qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "exec/target_page.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "savevm.h"
  24#include "postcopy-ram.h"
  25#include "ram.h"
  26#include "qapi/error.h"
  27#include "qemu/notify.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/balloon.h"
  30#include "qemu/error-report.h"
  31#include "trace.h"
  32
  33/* Arbitrary limit on size of each discard command,
  34 * keeps them around ~200 bytes
  35 */
  36#define MAX_DISCARDS_PER_COMMAND 12
  37
  38struct PostcopyDiscardState {
  39    const char *ramblock_name;
  40    uint16_t cur_entry;
  41    /*
  42     * Start and length of a discard range (bytes)
  43     */
  44    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  45    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  46    unsigned int nsentwords;
  47    unsigned int nsentcmds;
  48};
  49
  50static NotifierWithReturnList postcopy_notifier_list;
  51
  52void postcopy_infrastructure_init(void)
  53{
  54    notifier_with_return_list_init(&postcopy_notifier_list);
  55}
  56
  57void postcopy_add_notifier(NotifierWithReturn *nn)
  58{
  59    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  60}
  61
  62void postcopy_remove_notifier(NotifierWithReturn *n)
  63{
  64    notifier_with_return_remove(n);
  65}
  66
  67int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  68{
  69    struct PostcopyNotifyData pnd;
  70    pnd.reason = reason;
  71    pnd.errp = errp;
  72
  73    return notifier_with_return_list_notify(&postcopy_notifier_list,
  74                                            &pnd);
  75}
  76
  77/* Postcopy needs to detect accesses to pages that haven't yet been copied
  78 * across, and efficiently map new pages in, the techniques for doing this
  79 * are target OS specific.
  80 */
  81#if defined(__linux__)
  82
  83#include <poll.h>
  84#include <sys/ioctl.h>
  85#include <sys/syscall.h>
  86#include <asm/types.h> /* for __u64 */
  87#endif
  88
  89#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  90#include <sys/eventfd.h>
  91#include <linux/userfaultfd.h>
  92
  93typedef struct PostcopyBlocktimeContext {
  94    /* time when page fault initiated per vCPU */
  95    uint32_t *page_fault_vcpu_time;
  96    /* page address per vCPU */
  97    uintptr_t *vcpu_addr;
  98    uint32_t total_blocktime;
  99    /* blocktime per vCPU */
 100    uint32_t *vcpu_blocktime;
 101    /* point in time when last page fault was initiated */
 102    uint32_t last_begin;
 103    /* number of vCPU are suspended */
 104    int smp_cpus_down;
 105    uint64_t start_time;
 106
 107    /*
 108     * Handler for exit event, necessary for
 109     * releasing whole blocktime_ctx
 110     */
 111    Notifier exit_notifier;
 112} PostcopyBlocktimeContext;
 113
 114static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 115{
 116    g_free(ctx->page_fault_vcpu_time);
 117    g_free(ctx->vcpu_addr);
 118    g_free(ctx->vcpu_blocktime);
 119    g_free(ctx);
 120}
 121
 122static void migration_exit_cb(Notifier *n, void *data)
 123{
 124    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 125                                                 exit_notifier);
 126    destroy_blocktime_context(ctx);
 127}
 128
 129static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 130{
 131    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 132    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 133    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 134    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 135
 136    ctx->exit_notifier.notify = migration_exit_cb;
 137    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 138    qemu_add_exit_notifier(&ctx->exit_notifier);
 139    return ctx;
 140}
 141
 142static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 143{
 144    uint32List *list = NULL, *entry = NULL;
 145    int i;
 146
 147    for (i = smp_cpus - 1; i >= 0; i--) {
 148        entry = g_new0(uint32List, 1);
 149        entry->value = ctx->vcpu_blocktime[i];
 150        entry->next = list;
 151        list = entry;
 152    }
 153
 154    return list;
 155}
 156
 157/*
 158 * This function just populates MigrationInfo from postcopy's
 159 * blocktime context. It will not populate MigrationInfo,
 160 * unless postcopy-blocktime capability was set.
 161 *
 162 * @info: pointer to MigrationInfo to populate
 163 */
 164void fill_destination_postcopy_migration_info(MigrationInfo *info)
 165{
 166    MigrationIncomingState *mis = migration_incoming_get_current();
 167    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 168
 169    if (!bc) {
 170        return;
 171    }
 172
 173    info->has_postcopy_blocktime = true;
 174    info->postcopy_blocktime = bc->total_blocktime;
 175    info->has_postcopy_vcpu_blocktime = true;
 176    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 177}
 178
 179static uint32_t get_postcopy_total_blocktime(void)
 180{
 181    MigrationIncomingState *mis = migration_incoming_get_current();
 182    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 183
 184    if (!bc) {
 185        return 0;
 186    }
 187
 188    return bc->total_blocktime;
 189}
 190
 191/**
 192 * receive_ufd_features: check userfault fd features, to request only supported
 193 * features in the future.
