    qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
 119    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 120    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 121
 122    qemu_fdt_add_subnode(fdt, "/soc");
 123    qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
 124    qemu_fdt_setprop_string(fdt, "/soc", "compatible", "riscv-virtio-soc");
 125    qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
 126    qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
 127
 128    nodename = g_strdup_printf("/memory@%lx",
 129        (long)memmap[VIRT_DRAM].base);
 130    qemu_fdt_add_subnode(fdt, nodename);
 131    qemu_fdt_setprop_cells(fdt, nodename, "reg",
 132        memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base,
 133        mem_size >> 32, mem_size);
 134    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 135    g_free(nodename);
 136
 137    qemu_fdt_add_subnode(fdt, "/cpus");
 138    qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
 139                          SIFIVE_CLINT_TIMEBASE_FREQ);
 140    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
 141    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
 142
 143    for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
 144        int cpu_phandle = phandle++;
 145        nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 146        char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
 147        char *isa = riscv_isa_string(&s->soc.harts[cpu]);
 148        qemu_fdt_add_subnode(fdt, nodename);
 149        qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
 150                              VIRT_CLOCK_FREQ);
 151        qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
 152        qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
 153        qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
 154        qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
 155        qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
 156        qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
 157        qemu_fdt_add_subnode(fdt, intc);
 158        qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle);
 159        qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", cpu_phandle);
 160        qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
 161        qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
 162        qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
 163        g_free(isa);
 164        g_free(intc);
 165        g_free(nodename);
 166    }
 167
 168    cells =  g_new0(uint32_t, s->soc.num_harts * 4);
 169    for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
 170        nodename =
 171            g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
 172        uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
 173        cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
 174        cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
 175        cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
 176        cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
 177        g_free(nodename);
 178    }
 179    nodename = g_strdup_printf("/soc/clint@%lx",
 180        (long)memmap[VIRT_CLINT].base);
 181    qemu_fdt_add_subnode(fdt, nodename);
 182    qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
 183    qemu_fdt_setprop_cells(fdt, nodename, "reg",
 184        0x0, memmap[VIRT_CLINT].base,
 185        0x0, memmap[VIRT_CLINT].size);
 186    qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
 187        cells, s->soc.num_harts * sizeof(uint32_t) * 4);
 188    g_free(cells);
 189    g_free(nodename);
 190
 191    plic_phandle = phandle++;
 192    cells =  g_new0(uint32_t, s->soc.num_harts * 4);
 193    for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
 194        nodename =
 195            g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
 196        uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
 197        cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
 198        cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
 199        cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
 200        cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
 201        g_free(nodename);
 202    }
 203    nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
 204        (long)memmap[VIRT_PLIC].base);
 205    qemu_fdt_add_subnode(fdt, nodename);
 206    qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
 207    qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
 208    qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
 209    qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
 210        cells, s->soc.num_harts * sizeof(uint32_t) * 4);
 211    qemu_fdt_setprop_cells(fdt, nodename, "reg",
 212        0x0, memmap[VIRT_PLIC].base,
 213        0x0, memmap[VIRT_PLIC].size);
 214    qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control");
 215    qemu_fdt_setprop_cell(fdt, nodename, "riscv,max-priority", 7);
 216    qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV);
 217    qemu_fdt_setprop_cells(fdt, nodename, "phandle", plic_phandle);
 218    qemu_fdt_setprop_cells(fdt, nodename, "linux,phandle", plic_phandle);
 219    plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
 220    g_free(cells);
 221    g_free(nodename);
 222
 223    for (i = 0; i < VIRTIO_COUNT; i++) {
 224        nodename = g_strdup_printf("/virtio_mmio@%lx",
 225            (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
 226        qemu_fdt_add_subnode(fdt, nodename);
 227        qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
 228        qemu_fdt_setprop_cells(fdt, nodename, "reg",
 229            0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
 230            0x0, memmap[VIRT_VIRTIO].size);
 231        qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle);
 232        qemu_fdt_setprop_cells(fdt, nodename, "interrupts", VIRTIO_IRQ + i);
 233        g_free(nodename);
 234    }
 235
 236    nodename = g_strdup_printf("/test@%lx",
 237        (long)memmap[VIRT_TEST].base);
 238    qemu_fdt_add_subnode(fdt, nodename);
 239    qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,test0");
 240    qemu_fdt_setprop_cells(fdt, nodename, "reg",
 241        0x0, memmap[VIRT_TEST].base,
 242        0x0, memmap[VIRT_TEST].size);
 243
 244    nodename = g_strdup_printf("/uart@%lx",
 245        (long)memmap[VIRT_UART0].base);
 246    qemu_fdt_add_subnode(fdt, nodename);
