qemu/include/qom/cpu.h
<<
>>
Prefs
   1/*
   2 * QEMU CPU model
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20#ifndef QEMU_CPU_H
  21#define QEMU_CPU_H
  22
  23#include "hw/qdev-core.h"
  24#include "disas/bfd.h"
  25#include "exec/hwaddr.h"
  26#include "exec/memattrs.h"
  27#include "qapi/qapi-types-run-state.h"
  28#include "qemu/bitmap.h"
  29#include "qemu/queue.h"
  30#include "qemu/thread.h"
  31
  32typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
  33                                     void *opaque);
  34
  35/**
  36 * vaddr:
  37 * Type wide enough to contain any #target_ulong virtual address.
  38 */
  39typedef uint64_t vaddr;
  40#define VADDR_PRId PRId64
  41#define VADDR_PRIu PRIu64
  42#define VADDR_PRIo PRIo64
  43#define VADDR_PRIx PRIx64
  44#define VADDR_PRIX PRIX64
  45#define VADDR_MAX UINT64_MAX
  46
  47/**
  48 * SECTION:cpu
  49 * @section_id: QEMU-cpu
  50 * @title: CPU Class
  51 * @short_description: Base class for all CPUs
  52 */
  53
  54#define TYPE_CPU "cpu"
  55
  56/* Since this macro is used a lot in hot code paths and in conjunction with
  57 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
  58 * an unchecked cast.
  59 */
  60#define CPU(obj) ((CPUState *)(obj))
  61
  62#define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
  63#define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
  64
  65typedef enum MMUAccessType {
  66    MMU_DATA_LOAD  = 0,
  67    MMU_DATA_STORE = 1,
  68    MMU_INST_FETCH = 2
  69} MMUAccessType;
  70
  71typedef struct CPUWatchpoint CPUWatchpoint;
  72
  73typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
  74                                    bool is_write, bool is_exec, int opaque,
  75                                    unsigned size);
  76
  77struct TranslationBlock;
  78
  79/**
  80 * CPUClass:
  81 * @class_by_name: Callback to map -cpu command line model name to an
  82 * instantiatable CPU type.
  83 * @parse_features: Callback to parse command line arguments.
  84 * @reset: Callback to reset the #CPUState to its initial state.
  85 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
  86 * @has_work: Callback for checking if there is work to do.
  87 * @do_interrupt: Callback for interrupt handling.
  88 * @do_unassigned_access: Callback for unassigned access handling.
  89 * (this is deprecated: new targets should use do_transaction_failed instead)
  90 * @do_unaligned_access: Callback for unaligned access handling, if
  91 * the target defines #ALIGNED_ONLY.
  92 * @do_transaction_failed: Callback for handling failed memory transactions
  93 * (ie bus faults or external aborts; not MMU faults)
  94 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
  95 * runtime configurable endianness is currently big-endian. Non-configurable
  96 * CPUs can use the default implementation of this method. This method should
  97 * not be used by any callers other than the pre-1.0 virtio devices.
  98 * @memory_rw_debug: Callback for GDB memory access.
  99 * @dump_state: Callback for dumping state.
 100 * @dump_statistics: Callback for dumping statistics.
 101 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
 102 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
 103 * @get_memory_mapping: Callback for obtaining the memory mappings.
 104 * @set_pc: Callback for setting the Program Counter register.
 105 * @synchronize_from_tb: Callback for synchronizing state from a TCG
 106 * #TranslationBlock.
 107 * @handle_mmu_fault: Callback for handling an MMU fault.
 108 * @get_phys_page_debug: Callback for obtaining a physical address.
 109 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
 110 *       associated memory transaction attributes to use for the access.
 111 *       CPUs which use memory transaction attributes should implement this
 112 *       instead of get_phys_page_debug.
 113 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
 114 *       a memory access with the specified memory transaction attributes.
 115 * @gdb_read_register: Callback for letting GDB read a register.
 116 * @gdb_write_register: Callback for letting GDB write a register.
 117 * @debug_check_watchpoint: Callback: return true if the architectural
 118 *       watchpoint whose address has matched should really fire.
 119 * @debug_excp_handler: Callback for handling debug exceptions.
 120 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
 121 * 64-bit VM coredump.
 122 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
 123 * note to a 32-bit VM coredump.
 124 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
 125 * 32-bit VM coredump.
 126 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
 127 * note to a 32-bit VM coredump.
 128 * @vmsd: State description for migration.
 129 * @gdb_num_core_regs: Number of core registers accessible to GDB.
 130 * @gdb_core_xml_file: File name for core registers GDB XML description.