 194 *
 195 * Returns: true on success
 196 *
 197 * __NR_userfaultfd - should be checked before
 198 *  @features: out parameter will contain uffdio_api.features provided by kernel
 199 *              in case of success
 200 */
 201static bool receive_ufd_features(uint64_t *features)
 202{
 203    struct uffdio_api api_struct = {0};
 204    int ufd;
 205    bool ret = true;
 206
 207    /* if we are here __NR_userfaultfd should exists */
 208    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 209    if (ufd == -1) {
 210        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 211                     strerror(errno));
 212        return false;
 213    }
 214
 215    /* ask features */
 216    api_struct.api = UFFD_API;
 217    api_struct.features = 0;
 218    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 219        error_report("%s: UFFDIO_API failed: %s", __func__,
 220                     strerror(errno));
 221        ret = false;
 222        goto release_ufd;
 223    }
 224
 225    *features = api_struct.features;
 226
 227release_ufd:
 228    close(ufd);
 229    return ret;
 230}
 231
 232/**
 233 * request_ufd_features: this function should be called only once on a newly
 234 * opened ufd, subsequent calls will lead to error.
 235 *
 236 * Returns: true on succes
 237 *
 238 * @ufd: fd obtained from userfaultfd syscall
 239 * @features: bit mask see UFFD_API_FEATURES
 240 */
 241static bool request_ufd_features(int ufd, uint64_t features)
 242{
 243    struct uffdio_api api_struct = {0};
 244    uint64_t ioctl_mask;
 245
 246    api_struct.api = UFFD_API;
 247    api_struct.features = features;
 248    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 249        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 250                     strerror(errno));
 251        return false;
 252    }
 253
 254    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 255                 (__u64)1 << _UFFDIO_UNREGISTER;
 256    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 257        error_report("Missing userfault features: %" PRIx64,
 258                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 259        return false;
 260    }
 261
 262    return true;
 263}
 264
 265static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 266{
 267    uint64_t asked_features = 0;
 268    static uint64_t supported_features;
 269
 270    /*
 271     * it's not possible to
 272     * request UFFD_API twice per one fd
 273     * userfault fd features is persistent
 274     */
 275    if (!supported_features) {
 276        if (!receive_ufd_features(&supported_features)) {
 277            error_report("%s failed", __func__);
 278            return false;
 279        }
 280    }
 281
 282#ifdef UFFD_FEATURE_THREAD_ID
 283    if (migrate_postcopy_blocktime() && mis &&
 284        UFFD_FEATURE_THREAD_ID & supported_features) {
 285        /* kernel supports that feature */
 286        /* don't create blocktime_context if it exists */
 287        if (!mis->blocktime_ctx) {
 288            mis->blocktime_ctx = blocktime_context_new();
 289        }
 290
 291        asked_features |= UFFD_FEATURE_THREAD_ID;
 292    }
 293#endif
 294
 295    /*
 296     * request features, even if asked_features is 0, due to
 297     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 298     * userfault file descriptor
 299     */
 300    if (!request_ufd_features(ufd, asked_features)) {
 301        error_report("%s failed: features %" PRIu64, __func__,
 302                     asked_features);
 303        return false;
 304    }
 305
 306    if (getpagesize() != ram_pagesize_summary()) {
 307        bool have_hp = false;
 308        /* We've got a huge page */
 309#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 310        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 311#endif
 312        if (!have_hp) {
 313            error_report("Userfault on this host does not support huge pages");
 314            return false;
 315        }
 316    }
 317    return true;
 318}
 319
 320/* Callback from postcopy_ram_supported_by_host block iterator.
 321 */
 322static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
 323                             ram_addr_t offset, ram_addr_t length, void *opaque)
 324{
 325    RAMBlock *rb = qemu_ram_block_by_name(block_name);
 326    size_t pagesize = qemu_ram_pagesize(rb);
 327
 328    if (length % pagesize) {
 329        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 330                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 331                     "page size of 0x%zx", block_name, length, pagesize);
 332        return 1;
 333    }
 334    return 0;
 335}
 336
 337/*
 338 * Note: This has the side effect of munlock'ing all of RAM, that's
 339 * normally fine since if the postcopy succeeds it gets turned back on at the
 340 * end.
 341 */
 342bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 343{
 344    long pagesize = getpagesize();
 345    int ufd = -1;
 346    bool ret = false; /* Error unless we change it */
 347    void *testarea = NULL;
 348    struct uffdio_register reg_struct;
 349    struct uffdio_range range_struct;
 350    uint64_t feature_mask;
 351    Error *local_err = NULL;
 352
 353    if (qemu_target_page_size() > pagesize) {
 354        error_report("Target page size bigger than host page size");
 355        goto out;
 356    }
 357
 358    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 359    if (ufd == -1) {
 360        error_report("%s: userfaultfd not available: %s", __func__,
 361                     strerror(errno));
 362        goto out;
 363    }
 364
 365    /* Give devices a chance to object */
 366    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 367        error_report_err(local_err);
 368        goto out;
 369    }
 370
 371    /* Version and features check */
 372    if (!ufd_check_and_apply(ufd, mis)) {
 373        goto out;
 374    }
 375
 376    /* We don't support postcopy with shared RAM yet */
 377    if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
 378        goto out;
 379    }
 380
 381    /*
 382     * userfault and mlock don't go together; we'll put it back later if
 383     * it was enabled.
 384     */
 385    if (munlockall()) {
 386        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 387        return -1;
 388    }
 389
 390    /*
 391     *  We need to check that the ops we need are supported on anon memory
 392     *  To do that we need to register a chunk and see the flags that
 393     *  are returned.