 247    qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
 248    qemu_fdt_setprop_cells(fdt, nodename, "reg",
 249        0x0, memmap[VIRT_UART0].base,
 250        0x0, memmap[VIRT_UART0].size);
 251    qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400);
 252        qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle);
 253        qemu_fdt_setprop_cells(fdt, nodename, "interrupts", UART0_IRQ);
 254
 255    qemu_fdt_add_subnode(fdt, "/chosen");
 256    qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
 257    qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 258    g_free(nodename);
 259
 260    return fdt;
 261}
 262
 263static void riscv_virt_board_init(MachineState *machine)
 264{
 265    const struct MemmapEntry *memmap = virt_memmap;
 266
 267    RISCVVirtState *s = g_new0(RISCVVirtState, 1);
 268    MemoryRegion *system_memory = get_system_memory();
 269    MemoryRegion *main_mem = g_new(MemoryRegion, 1);
 270    MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
 271    char *plic_hart_config;
 272    size_t plic_hart_config_len;
 273    int i;
 274    void *fdt;
 275
 276    /* Initialize SOC */
 277    object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
 278                            TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
 279    object_property_set_str(OBJECT(&s->soc), VIRT_CPU, "cpu-type",
 280                            &error_abort);
 281    object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
 282                            &error_abort);
 283    object_property_set_bool(OBJECT(&s->soc), true, "realized",
 284                            &error_abort);
 285
 286    /* register system main memory (actual RAM) */
 287    memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
 288                           machine->ram_size, &error_fatal);
 289    memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
 290        main_mem);
 291
 292    /* create device tree */
 293    fdt = create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
 294
 295    /* boot rom */
 296    memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
 297                           memmap[VIRT_MROM].size, &error_fatal);
 298    memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
 299                                mask_rom);
 300
 301    if (machine->kernel_filename) {
 302        uint64_t kernel_entry = load_kernel(machine->kernel_filename);
 303
 304        if (machine->initrd_filename) {
 305            hwaddr start;
 306            hwaddr end = load_initrd(machine->initrd_filename,
 307                                     machine->ram_size, kernel_entry,
 308                                     &start);
 309            qemu_fdt_setprop_cell(fdt, "/chosen",
 310                                  "linux,initrd-start", start);
 311            qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 312                                  end);
 313        }
 314    }
 315
 316    /* reset vector */
 317    uint32_t reset_vec[8] = {
 318        0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
 319        0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
 320        0xf1402573,                  /*     csrr   a0, mhartid  */
 321#if defined(TARGET_RISCV32)
 322        0x0182a283,                  /*     lw     t0, 24(t0) */
 323#elif defined(TARGET_RISCV64)
 324        0x0182b283,                  /*     ld     t0, 24(t0) */
 325#endif
 326        0x00028067,                  /*     jr     t0 */
 327        0x00000000,
 328        memmap[VIRT_DRAM].base,      /* start: .dword memmap[VIRT_DRAM].base */
 329        0x00000000,
 330                                     /* dtb: */
 331    };
 332
 333    /* copy in the reset vector in little_endian byte order */
 334    for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
 335        reset_vec[i] = cpu_to_le32(reset_vec[i]);
 336    }
 337    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
 338                          memmap[VIRT_MROM].base, &address_space_memory);
 339
 340    /* copy in the device tree */
 341    if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
 342            memmap[VIRT_MROM].size - sizeof(reset_vec)) {
 343        error_report("not enough space to store device-tree");
 344        exit(1);
 345    }
 346    qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
 347    rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
 348                          memmap[VIRT_MROM].base + sizeof(reset_vec),
 349                          &address_space_memory);
 350
 351    /* create PLIC hart topology configuration string */
 352    plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus;
 353    plic_hart_config = g_malloc0(plic_hart_config_len);
 354    for (i = 0; i < smp_cpus; i++) {
 355        if (i != 0) {
 356            strncat(plic_hart_config, ",", plic_hart_config_len);
 357        }
 358        strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len);
 359        plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
 360    }
 361
 362    /* MMIO */
 363    s->plic = sifive_plic_create(memmap[VIRT_PLIC].base,
 364        plic_hart_config,
 365        VIRT_PLIC_NUM_SOURCES,
 366        VIRT_PLIC_NUM_PRIORITIES,
 367        VIRT_PLIC_PRIORITY_BASE,
 368        VIRT_PLIC_PENDING_BASE,
 369        VIRT_PLIC_ENABLE_BASE,
 370        VIRT_PLIC_ENABLE_STRIDE,
 371        VIRT_PLIC_CONTEXT_BASE,
 372        VIRT_PLIC_CONTEXT_STRIDE,
 373        memmap[VIRT_PLIC].size);
 374    sifive_clint_create(memmap[VIRT_CLINT].base,
 375        memmap[VIRT_CLINT].size, smp_cpus,
 376        SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
 377    sifive_test_create(memmap[VIRT_TEST].base);
 378
 379    for (i = 0; i < VIRTIO_COUNT; i++) {
 380        sysbus_create_simple("virtio-mmio",
 381            memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
 382            qdev_get_gpio_in(DEVICE(s->plic), VIRTIO_IRQ + i));
 383    }
 384
 385    serial_mm_init(system_memory, memmap[VIRT_UART0].base,
 386        0, qdev_get_gpio_in(DEVICE(s->plic), UART0_IRQ), 399193,
 387        serial_hd(0), DEVICE_LITTLE_ENDIAN);
 388}
 389
 390static void riscv_virt_board_machine_init(MachineClass *mc)
 391{
 392    mc->desc = "RISC-V VirtIO Board (Privileged ISA v1.10)";
 393    mc->init = riscv_virt_board_init;
 394    mc->max_cpus = 8; /* hardcoded limit in BBL */
 395}
 396
 397DEFINE_MACHINE("virt", riscv_virt_board_machine_init)
 398