 131 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
 132 *           before the insn which triggers a watchpoint rather than after it.
 133 * @gdb_arch_name: Optional callback that returns the architecture name known
 134 * to GDB. The caller must free the returned string with g_free.
 135 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
 136 *   gdb stub. Returns a pointer to the XML contents for the specified XML file
 137 *   or NULL if the CPU doesn't have a dynamically generated content for it.
 138 * @cpu_exec_enter: Callback for cpu_exec preparation.
 139 * @cpu_exec_exit: Callback for cpu_exec cleanup.
 140 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
 141 * @disas_set_info: Setup architecture specific components of disassembly info
 142 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
 143 * address before attempting to match it against watchpoints.
 144 *
 145 * Represents a CPU family or model.
 146 */
 147typedef struct CPUClass {
 148    /*< private >*/
 149    DeviceClass parent_class;
 150    /*< public >*/
 151
 152    ObjectClass *(*class_by_name)(const char *cpu_model);
 153    void (*parse_features)(const char *typename, char *str, Error **errp);
 154
 155    void (*reset)(CPUState *cpu);
 156    int reset_dump_flags;
 157    bool (*has_work)(CPUState *cpu);
 158    void (*do_interrupt)(CPUState *cpu);
 159    CPUUnassignedAccess do_unassigned_access;
 160    void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
 161                                MMUAccessType access_type,
 162                                int mmu_idx, uintptr_t retaddr);
 163    void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
 164                                  unsigned size, MMUAccessType access_type,
 165                                  int mmu_idx, MemTxAttrs attrs,
 166                                  MemTxResult response, uintptr_t retaddr);
 167    bool (*virtio_is_big_endian)(CPUState *cpu);
 168    int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
 169                           uint8_t *buf, int len, bool is_write);
 170    void (*dump_state)(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
 171                       int flags);
 172    GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
 173    void (*dump_statistics)(CPUState *cpu, FILE *f,
 174                            fprintf_function cpu_fprintf, int flags);
 175    int64_t (*get_arch_id)(CPUState *cpu);
 176    bool (*get_paging_enabled)(const CPUState *cpu);
 177    void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
 178                               Error **errp);
 179    void (*set_pc)(CPUState *cpu, vaddr value);
 180    void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
 181    int (*handle_mmu_fault)(CPUState *cpu, vaddr address, int size, int rw,
 182                            int mmu_index);
 183    hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
 184    hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
 185                                        MemTxAttrs *attrs);
 186    int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
 187    int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
 188    int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
 189    bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
 190    void (*debug_excp_handler)(CPUState *cpu);
 191
 192    int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
 193                            int cpuid, void *opaque);
 194    int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
 195                                void *opaque);
 196    int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
 197                            int cpuid, void *opaque);
 198    int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
 199                                void *opaque);
 200
 201    const struct VMStateDescription *vmsd;
 202    const char *gdb_core_xml_file;
 203    gchar * (*gdb_arch_name)(CPUState *cpu);
 204    const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
 205    void (*cpu_exec_enter)(CPUState *cpu);
 206    void (*cpu_exec_exit)(CPUState *cpu);
 207    bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
 208
 209    void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
 210    vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
 211    void (*tcg_initialize)(void);
 212
 213    /* Keep non-pointer data at the end to minimize holes.  */
 214    int gdb_num_core_regs;
 215    bool gdb_stop_before_watchpoint;
 216} CPUClass;
 217
 218#ifdef HOST_WORDS_BIGENDIAN
 219typedef struct icount_decr_u16 {
 220    uint16_t high;
 221    uint16_t low;
 222} icount_decr_u16;
 223#else
 224typedef struct icount_decr_u16 {
 225    uint16_t low;
 226    uint16_t high;
 227} icount_decr_u16;
 228#endif
 229
 230typedef struct CPUBreakpoint {
 231    vaddr pc;
 232    int flags; /* BP_* */
 233    QTAILQ_ENTRY(CPUBreakpoint) entry;
 234} CPUBreakpoint;
 235
 236struct CPUWatchpoint {
 237    vaddr vaddr;
 238    vaddr len;
 239    vaddr hitaddr;
 240    MemTxAttrs hitattrs;
 241    int flags; /* BP_* */
 242    QTAILQ_ENTRY(CPUWatchpoint) entry;
 243};
 244
 245struct KVMState;
 246struct kvm_run;
 247
 248struct hax_vcpu_state;
 249
 250#define TB_JMP_CACHE_BITS 12
 251#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
 252
 253/* work queue */
 254
 255/* The union type allows passing of 64 bit target pointers on 32 bit
 256 * hosts in a single parameter
 257 */
 258typedef union {
 259    int           host_int;
 260    unsigned long host_ulong;
 261    void         *host_ptr;
 262    vaddr         target_ptr;
 263} run_on_cpu_data;
 264
 265#define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
 266#define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
 267#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
 268#define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
 269#define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
 270
 271typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
 272
 273struct qemu_work_item;
 274
 275#define CPU_UNSET_NUMA_NODE_ID -1
 276#define CPU_TRACE_DSTATE_MAX_EVENTS 32
 277
 278/**
 279 * CPUState:
 280 * @cpu_index: CPU index (informative).