 394     */
 395    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 396                                    MAP_ANONYMOUS, -1, 0);
 397    if (testarea == MAP_FAILED) {
 398        error_report("%s: Failed to map test area: %s", __func__,
 399                     strerror(errno));
 400        goto out;
 401    }
 402    g_assert(((size_t)testarea & (pagesize-1)) == 0);
 403
 404    reg_struct.range.start = (uintptr_t)testarea;
 405    reg_struct.range.len = pagesize;
 406    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 407
 408    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 409        error_report("%s userfault register: %s", __func__, strerror(errno));
 410        goto out;
 411    }
 412
 413    range_struct.start = (uintptr_t)testarea;
 414    range_struct.len = pagesize;
 415    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 416        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 417        goto out;
 418    }
 419
 420    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 421                   (__u64)1 << _UFFDIO_COPY |
 422                   (__u64)1 << _UFFDIO_ZEROPAGE;
 423    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 424        error_report("Missing userfault map features: %" PRIx64,
 425                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 426        goto out;
 427    }
 428
 429    /* Success! */
 430    ret = true;
 431out:
 432    if (testarea) {
 433        munmap(testarea, pagesize);
 434    }
 435    if (ufd != -1) {
 436        close(ufd);
 437    }
 438    return ret;
 439}
 440
 441/*
 442 * Setup an area of RAM so that it *can* be used for postcopy later; this
 443 * must be done right at the start prior to pre-copy.
 444 * opaque should be the MIS.
 445 */
 446static int init_range(const char *block_name, void *host_addr,
 447                      ram_addr_t offset, ram_addr_t length, void *opaque)
 448{
 449    trace_postcopy_init_range(block_name, host_addr, offset, length);
 450
 451    /*
 452     * We need the whole of RAM to be truly empty for postcopy, so things
 453     * like ROMs and any data tables built during init must be zero'd
 454     * - we're going to get the copy from the source anyway.
 455     * (Precopy will just overwrite this data, so doesn't need the discard)
 456     */
 457    if (ram_discard_range(block_name, 0, length)) {
 458        return -1;
 459    }
 460
 461    return 0;
 462}
 463
 464/*
 465 * At the end of migration, undo the effects of init_range
 466 * opaque should be the MIS.
 467 */
 468static int cleanup_range(const char *block_name, void *host_addr,
 469                        ram_addr_t offset, ram_addr_t length, void *opaque)
 470{
 471    MigrationIncomingState *mis = opaque;
 472    struct uffdio_range range_struct;
 473    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 474
 475    /*
 476     * We turned off hugepage for the precopy stage with postcopy enabled
 477     * we can turn it back on now.
 478     */
 479    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 480
 481    /*
 482     * We can also turn off userfault now since we should have all the
 483     * pages.   It can be useful to leave it on to debug postcopy
 484     * if you're not sure it's always getting every page.
 485     */
 486    range_struct.start = (uintptr_t)host_addr;
 487    range_struct.len = length;
 488
 489    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 490        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 491
 492        return -1;
 493    }
 494
 495    return 0;
 496}
 497
 498/*
 499 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 500 * postcopy later; must be called prior to any precopy.
 501 * called from arch_init's similarly named ram_postcopy_incoming_init
 502 */
 503int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 504{
 505    if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
 506        return -1;
 507    }
 508
 509    return 0;
 510}
 511
 512/*
 513 * At the end of a migration where postcopy_ram_incoming_init was called.
 514 */
 515int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 516{
 517    trace_postcopy_ram_incoming_cleanup_entry();
 518
 519    if (mis->have_fault_thread) {
 520        Error *local_err = NULL;
 521
 522        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 523            error_report_err(local_err);
 524            return -1;
 525        }
 526
 527        if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
 528            return -1;
 529        }
 530        /* Let the fault thread quit */
 531        atomic_set(&mis->fault_thread_quit, 1);
 532        postcopy_fault_thread_notify(mis);
 533        trace_postcopy_ram_incoming_cleanup_join();
 534        qemu_thread_join(&mis->fault_thread);
 535
 536        trace_postcopy_ram_incoming_cleanup_closeuf();
 537        close(mis->userfault_fd);
 538        close(mis->userfault_event_fd);
 539        mis->have_fault_thread = false;
 540    }
 541
 542    qemu_balloon_inhibit(false);
 543
 544    if (enable_mlock) {
 545        if (os_mlock() < 0) {
 546            error_report("mlock: %s", strerror(errno));
 547            /*
 548             * It doesn't feel right to fail at this point, we have a valid
 549             * VM state.
 550             */
 551        }
 552    }
 553
 554    postcopy_state_set(POSTCOPY_INCOMING_END);
 555
 556    if (mis->postcopy_tmp_page) {
 557        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 558        mis->postcopy_tmp_page = NULL;
 559    }
 560    if (mis->postcopy_tmp_zero_page) {
 561        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 562        mis->postcopy_tmp_zero_page = NULL;
 563    }
 564    trace_postcopy_ram_incoming_cleanup_blocktime(
 565            get_postcopy_total_blocktime());
 566
 567    trace_postcopy_ram_incoming_cleanup_exit();
 568    return 0;
 569}
 570
 571/*
 572 * Disable huge pages on an area
 573 */
 574static int nhp_range(const char *block_name, void *host_addr,
 575                    ram_addr_t offset, ram_addr_t length, void *opaque)
 576{
 577    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 578
 579    /*
 580     * Before we do discards we need to ensure those discards really
 581     * do delete areas of the page, even if THP thinks a hugepage would
 582     * be a good idea, so force hugepages off.
 583     */
 584    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 585
 586    return 0;
 587}
 588
 589/*
 590 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 591 * however leaving it until after precopy means that most of the precopy
 592 * data is still THPd
 593 */
 594int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 595{
 596    if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
 597        return -1;
 598    }
 599
 600    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 601
 602    return 0;
 603}
 604
 605/*
 606 * Mark the given area of RAM as requiring notification to unwritten areas
 607 * Used as a  callback on qemu_ram_foreach_migratable_block.
 608 *   host_addr: Base of area to mark
 609 *   offset: Offset in the whole ram arena
 610 *   length: Length of the section
 611 *   opaque: MigrationIncomingState pointer
 612 * Returns 0 on success
 613 */
 614static int ram_block_enable_notify(const char *block_name, void *host_addr,
 615                                   ram_addr_t offset, ram_addr_t length,
 616                                   void *opaque)
 617{
 618    MigrationIncomingState *mis = opaque;
 619    struct uffdio_register reg_struct;
 620
 621    reg_struct.range.start = (uintptr_t)host_addr;
 622    reg_struct.range.len = length;
 623    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 624
 625    /* Now tell our userfault_fd that it's responsible for this area */
 626    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 627        error_report("%s userfault register: %s", __func__, strerror(errno));
 628        return -1;
 629    }
 630    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 631        error_report("%s userfault: Region doesn't support COPY", __func__);
 632        return -1;
 633    }
 634    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 635        RAMBlock *rb = qemu_ram_block_by_name(block_name);
 636        qemu_ram_set_uf_zeroable(rb);
 637    }
 638
 639    return 0;
 640}
 641
 642int postcopy_wake_shared(struct PostCopyFD *pcfd,
 643                         uint64_t client_addr,
 644                         RAMBlock *rb)
 645{
 646    size_t pagesize = qemu_ram_pagesize(rb);
 647    struct uffdio_range range;
 648    int ret;
 649    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 650    range.start = client_addr & ~(pagesize - 1);
 651    range.len = pagesize;
 652    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 653    if (ret) {
 654        error_report("%s: Failed to wake: %zx in %s (%s)",
 655                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 656                     strerror(errno));
 657    }
 658    return ret;
 659}
 660
 661/*
 662 * Callback from shared fault handlers to ask for a page,
 663 * the page must be specified by a RAMBlock and an offset in that rb
 664 * Note: Only for use by shared fault handlers (in fault thread)
 665 */
 666int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 667                                 uint64_t client_addr, uint64_t rb_offset)
 668{
 669    size_t pagesize = qemu_ram_pagesize(rb);
 670    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 671    MigrationIncomingState *mis = migration_incoming_get_current();
 672
 673    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 674                                       rb_offset);
 675    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 676        trace_postcopy_request_shared_page_present(pcfd->idstr,
 677                                        qemu_ram_get_idstr(rb), rb_offset);
 678        return postcopy_wake_shared(pcfd, client_addr, rb);
 679    }
 680    if (rb != mis->last_rb) {
 681        mis->last_rb = rb;
 682        migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
 683                                  aligned_rbo, pagesize);
 684    } else {
 685        /* Save some space */
 686        migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
 687    }
 688    return 0;
 689}
 690
 691static int get_mem_fault_cpu_index(uint32_t pid)
 692{
 693    CPUState *cpu_iter;
 694
 695    CPU_FOREACH(cpu_iter) {
 696        if (cpu_iter->thread_id == pid) {
 697            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 698            return cpu_iter->cpu_index;
 699        }
 700    }
 701    trace_get_mem_fault_cpu_index(-1, pid);
 702    return -1;
 703}
 704
 705static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 706{
 707    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 708                                    dc->start_time;
 709    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 710}
 711
 712/*
 713 * This function is being called when pagefault occurs. It
 714 * tracks down vCPU blocking time.
 715 *
 716 * @addr: faulted host virtual address
 717 * @ptid: faulted process thread id
 718 * @rb: ramblock appropriate to addr
 719 */
 720static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 721                                          RAMBlock *rb)
 722{
 723    int cpu, already_received;
 724    MigrationIncomingState *mis = migration_incoming_get_current();
 725    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 726    uint32_t low_time_offset;
 727
 728    if (!dc || ptid == 0) {
 729        return;
 730    }
 731    cpu = get_mem_fault_cpu_index(ptid);
 732    if (cpu < 0) {
 733        return;
 734    }
 735
 736    low_time_offset = get_low_time_offset(dc);
 737    if (dc->vcpu_addr[cpu] == 0) {
 738        atomic_inc(&dc->smp_cpus_down);
 739    }
 740
 741    atomic_xchg(&dc->last_begin, low_time_offset);
 742    atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 743    atomic_xchg(&dc->vcpu_addr[cpu], addr);
 744
 745    /* check it here, not at the begining of the function,
 746     * due to, check could accur early than bitmap_set in
 747     * qemu_ufd_copy_ioctl */
 748    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 749    if (already_received) {
 750        atomic_xchg(&dc->vcpu_addr[cpu], 0);
 751        atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 752        atomic_dec(&dc->smp_cpus_down);
 753    }
 754    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 755                                        cpu, already_received);
 756}
 757
 758/*
 759 *  This function just provide calculated blocktime per cpu and trace it.