 281 * @nr_cores: Number of cores within this CPU package.
 282 * @nr_threads: Number of threads within this CPU.
 283 * @running: #true if CPU is currently running (lockless).
 284 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
 285 * valid under cpu_list_lock.
 286 * @created: Indicates whether the CPU thread has been successfully created.
 287 * @interrupt_request: Indicates a pending interrupt request.
 288 * @halted: Nonzero if the CPU is in suspended state.
 289 * @stop: Indicates a pending stop request.
 290 * @stopped: Indicates the CPU has been artificially stopped.
 291 * @unplug: Indicates a pending CPU unplug request.
 292 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
 293 * @singlestep_enabled: Flags for single-stepping.
 294 * @icount_extra: Instructions until next timer event.
 295 * @icount_decr: Low 16 bits: number of cycles left, only used in icount mode.
 296 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs for this
 297 * CPU and return to its top level loop (even in non-icount mode).
 298 * This allows a single read-compare-cbranch-write sequence to test
 299 * for both decrementer underflow and exceptions.
 300 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
 301 * requires that IO only be performed on the last instruction of a TB
 302 * so that interrupts take effect immediately.
 303 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
 304 *            AddressSpaces this CPU has)
 305 * @num_ases: number of CPUAddressSpaces in @cpu_ases
 306 * @as: Pointer to the first AddressSpace, for the convenience of targets which
 307 *      only have a single AddressSpace
 308 * @env_ptr: Pointer to subclass-specific CPUArchState field.
 309 * @gdb_regs: Additional GDB registers.
 310 * @gdb_num_regs: Number of total registers accessible to GDB.
 311 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
 312 * @next_cpu: Next CPU sharing TB cache.
 313 * @opaque: User data.
 314 * @mem_io_pc: Host Program Counter at which the memory was accessed.
 315 * @mem_io_vaddr: Target virtual address at which the memory was accessed.
 316 * @kvm_fd: vCPU file descriptor for KVM.
 317 * @work_mutex: Lock to prevent multiple access to queued_work_*.
 318 * @queued_work_first: First asynchronous work pending.
 319 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
 320 *                        to @trace_dstate).
 321 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
 322 * @ignore_memory_transaction_failures: Cached copy of the MachineState
 323 *    flag of the same name: allows the board to suppress calling of the
 324 *    CPU do_transaction_failed hook function.
 325 *
 326 * State of one CPU core or thread.
 327 */
 328struct CPUState {
 329    /*< private >*/
 330    DeviceState parent_obj;
 331    /*< public >*/
 332
 333    int nr_cores;
 334    int nr_threads;
 335
 336    struct QemuThread *thread;
 337#ifdef _WIN32
 338    HANDLE hThread;
 339#endif
 340    int thread_id;
 341    bool running, has_waiter;
 342    struct QemuCond *halt_cond;
 343    bool thread_kicked;
 344    bool created;
 345    bool stop;
 346    bool stopped;
 347    bool unplug;
 348    bool crash_occurred;
 349    bool exit_request;
 350    uint32_t cflags_next_tb;
 351    /* updates protected by BQL */
 352    uint32_t interrupt_request;
 353    int singlestep_enabled;
 354    int64_t icount_budget;
 355    int64_t icount_extra;
 356    sigjmp_buf jmp_env;
 357
 358    QemuMutex work_mutex;
 359    struct qemu_work_item *queued_work_first, *queued_work_last;
 360
 361    CPUAddressSpace *cpu_ases;
 362    int num_ases;
 363    AddressSpace *as;
 364    MemoryRegion *memory;
 365
 366    void *env_ptr; /* CPUArchState */
 367
 368    /* Accessed in parallel; all accesses must be atomic */
 369    struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
 370
 371    struct GDBRegisterState *gdb_regs;
 372    int gdb_num_regs;
 373    int gdb_num_g_regs;
 374    QTAILQ_ENTRY(CPUState) node;
 375
 376    /* ice debug support */
 377    QTAILQ_HEAD(breakpoints_head, CPUBreakpoint) breakpoints;
 378
 379    QTAILQ_HEAD(watchpoints_head, CPUWatchpoint) watchpoints;
 380    CPUWatchpoint *watchpoint_hit;
 381
 382    void *opaque;
 383
 384    /* In order to avoid passing too many arguments to the MMIO helpers,
 385     * we store some rarely used information in the CPU context.
 386     */
 387    uintptr_t mem_io_pc;
 388    vaddr mem_io_vaddr;
 389
 390    int kvm_fd;
 391    struct KVMState *kvm_state;
 392    struct kvm_run *kvm_run;
 393
 394    /* Used for events with 'vcpu' and *without* the 'disabled' properties */
 395    DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
 396    DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
 397
 398    /* TODO Move common fields from CPUArchState here. */
 399    int cpu_index;
 400    uint32_t halted;
 401    uint32_t can_do_io;
 402    int32_t exception_index;
 403
 404    /* shared by kvm, hax and hvf */
 405    bool vcpu_dirty;
 406
 407    /* Used to keep track of an outstanding cpu throttle thread for migration
 408     * autoconverge
 409     */
 410    bool throttle_thread_scheduled;
 411
 412    bool ignore_memory_transaction_failures;
 413
 414    /* Note that this is accessed at the start of every TB via a negative
 415       offset from AREG0.  Leave this field at the end so as to make the
 416       (absolute value) offset as small as possible.  This reduces code
 417       size, especially for hosts without large memory offsets.  */
 418    union {
 419        uint32_t u32;
 420        icount_decr_u16 u16;
 421    } icount_decr;
 422
 423    struct hax_vcpu_state *hax_vcpu;
 424
 425    /* The pending_tlb_flush flag is set and cleared atomically to
 426     * avoid potential races. The aim of the flag is to avoid
 427     * unnecessary flushes.
 428     */
 429    uint16_t pending_tlb_flush;
 430
 431    int hvf_fd;
 432
 433    /* track IOMMUs whose translations we've cached in the TCG TLB */
 434    GArray *iommu_notifiers;
 435};
 436
 437QTAILQ_HEAD(CPUTailQ, CPUState);
 438extern struct CPUTailQ cpus;
 439#define CPU_NEXT(cpu) QTAILQ_NEXT(cpu, node)
 440#define CPU_FOREACH(cpu) QTAILQ_FOREACH(cpu, &cpus, node)
 441#define CPU_FOREACH_SAFE(cpu, next_cpu) \
 442    QTAILQ_FOREACH_SAFE(cpu, &cpus, node, next_cpu)
 443#define CPU_FOREACH_REVERSE(cpu) \
 444    QTAILQ_FOREACH_REVERSE(cpu, &cpus, CPUTailQ, node)
 445#define first_cpu QTAILQ_FIRST(&cpus)
 446
 447extern __thread CPUState *current_cpu;
 448
 449static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
 450{
 451    unsigned int i;
 452
 453    for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
 454        atomic_set(&cpu->tb_jmp_cache[i], NULL);
 455    }
 456}
 457
 458/**
 459 * qemu_tcg_mttcg_enabled:
 460 * Check whether we are running MultiThread TCG or not.
 461 *
 462 * Returns: %true if we are in MTTCG mode %false otherwise.
 463 */
 464extern bool mttcg_enabled;
 465#define qemu_tcg_mttcg_enabled() (mttcg_enabled)
 466
 467/**
 468 * cpu_paging_enabled:
 469 * @cpu: The CPU whose state is to be inspected.
 470 *
 471 * Returns: %true if paging is enabled, %false otherwise.
 472 */
 473bool cpu_paging_enabled(const CPUState *cpu);
 474
 475/**
 476 * cpu_get_memory_mapping:
 477 * @cpu: The CPU whose memory mappings are to be obtained.
 478 * @list: Where to write the memory mappings to.
 479 * @errp: Pointer for reporting an #Error.