 760 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 761 *
 762 *
 763 * Assume we have 3 CPU
 764 *
 765 *      S1        E1           S1               E1
 766 * -----***********------------xxx***************------------------------> CPU1
 767 *
 768 *             S2                E2
 769 * ------------****************xxx---------------------------------------> CPU2
 770 *
 771 *                         S3            E3
 772 * ------------------------****xxx********-------------------------------> CPU3
 773 *
 774 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 775 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 776 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 777 *            it's a part of total blocktime.
 778 * S1 - here is last_begin
 779 * Legend of the picture is following:
 780 *              * - means blocktime per vCPU
 781 *              x - means overlapped blocktime (total blocktime)
 782 *
 783 * @addr: host virtual address
 784 */
 785static void mark_postcopy_blocktime_end(uintptr_t addr)
 786{
 787    MigrationIncomingState *mis = migration_incoming_get_current();
 788    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 789    int i, affected_cpu = 0;
 790    bool vcpu_total_blocktime = false;
 791    uint32_t read_vcpu_time, low_time_offset;
 792
 793    if (!dc) {
 794        return;
 795    }
 796
 797    low_time_offset = get_low_time_offset(dc);
 798    /* lookup cpu, to clear it,
 799     * that algorithm looks straighforward, but it's not
 800     * optimal, more optimal algorithm is keeping tree or hash
 801     * where key is address value is a list of  */
 802    for (i = 0; i < smp_cpus; i++) {
 803        uint32_t vcpu_blocktime = 0;
 804
 805        read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 806        if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 807            read_vcpu_time == 0) {
 808            continue;
 809        }
 810        atomic_xchg(&dc->vcpu_addr[i], 0);
 811        vcpu_blocktime = low_time_offset - read_vcpu_time;
 812        affected_cpu += 1;
 813        /* we need to know is that mark_postcopy_end was due to
 814         * faulted page, another possible case it's prefetched
 815         * page and in that case we shouldn't be here */
 816        if (!vcpu_total_blocktime &&
 817            atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 818            vcpu_total_blocktime = true;
 819        }
 820        /* continue cycle, due to one page could affect several vCPUs */
 821        dc->vcpu_blocktime[i] += vcpu_blocktime;
 822    }
 823
 824    atomic_sub(&dc->smp_cpus_down, affected_cpu);
 825    if (vcpu_total_blocktime) {
 826        dc->total_blocktime += low_time_offset - atomic_fetch_add(
 827                &dc->last_begin, 0);
 828    }
 829    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 830                                      affected_cpu);
 831}
 832
 833static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 834{
 835    trace_postcopy_pause_fault_thread();
 836
 837    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 838
 839    trace_postcopy_pause_fault_thread_continued();
 840
 841    return true;
 842}
 843
 844/*
 845 * Handle faults detected by the USERFAULT markings
 846 */
 847static void *postcopy_ram_fault_thread(void *opaque)
 848{
 849    MigrationIncomingState *mis = opaque;
 850    struct uffd_msg msg;
 851    int ret;
 852    size_t index;
 853    RAMBlock *rb = NULL;
 854
 855    trace_postcopy_ram_fault_thread_entry();
 856    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 857    qemu_sem_post(&mis->fault_thread_sem);
 858
 859    struct pollfd *pfd;
 860    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 861
 862    pfd = g_new0(struct pollfd, pfd_len);
 863
 864    pfd[0].fd = mis->userfault_fd;
 865    pfd[0].events = POLLIN;
 866    pfd[1].fd = mis->userfault_event_fd;
 867    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 868    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 869    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 870        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 871                                                 struct PostCopyFD, index);
 872        pfd[2 + index].fd = pcfd->fd;
 873        pfd[2 + index].events = POLLIN;
 874        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 875                                                  pcfd->fd);
 876    }
 877
 878    while (true) {
 879        ram_addr_t rb_offset;
 880        int poll_result;
 881
 882        /*
 883         * We're mainly waiting for the kernel to give us a faulting HVA,
 884         * however we can be told to quit via userfault_quit_fd which is
 885         * an eventfd
 886         */
 887
 888        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 889        if (poll_result == -1) {
 890            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 891            break;
 892        }
 893
 894        if (!mis->to_src_file) {
 895            /*
 896             * Possibly someone tells us that the return path is
 897             * broken already using the event. We should hold until
 898             * the channel is rebuilt.
 899             */
 900            if (postcopy_pause_fault_thread(mis)) {
 901                mis->last_rb = NULL;
 902                /* Continue to read the userfaultfd */
 903            } else {
 904                error_report("%s: paused but don't allow to continue",
 905                             __func__);
 906                break;
 907            }
 908        }
 909
 910        if (pfd[1].revents) {
 911            uint64_t tmp64 = 0;
 912
 913            /* Consume the signal */
 914            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 915                /* Nothing obviously nicer than posting this error. */
 916                error_report("%s: read() failed", __func__);
 917            }
 918
 919            if (atomic_read(&mis->fault_thread_quit)) {
 920                trace_postcopy_ram_fault_thread_quit();
 921                break;
 922            }
 923        }
 924
 925        if (pfd[0].revents) {
 926            poll_result--;
 927            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 928            if (ret != sizeof(msg)) {
 929                if (errno == EAGAIN) {
 930                    /*
 931                     * if a wake up happens on the other thread just after
 932                     * the poll, there is nothing to read.