 480 */
 481void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
 482                            Error **errp);
 483
 484/**
 485 * cpu_write_elf64_note:
 486 * @f: pointer to a function that writes memory to a file
 487 * @cpu: The CPU whose memory is to be dumped
 488 * @cpuid: ID number of the CPU
 489 * @opaque: pointer to the CPUState struct
 490 */
 491int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
 492                         int cpuid, void *opaque);
 493
 494/**
 495 * cpu_write_elf64_qemunote:
 496 * @f: pointer to a function that writes memory to a file
 497 * @cpu: The CPU whose memory is to be dumped
 498 * @cpuid: ID number of the CPU
 499 * @opaque: pointer to the CPUState struct
 500 */
 501int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 502                             void *opaque);
 503
 504/**
 505 * cpu_write_elf32_note:
 506 * @f: pointer to a function that writes memory to a file
 507 * @cpu: The CPU whose memory is to be dumped
 508 * @cpuid: ID number of the CPU
 509 * @opaque: pointer to the CPUState struct
 510 */
 511int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
 512                         int cpuid, void *opaque);
 513
 514/**
 515 * cpu_write_elf32_qemunote:
 516 * @f: pointer to a function that writes memory to a file
 517 * @cpu: The CPU whose memory is to be dumped
 518 * @cpuid: ID number of the CPU
 519 * @opaque: pointer to the CPUState struct
 520 */
 521int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
 522                             void *opaque);
 523
 524/**
 525 * cpu_get_crash_info:
 526 * @cpu: The CPU to get crash information for
 527 *
 528 * Gets the previously saved crash information.
 529 * Caller is responsible for freeing the data.
 530 */
 531GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
 532
 533/**
 534 * CPUDumpFlags:
 535 * @CPU_DUMP_CODE:
 536 * @CPU_DUMP_FPU: dump FPU register state, not just integer
 537 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
 538 */
 539enum CPUDumpFlags {
 540    CPU_DUMP_CODE = 0x00010000,
 541    CPU_DUMP_FPU  = 0x00020000,
 542    CPU_DUMP_CCOP = 0x00040000,
 543};
 544
 545/**
 546 * cpu_dump_state:
 547 * @cpu: The CPU whose state is to be dumped.
 548 * @f: File to dump to.
 549 * @cpu_fprintf: Function to dump with.
 550 * @flags: Flags what to dump.
 551 *
 552 * Dumps CPU state.
 553 */
 554void cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
 555                    int flags);
 556
 557/**
 558 * cpu_dump_statistics:
 559 * @cpu: The CPU whose state is to be dumped.
 560 * @f: File to dump to.
 561 * @cpu_fprintf: Function to dump with.
 562 * @flags: Flags what to dump.
 563 *
 564 * Dumps CPU statistics.
 565 */
 566void cpu_dump_statistics(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
 567                         int flags);
 568
 569#ifndef CONFIG_USER_ONLY
 570/**
 571 * cpu_get_phys_page_attrs_debug:
 572 * @cpu: The CPU to obtain the physical page address for.
 573 * @addr: The virtual address.
 574 * @attrs: Updated on return with the memory transaction attributes to use
 575 *         for this access.
 576 *
 577 * Obtains the physical page corresponding to a virtual one, together
 578 * with the corresponding memory transaction attributes to use for the access.
 579 * Use it only for debugging because no protection checks are done.
 580 *
 581 * Returns: Corresponding physical page address or -1 if no page found.
 582 */
 583static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 584                                                   MemTxAttrs *attrs)
 585{
 586    CPUClass *cc = CPU_GET_CLASS(cpu);
 587
 588    if (cc->get_phys_page_attrs_debug) {
 589        return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
 590    }
 591    /* Fallback for CPUs which don't implement the _attrs_ hook */
 592    *attrs = MEMTXATTRS_UNSPECIFIED;
 593    return cc->get_phys_page_debug(cpu, addr);
 594}
 595
 596/**
 597 * cpu_get_phys_page_debug:
 598 * @cpu: The CPU to obtain the physical page address for.
 599 * @addr: The virtual address.
 600 *
 601 * Obtains the physical page corresponding to a virtual one.
 602 * Use it only for debugging because no protection checks are done.
 603 *
 604 * Returns: Corresponding physical page address or -1 if no page found.
 605 */
 606static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
 607{
 608    MemTxAttrs attrs = {};
 609
 610    return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
 611}
 612
 613/** cpu_asidx_from_attrs:
 614 * @cpu: CPU
 615 * @attrs: memory transaction attributes
 616 *
 617 * Returns the address space index specifying the CPU AddressSpace
 618 * to use for a memory access with the given transaction attributes.
 619 */
 620static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
 621{
 622    CPUClass *cc = CPU_GET_CLASS(cpu);
 623    int ret = 0;
 624
 625    if (cc->asidx_from_attrs) {
 626        ret = cc->asidx_from_attrs(cpu, attrs);
 627        assert(ret < cpu->num_ases && ret >= 0);
 628    }
 629    return ret;
 630}
 631#endif
 632
 633/**
 634 * cpu_list_add:
 635 * @cpu: The CPU to be added to the list of CPUs.
 636 */
 637void cpu_list_add(CPUState *cpu);
 638
 639/**
 640 * cpu_list_remove:
 641 * @cpu: The CPU to be removed from the list of CPUs.
 642 */
 643void cpu_list_remove(CPUState *cpu);
 644
 645/**
 646 * cpu_reset:
 647 * @cpu: The CPU whose state is to be reset.
 648 */
 649void cpu_reset(CPUState *cpu);
 650
 651/**
 652 * cpu_class_by_name:
 653 * @typename: The CPU base type.
 654 * @cpu_model: The model string without any parameters.
 655 *
 656 * Looks up a CPU #ObjectClass matching name @cpu_model.
 657 *
 658 * Returns: A #CPUClass or %NULL if not matching class is found.
 659 */
 660ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
 661
 662/**
 663 * cpu_create:
 664 * @typename: The CPU type.
 665 *
 666 * Instantiates a CPU and realizes the CPU.
 667 *
 668 * Returns: A #CPUState or %NULL if an error occurred.
 669 */
 670CPUState *cpu_create(const char *typename);
 671
 672/**
 673 * parse_cpu_model:
 674 * @cpu_model: The model string including optional parameters.
 675 *
 676 * processes optional parameters and registers them as global properties
 677 *
 678 * Returns: type of CPU to create or prints error and terminates process
 679 *          if an error occurred.
 680 */
 681const char *parse_cpu_model(const char *cpu_model);
 682
 683/**
 684 * cpu_has_work:
 685 * @cpu: The vCPU to check.
 686 *
 687 * Checks whether the CPU has work to do.
 688 *
 689 * Returns: %true if the CPU has work, %false otherwise.
 690 */
 691static inline bool cpu_has_work(CPUState *cpu)
 692{
 693    CPUClass *cc = CPU_GET_CLASS(cpu);
 694
 695    g_assert(cc->has_work);
 696    return cc->has_work(cpu);
 697}
 698
 699/**
 700 * qemu_cpu_is_self:
 701 * @cpu: The vCPU to check against.
 702 *
 703 * Checks whether the caller is executing on the vCPU thread.
 704 *
 705 * Returns: %true if called from @cpu's thread, %false otherwise.
 706 */
 707bool qemu_cpu_is_self(CPUState *cpu);
 708
 709/**
 710 * qemu_cpu_kick:
 711 * @cpu: The vCPU to kick.
 712 *
 713 * Kicks @cpu's thread.
 714 */
 715void qemu_cpu_kick(CPUState *cpu);
 716
 717/**
 718 * cpu_is_stopped:
 719 * @cpu: The CPU to check.
 720 *
 721 * Checks whether the CPU is stopped.
 722 *
 723 * Returns: %true if run state is not running or if artificially stopped;
 724 * %false otherwise.
 725 */
 726bool cpu_is_stopped(CPUState *cpu);
 727
 728/**
 729 * do_run_on_cpu:
 730 * @cpu: The vCPU to run on.
 731 * @func: The function to be executed.
 732 * @data: Data to pass to the function.
 733 * @mutex: Mutex to release while waiting for @func to run.
 734 *
 735 * Used internally in the implementation of run_on_cpu.
 736 */
 737void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
 738                   QemuMutex *mutex);
 739
 740/**
 741 * run_on_cpu:
 742 * @cpu: The vCPU to run on.
 743 * @func: The function to be executed.
 744 * @data: Data to pass to the function.
 745 *
 746 * Schedules the function @func for execution on the vCPU @cpu.
 747 */
 748void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 749
 750/**
 751 * async_run_on_cpu:
 752 * @cpu: The vCPU to run on.
 753 * @func: The function to be executed.
 754 * @data: Data to pass to the function.
 755 *
 756 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
 757 */
 758void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 759
 760/**
 761 * async_safe_run_on_cpu:
 762 * @cpu: The vCPU to run on.
 763 * @func: The function to be executed.
 764 * @data: Data to pass to the function.
 765 *
 766 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
 767 * while all other vCPUs are sleeping.
 768 *
 769 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
 770 * BQL.
 771 */
 772void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
 773
 774/**
 775 * qemu_get_cpu:
 776 * @index: The CPUState@cpu_index value of the CPU to obtain.
 777 *
 778 * Gets a CPU matching @index.
 779 *
 780 * Returns: The CPU or %NULL if there is no matching CPU.
 781 */
 782CPUState *qemu_get_cpu(int index);
 783
 784/**
 785 * cpu_exists:
 786 * @id: Guest-exposed CPU ID to lookup.
 787 *
 788 * Search for CPU with specified ID.
 789 *
 790 * Returns: %true - CPU is found, %false - CPU isn't found.
 791 */
 792bool cpu_exists(int64_t id);
 793
 794/**
 795 * cpu_by_arch_id:
 796 * @id: Guest-exposed CPU ID of the CPU to obtain.