 933                     */
 934                    continue;
 935                }
 936                if (ret < 0) {
 937                    error_report("%s: Failed to read full userfault "
 938                                 "message: %s",
 939                                 __func__, strerror(errno));
 940                    break;
 941                } else {
 942                    error_report("%s: Read %d bytes from userfaultfd "
 943                                 "expected %zd",
 944                                 __func__, ret, sizeof(msg));
 945                    break; /* Lost alignment, don't know what we'd read next */
 946                }
 947            }
 948            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 949                error_report("%s: Read unexpected event %ud from userfaultfd",
 950                             __func__, msg.event);
 951                continue; /* It's not a page fault, shouldn't happen */
 952            }
 953
 954            rb = qemu_ram_block_from_host(
 955                     (void *)(uintptr_t)msg.arg.pagefault.address,
 956                     true, &rb_offset);
 957            if (!rb) {
 958                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 959                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 960                break;
 961            }
 962
 963            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 964            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 965                                                qemu_ram_get_idstr(rb),
 966                                                rb_offset,
 967                                                msg.arg.pagefault.feat.ptid);
 968            mark_postcopy_blocktime_begin(
 969                    (uintptr_t)(msg.arg.pagefault.address),
 970                                msg.arg.pagefault.feat.ptid, rb);
 971
 972retry:
 973            /*
 974             * Send the request to the source - we want to request one
 975             * of our host page sizes (which is >= TPS)
 976             */
 977            if (rb != mis->last_rb) {
 978                mis->last_rb = rb;
 979                ret = migrate_send_rp_req_pages(mis,
 980                                                qemu_ram_get_idstr(rb),
 981                                                rb_offset,
 982                                                qemu_ram_pagesize(rb));
 983            } else {
 984                /* Save some space */
 985                ret = migrate_send_rp_req_pages(mis,
 986                                                NULL,
 987                                                rb_offset,
 988                                                qemu_ram_pagesize(rb));
 989            }
 990
 991            if (ret) {
 992                /* May be network failure, try to wait for recovery */
 993                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
 994                    /* We got reconnected somehow, try to continue */
 995                    mis->last_rb = NULL;
 996                    goto retry;
 997                } else {
 998                    /* This is a unavoidable fault */
 999                    error_report("%s: migrate_send_rp_req_pages() get %d",
1000                                 __func__, ret);
1001                    break;
1002                }
1003            }
1004        }
1005
1006        /* Now handle any requests from external processes on shared memory */
1007        /* TODO: May need to handle devices deregistering during postcopy */
1008        for (index = 2; index < pfd_len && poll_result; index++) {
1009            if (pfd[index].revents) {
1010                struct PostCopyFD *pcfd =
1011                    &g_array_index(mis->postcopy_remote_fds,
1012                                   struct PostCopyFD, index - 2);
1013
1014                poll_result--;
1015                if (pfd[index].revents & POLLERR) {
1016                    error_report("%s: POLLERR on poll %zd fd=%d",
1017                                 __func__, index, pcfd->fd);
1018                    pfd[index].events = 0;
1019                    continue;
1020                }
1021
1022                ret = read(pcfd->fd, &msg, sizeof(msg));
1023                if (ret != sizeof(msg)) {
1024                    if (errno == EAGAIN) {
1025                        /*
1026                         * if a wake up happens on the other thread just after
1027                         * the poll, there is nothing to read.
1028                         */
1029                        continue;
1030                    }
1031                    if (ret < 0) {
1032                        error_report("%s: Failed to read full userfault "
1033                                     "message: %s (shared) revents=%d",
1034                                     __func__, strerror(errno),
1035                                     pfd[index].revents);
1036                        /*TODO: Could just disable this sharer */
1037                        break;
1038                    } else {
1039                        error_report("%s: Read %d bytes from userfaultfd "
1040                                     "expected %zd (shared)",
1041                                     __func__, ret, sizeof(msg));
1042                        /*TODO: Could just disable this sharer */
1043                        break; /*Lost alignment,don't know what we'd read next*/
1044                    }
1045                }
1046                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1047                    error_report("%s: Read unexpected event %ud "
1048                                 "from userfaultfd (shared)",
1049                                 __func__, msg.event);
1050                    continue; /* It's not a page fault, shouldn't happen */
1051                }
1052                /* Call the device handler registered with us */
1053                ret = pcfd->handler(pcfd, &msg);
1054                if (ret) {
1055                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1056                                 __func__, index, pcfd->idstr);
1057                    /* TODO: Fail? Disable this sharer? */
1058                }
1059            }
1060        }
1061    }
1062    trace_postcopy_ram_fault_thread_exit();
1063    g_free(pfd);
1064    return NULL;
1065}
1066
1067int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1068{
1069    /* Open the fd for the kernel to give us userfaults */
1070    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1071    if (mis->userfault_fd == -1) {
1072        error_report("%s: Failed to open userfault fd: %s", __func__,
1073                     strerror(errno));
1074        return -1;
1075    }
1076
1077    /*
1078     * Although the host check already tested the API, we need to
1079     * do the check again as an ABI handshake on the new fd.