 797 *
 798 * Get a CPU with matching @id.
 799 *
 800 * Returns: The CPU or %NULL if there is no matching CPU.
 801 */
 802CPUState *cpu_by_arch_id(int64_t id);
 803
 804/**
 805 * cpu_throttle_set:
 806 * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
 807 *
 808 * Throttles all vcpus by forcing them to sleep for the given percentage of
 809 * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
 810 * (example: 10ms sleep for every 30ms awake).
 811 *
 812 * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
 813 * Once the throttling starts, it will remain in effect until cpu_throttle_stop
 814 * is called.
 815 */
 816void cpu_throttle_set(int new_throttle_pct);
 817
 818/**
 819 * cpu_throttle_stop:
 820 *
 821 * Stops the vcpu throttling started by cpu_throttle_set.
 822 */
 823void cpu_throttle_stop(void);
 824
 825/**
 826 * cpu_throttle_active:
 827 *
 828 * Returns: %true if the vcpus are currently being throttled, %false otherwise.
 829 */
 830bool cpu_throttle_active(void);
 831
 832/**
 833 * cpu_throttle_get_percentage:
 834 *
 835 * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
 836 *
 837 * Returns: The throttle percentage in range 1 to 99.
 838 */
 839int cpu_throttle_get_percentage(void);
 840
 841#ifndef CONFIG_USER_ONLY
 842
 843typedef void (*CPUInterruptHandler)(CPUState *, int);
 844
 845extern CPUInterruptHandler cpu_interrupt_handler;
 846
 847/**
 848 * cpu_interrupt:
 849 * @cpu: The CPU to set an interrupt on.
 850 * @mask: The interupts to set.
 851 *
 852 * Invokes the interrupt handler.
 853 */
 854static inline void cpu_interrupt(CPUState *cpu, int mask)
 855{
 856    cpu_interrupt_handler(cpu, mask);
 857}
 858
 859#else /* USER_ONLY */
 860
 861void cpu_interrupt(CPUState *cpu, int mask);
 862
 863#endif /* USER_ONLY */
 864
 865#ifdef NEED_CPU_H
 866
 867#ifdef CONFIG_SOFTMMU
 868static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
 869                                         bool is_write, bool is_exec,
 870                                         int opaque, unsigned size)
 871{
 872    CPUClass *cc = CPU_GET_CLASS(cpu);
 873
 874    if (cc->do_unassigned_access) {
 875        cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
 876    }
 877}
 878
 879static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
 880                                        MMUAccessType access_type,
 881                                        int mmu_idx, uintptr_t retaddr)
 882{
 883    CPUClass *cc = CPU_GET_CLASS(cpu);
 884
 885    cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
 886}
 887
 888static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
 889                                          vaddr addr, unsigned size,
 890                                          MMUAccessType access_type,
 891                                          int mmu_idx, MemTxAttrs attrs,
 892                                          MemTxResult response,
 893                                          uintptr_t retaddr)
 894{
 895    CPUClass *cc = CPU_GET_CLASS(cpu);
 896
 897    if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
 898        cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
 899                                  mmu_idx, attrs, response, retaddr);
 900    }
 901}
 902#endif
 903
 904#endif /* NEED_CPU_H */
 905
 906/**
 907 * cpu_set_pc:
 908 * @cpu: The CPU to set the program counter for.
 909 * @addr: Program counter value.
 910 *
 911 * Sets the program counter for a CPU.
 912 */
 913static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
 914{
 915    CPUClass *cc = CPU_GET_CLASS(cpu);
 916
 917    cc->set_pc(cpu, addr);
 918}
 919
 920/**
 921 * cpu_reset_interrupt:
 922 * @cpu: The CPU to clear the interrupt on.
 923 * @mask: The interrupt mask to clear.
 924 *
 925 * Resets interrupts on the vCPU @cpu.
 926 */
 927void cpu_reset_interrupt(CPUState *cpu, int mask);
 928
 929/**
 930 * cpu_exit:
 931 * @cpu: The CPU to exit.
 932 *
 933 * Requests the CPU @cpu to exit execution.
 934 */
 935void cpu_exit(CPUState *cpu);
 936
 937/**
 938 * cpu_resume:
 939 * @cpu: The CPU to resume.
 940 *
 941 * Resumes CPU, i.e. puts CPU into runnable state.
 942 */
 943void cpu_resume(CPUState *cpu);
 944
 945/**
 946 * cpu_remove:
 947 * @cpu: The CPU to remove.
 948 *
 949 * Requests the CPU to be removed.
 950 */
 951void cpu_remove(CPUState *cpu);
 952
 953 /**
 954 * cpu_remove_sync:
 955 * @cpu: The CPU to remove.
 956 *
 957 * Requests the CPU to be removed and waits till it is removed.
 958 */
 959void cpu_remove_sync(CPUState *cpu);
 960
 961/**
 962 * process_queued_cpu_work() - process all items on CPU work queue
 963 * @cpu: The CPU which work queue to process.
 964 */
 965void process_queued_cpu_work(CPUState *cpu);
 966
 967/**
 968 * cpu_exec_start:
 969 * @cpu: The CPU for the current thread.
 970 *
 971 * Record that a CPU has started execution and can be interrupted with
 972 * cpu_exit.
 973 */
 974void cpu_exec_start(CPUState *cpu);
 975
 976/**
 977 * cpu_exec_end:
 978 * @cpu: The CPU for the current thread.
 979 *
 980 * Record that a CPU has stopped execution and exclusive sections
 981 * can be executed without interrupting it.
 982 */
 983void cpu_exec_end(CPUState *cpu);
 984
 985/**
 986 * start_exclusive:
 987 *
 988 * Wait for a concurrent exclusive section to end, and then start
 989 * a section of work that is run while other CPUs are not running
 990 * between cpu_exec_start and cpu_exec_end.  CPUs that are running
 991 * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
 992 * during the exclusive section go to sleep until this CPU calls
 993 * end_exclusive.
 994 */
 995void start_exclusive(void);
 996
 997/**
 998 * end_exclusive:
 999 *
1000 * Concludes an exclusive execution section started by start_exclusive.
1001 */
1002void end_exclusive(void);
1003
1004/**
1005 * qemu_init_vcpu:
1006 * @cpu: The vCPU to initialize.
1007 *
1008 * Initializes a vCPU.
1009 */
1010void qemu_init_vcpu(CPUState *cpu);
1011
1012#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1013#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1014#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1015
1016/**
1017 * cpu_single_step:
1018 * @cpu: CPU to the flags for.
1019 * @enabled: Flags to enable.
1020 *
1021 * Enables or disables single-stepping for @cpu.
1022 */
1023void cpu_single_step(CPUState *cpu, int enabled);
1024
1025/* Breakpoint/watchpoint flags */
1026#define BP_MEM_READ           0x01
1027#define BP_MEM_WRITE          0x02
1028#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1029#define BP_STOP_BEFORE_ACCESS 0x04
1030/* 0x08 currently unused */
1031#define BP_GDB                0x10
1032#define BP_CPU                0x20
1033#define BP_ANY                (BP_GDB | BP_CPU)
1034#define BP_WATCHPOINT_HIT_READ 0x40
1035#define BP_WATCHPOINT_HIT_WRITE 0x80
1036#define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1037
1038int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1039                          CPUBreakpoint **breakpoint);
1040int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1041void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1042void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1043
1044/* Return true if PC matches an installed breakpoint.  */
1045static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1046{
1047    CPUBreakpoint *bp;
1048
1049    if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1050        QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1051            if (bp->pc == pc && (bp->flags & mask)) {
1052                return true;
1053            }
1054        }
1055    }
1056    return false;
1057}
1058
1059int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1060                          int flags, CPUWatchpoint **watchpoint);
1061int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1062                          vaddr len, int flags);
1063void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1064void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1065
1066/**
1067 * cpu_get_address_space:
1068 * @cpu: CPU to get address space from
1069 * @asidx: index identifying which address space to get
1070 *
1071 * Return the requested address space of this CPU. @asidx
1072 * specifies which address space to read.
1073 */
1074AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1075
1076void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1077    GCC_FMT_ATTR(2, 3);
1078extern Property cpu_common_props[];
1079void cpu_exec_initfn(CPUState *cpu);
1080void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1081void cpu_exec_unrealizefn(CPUState *cpu);
1082
1083#ifdef NEED_CPU_H
1084
1085#ifdef CONFIG_SOFTMMU
1086extern const struct VMStateDescription vmstate_cpu_common;
1087#else
1088#define vmstate_cpu_common vmstate_dummy
1089#endif
1090
1091#define VMSTATE_CPU() {                                                     \
1092    .name = "parent_obj",                                                   \
1093    .size = sizeof(CPUState),                                               \
1094    .vmsd = &vmstate_cpu_common,                                            \
1095    .flags = VMS_STRUCT,                                                    \
1096    .offset = 0,                                                            \
1097}
1098
1099#endif /* NEED_CPU_H */
1100
1101#define UNASSIGNED_CPU_INDEX -1
1102
1103#endif
1104