1080     */
1081    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1082        return -1;
1083    }
1084
1085    /* Now an eventfd we use to tell the fault-thread to quit */
1086    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1087    if (mis->userfault_event_fd == -1) {
1088        error_report("%s: Opening userfault_event_fd: %s", __func__,
1089                     strerror(errno));
1090        close(mis->userfault_fd);
1091        return -1;
1092    }
1093
1094    qemu_sem_init(&mis->fault_thread_sem, 0);
1095    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1096                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1097    qemu_sem_wait(&mis->fault_thread_sem);
1098    qemu_sem_destroy(&mis->fault_thread_sem);
1099    mis->have_fault_thread = true;
1100
1101    /* Mark so that we get notified of accesses to unwritten areas */
1102    if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
1103        return -1;
1104    }
1105
1106    /*
1107     * Ballooning can mark pages as absent while we're postcopying
1108     * that would cause false userfaults.
1109     */
1110    qemu_balloon_inhibit(true);
1111
1112    trace_postcopy_ram_enable_notify();
1113
1114    return 0;
1115}
1116
1117static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1118                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1119{
1120    int ret;
1121    if (from_addr) {
1122        struct uffdio_copy copy_struct;
1123        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1124        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1125        copy_struct.len = pagesize;
1126        copy_struct.mode = 0;
1127        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1128    } else {
1129        struct uffdio_zeropage zero_struct;
1130        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1131        zero_struct.range.len = pagesize;
1132        zero_struct.mode = 0;
1133        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1134    }
1135    if (!ret) {
1136        ramblock_recv_bitmap_set_range(rb, host_addr,
1137                                       pagesize / qemu_target_page_size());
1138        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1139
1140    }
1141    return ret;
1142}
1143
1144int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1145{
1146    int i;
1147    MigrationIncomingState *mis = migration_incoming_get_current();
1148    GArray *pcrfds = mis->postcopy_remote_fds;
1149
1150    for (i = 0; i < pcrfds->len; i++) {
1151        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1152        int ret = cur->waker(cur, rb, offset);
1153        if (ret) {
1154            return ret;
1155        }
1156    }
1157    return 0;
1158}
1159
1160/*
1161 * Place a host page (from) at (host) atomically
1162 * returns 0 on success
1163 */
1164int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1165                        RAMBlock *rb)
1166{
1167    size_t pagesize = qemu_ram_pagesize(rb);
1168
1169    /* copy also acks to the kernel waking the stalled thread up
1170     * TODO: We can inhibit that ack and only do it if it was requested
1171     * which would be slightly cheaper, but we'd have to be careful
1172     * of the order of updating our page state.
1173     */
1174    if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1175        int e = errno;
1176        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1177                     __func__, strerror(e), host, from, pagesize);
1178
1179        return -e;
1180    }
1181
1182    trace_postcopy_place_page(host);
1183    return postcopy_notify_shared_wake(rb,
1184                                       qemu_ram_block_host_offset(rb, host));
1185}
1186
1187/*
1188 * Place a zero page at (host) atomically
1189 * returns 0 on success
1190 */
1191int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1192                             RAMBlock *rb)
1193{
1194    size_t pagesize = qemu_ram_pagesize(rb);
1195    trace_postcopy_place_page_zero(host);
1196
1197    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1198     * but it's not available for everything (e.g. hugetlbpages)
1199     */
1200    if (qemu_ram_is_uf_zeroable(rb)) {
1201        if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1202            int e = errno;
1203            error_report("%s: %s zero host: %p",
1204                         __func__, strerror(e), host);
1205
1206            return -e;
1207        }
1208        return postcopy_notify_shared_wake(rb,
1209                                           qemu_ram_block_host_offset(rb,
1210                                                                      host));
1211    } else {
1212        /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1213        if (!mis->postcopy_tmp_zero_page) {
1214            mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1215                                               PROT_READ | PROT_WRITE,
1216                                               MAP_PRIVATE | MAP_ANONYMOUS,
1217                                               -1, 0);
1218            if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1219                int e = errno;
1220                mis->postcopy_tmp_zero_page = NULL;
1221                error_report("%s: %s mapping large zero page",
1222                             __func__, strerror(e));
1223                return -e;
1224            }
1225            memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1226        }
1227        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1228                                   rb);
1229    }
1230}
1231
1232/*
1233 * Returns a target page of memory that can be mapped at a later point in time
1234 * using postcopy_place_page
1235 * The same address is used repeatedly, postcopy_place_page just takes the
1236 * backing page away.
1237 * Returns: Pointer to allocated page
1238 *
1239 */
1240void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1241{
1242    if (!mis->postcopy_tmp_page) {
1243        mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1244                             PROT_READ | PROT_WRITE, MAP_PRIVATE |
1245                             MAP_ANONYMOUS, -1, 0);
1246        if (mis->postcopy_tmp_page == MAP_FAILED) {
1247            mis->postcopy_tmp_page = NULL;
1248            error_report("%s: %s", __func__, strerror(errno));
1249            return NULL;
1250        }
1251    }
1252
1253    return mis->postcopy_tmp_page;
1254}
1255
1256#else
1257/* No target OS support, stubs just fail */
1258void fill_destination_postcopy_migration_info(MigrationInfo *info)
1259{
1260}
1261
1262bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1263{
1264    error_report("%s: No OS support", __func__);
1265    return false;
1266}
1267
1268int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1269{
1270    error_report("postcopy_ram_incoming_init: No OS support");
1271    return -1;
1272}
1273
1274int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1275{
1276    assert(0);
1277    return -1;
1278}
1279
1280int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1281{
1282    assert(0);
1283    return -1;
1284}
1285
1286int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1287                                 uint64_t client_addr, uint64_t rb_offset)
1288{
1289    assert(0);
1290    return -1;
1291}
1292
1293int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1294{
1295    assert(0);
1296    return -1;
1297}
1298
1299int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1300                        RAMBlock *rb)
1301{
1302    assert(0);
1303    return -1;
1304}
1305
1306int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1307                        RAMBlock *rb)
1308{
1309    assert(0);
1310    return -1;
1311}
1312
1313void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1314{
1315    assert(0);
1316    return NULL;
1317}
1318
1319int postcopy_wake_shared(struct PostCopyFD *pcfd,
1320                         uint64_t client_addr,
1321                         RAMBlock *rb)
1322{
1323    assert(0);
1324    return -1;
1325}
1326#endif
1327
1328/* ------------------------------------------------------------------------- */
1329
1330void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1331{
1332    uint64_t tmp64 = 1;
1333
1334    /*
1335     * Wakeup the fault_thread.  It's an eventfd that should currently
1336     * be at 0, we're going to increment it to 1
1337     */
1338    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1339        /* Not much we can do here, but may as well report it */
1340        error_report("%s: incrementing failed: %s", __func__,
1341                     strerror(errno));
1342    }
1343}
1344
1345/**
1346 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1347 *   asking to discard individual ranges.
1348 *
1349 * @ms: The current migration state.
1350 * @offset: the bitmap offset of the named RAMBlock in the migration
1351 *   bitmap.
1352 * @name: RAMBlock that discards will operate on.
1353 *
1354 * returns: a new PDS.
1355 */
1356PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1357                                                 const char *name)
1358{
1359    PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1360
1361    if (res) {
1362        res->ramblock_name = name;
1363    }
1364
1365    return res;
1366}
1367
1368/**
1369 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1370 *   discard. May send a discard message, may just leave it queued to
1371 *   be sent later.
1372 *
1373 * @ms: Current migration state.
1374 * @pds: Structure initialised by postcopy_discard_send_init().
1375 * @start,@length: a range of pages in the migration bitmap in the
1376 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1377 */
1378void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1379                                unsigned long start, unsigned long length)
1380{
1381    size_t tp_size = qemu_target_page_size();
1382    /* Convert to byte offsets within the RAM block */
1383    pds->start_list[pds->cur_entry] = start  * tp_size;
1384    pds->length_list[pds->cur_entry] = length * tp_size;
1385    trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1386    pds->cur_entry++;
1387    pds->nsentwords++;
1388
1389    if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1390        /* Full set, ship it! */
1391        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1392                                              pds->ramblock_name,
1393                                              pds->cur_entry,
1394                                              pds->start_list,
1395                                              pds->length_list);
1396        pds->nsentcmds++;
1397        pds->cur_entry = 0;
1398    }
1399}
1400
1401/**
1402 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1403 * bitmap code. Sends any outstanding discard messages, frees the PDS
1404 *
1405 * @ms: Current migration state.
1406 * @pds: Structure initialised by postcopy_discard_send_init().
1407 */
1408void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1409{
1410    /* Anything unsent? */
1411    if (pds->cur_entry) {
1412        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1413                                              pds->ramblock_name,
1414                                              pds->cur_entry,
1415                                              pds->start_list,
1416                                              pds->length_list);
1417        pds->nsentcmds++;
1418    }
1419
1420    trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1421                                       pds->nsentcmds);
1422
1423    g_free(pds);
1424}
1425
1426/*
1427 * Current state of incoming postcopy; note this is not part of
1428 * MigrationIncomingState since it's state is used during cleanup
1429 * at the end as MIS is being freed.
1430 */
1431static PostcopyState incoming_postcopy_state;
1432
1433PostcopyState  postcopy_state_get(void)
1434{
1435    return atomic_mb_read(&incoming_postcopy_state);
1436}
1437
1438/* Set the state and return the old state */
1439PostcopyState postcopy_state_set(PostcopyState new_state)
1440{
1441    return atomic_xchg(&incoming_postcopy_state, new_state);
1442}
1443
1444/* Register a handler for external shared memory postcopy
1445 * called on the destination.
1446 */
1447void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1448{
1449    MigrationIncomingState *mis = migration_incoming_get_current();
1450
1451    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1452                                                  *pcfd);
1453}
1454
1455/* Unregister a handler for external shared memory postcopy
1456 */
1457void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1458{
1459    guint i;
1460    MigrationIncomingState *mis = migration_incoming_get_current();
1461    GArray *pcrfds = mis->postcopy_remote_fds;
1462
1463    for (i = 0; i < pcrfds->len; i++) {
1464        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1465        if (cur->fd == pcfd->fd) {
1466            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1467            return;
1468        }
1469    }
1470}
1471