qemu/target/arm/arm-powerctl.c
<<
>>
Prefs
   1/*
   2 * QEMU support -- ARM Power Control specific functions.
   3 *
   4 * Copyright (c) 2016 Jean-Christophe Dubois
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include "cpu.h"
  13#include "cpu-qom.h"
  14#include "internals.h"
  15#include "arm-powerctl.h"
  16#include "qemu/log.h"
  17#include "qemu/main-loop.h"
  18
  19#ifndef DEBUG_ARM_POWERCTL
  20#define DEBUG_ARM_POWERCTL 0
  21#endif
  22
  23#define DPRINTF(fmt, args...) \
  24    do { \
  25        if (DEBUG_ARM_POWERCTL) { \
  26            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
  27        } \
  28    } while (0)
  29
  30CPUState *arm_get_cpu_by_id(uint64_t id)
  31{
  32    CPUState *cpu;
  33
  34    DPRINTF("cpu %" PRId64 "\n", id);
  35
  36    CPU_FOREACH(cpu) {
  37        ARMCPU *armcpu = ARM_CPU(cpu);
  38
  39        if (armcpu->mp_affinity == id) {
  40            return cpu;
  41        }
  42    }
  43
  44    qemu_log_mask(LOG_GUEST_ERROR,
  45                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
  46                  __func__, id);
  47
  48    return NULL;
  49}
  50
  51struct CpuOnInfo {
  52    uint64_t entry;
  53    uint64_t context_id;
  54    uint32_t target_el;
  55    bool target_aa64;
  56};
  57
  58
  59static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
  60                                      run_on_cpu_data data)
  61{
  62    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
  63    struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
  64
  65    /* Initialize the cpu we are turning on */
  66    cpu_reset(target_cpu_state);
  67    target_cpu_state->halted = 0;
  68
  69    if (info->target_aa64) {
  70        if ((info->target_el < 3) && arm_feature(&target_cpu->env,
  71                                                 ARM_FEATURE_EL3)) {
  72            /*
  73             * As target mode is AArch64, we need to set lower
  74             * exception level (the requested level 2) to AArch64
  75             */
  76            target_cpu->env.cp15.scr_el3 |= SCR_RW;
  77        }
  78
  79        if ((info->target_el < 2) && arm_feature(&target_cpu->env,
  80                                                 ARM_FEATURE_EL2)) {
  81            /*
  82             * As target mode is AArch64, we need to set lower
  83             * exception level (the requested level 1) to AArch64
  84             */
  85            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
  86        }
  87
  88        target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
  89    } else {
  90        /* We are requested to boot in AArch32 mode */
  91        static const uint32_t mode_for_el[] = { 0,
  92                                                ARM_CPU_MODE_SVC,
  93                                                ARM_CPU_MODE_HYP,
  94                                                ARM_CPU_MODE_SVC };
  95
  96        cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
  97                   CPSRWriteRaw);
  98    }
  99
 100    if (info->target_el == 3) {
 101        /* Processor is in secure mode */
 102        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 103    } else {
 104        /* Processor is not in secure mode */
 105        target_cpu->env.cp15.scr_el3 |= SCR_NS;
 106    }
 107
 108    /* We check if the started CPU is now at the correct level */
 109    assert(info->target_el == arm_current_el(&target_cpu->env));
 110
 111    if (info->target_aa64) {
 112        target_cpu->env.xregs[0] = info->context_id;
 113        target_cpu->env.thumb = false;
 114    } else {
 115        target_cpu->env.regs[0] = info->context_id;
 116        target_cpu->env.thumb = info->entry & 1;
 117        info->entry &= 0xfffffffe;
 118    }
 119
 120    /* Start the new CPU at the requested address */
 121    cpu_set_pc(target_cpu_state, info->entry);
 122
 123    g_free(info);
 124
 125    /* Finally set the power status */
 126    assert(qemu_mutex_iothread_locked());
 127    target_cpu->power_state = PSCI_ON;
 128}
 129
 130int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
 131                   uint32_t target_el, bool target_aa64)
 132{
 133    CPUState *target_cpu_state;
 134    ARMCPU *target_cpu;
 135    struct CpuOnInfo *info;
 136
 137    assert(qemu_mutex_iothread_locked());
 138
 139    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
 140            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
 141            context_id);
 142
 143    /* requested EL level need to be in the 1 to 3 range */
 144    assert((target_el > 0) && (target_el < 4));
 145
 146    if (target_aa64 && (entry & 3)) {
 147        /*
 148         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
 149         * aligned.
 150         */
 151        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 152    }
 153
 154    /* Retrieve the cpu we are powering up */
 155    target_cpu_state = arm_get_cpu_by_id(cpuid);
 156    if (!target_cpu_state) {
 157        /* The cpu was not found */
 158        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 159    }
 160
 161    target_cpu = ARM_CPU(target_cpu_state);
 162    if (target_cpu->power_state == PSCI_ON) {
 163        qemu_log_mask(LOG_GUEST_ERROR,
 164                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 165                      __func__, cpuid);
 166        return QEMU_ARM_POWERCTL_ALREADY_ON;
 167    }
 168
 169    /*
 170     * The newly brought CPU is requested to enter the exception level
 171     * "target_el" and be in the requested mode (AArch64 or AArch32).
 172     */
 173
 174    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
 175        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
 176        /*
 177         * The CPU does not support requested level
 178         */
 179        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 180    }
 181
 182    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 183        /*
 184         * For now we don't support booting an AArch64 CPU in AArch32 mode
 185         * TODO: We should add this support later
 186         */
 187        qemu_log_mask(LOG_UNIMP,
 188                      "[ARM]%s: Starting AArch64 CPU %" PRId64
 189                      " in AArch32 mode is not supported yet\n",
 190                      __func__, cpuid);
 191        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 192    }
 193
 194    /*
 195     * If another CPU has powered the target on we are in the state
 196     * ON_PENDING and additional attempts to power on the CPU should
 197     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 198     * spec)
 199     */
 200    if (target_cpu->power_state == PSCI_ON_PENDING) {
 201        qemu_log_mask(LOG_GUEST_ERROR,
 202                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 203                      __func__, cpuid);
 204        return QEMU_ARM_POWERCTL_ON_PENDING;
 205    }
 206
 207    /* To avoid racing with a CPU we are just kicking off we do the
 208     * final bit of preparation for the work in the target CPUs
 209     * context.
 210     */
 211    info = g_new(struct CpuOnInfo, 1);
 212    info->entry = entry;
 213    info->context_id = context_id;
 214    info->target_el = target_el;
 215    info->target_aa64 = target_aa64;
 216
 217    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
 218                     RUN_ON_CPU_HOST_PTR(info));
 219
 220    /* We are good to go */
 221    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 222}
 223
 224static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
 225                                       run_on_cpu_data data)
 226{
 227    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 228
 229    assert(qemu_mutex_iothread_locked());
 230    target_cpu->power_state = PSCI_OFF;
 231    target_cpu_state->halted = 1;
 232    target_cpu_state->exception_index = EXCP_HLT;
 233}
 234
 235int arm_set_cpu_off(uint64_t cpuid)
 236{
 237    CPUState *target_cpu_state;
 238    ARMCPU *target_cpu;
 239
 240    assert(qemu_mutex_iothread_locked());
 241
 242    DPRINTF("cpu %" PRId64 "\n", cpuid);
 243
 244    /* change to the cpu we are powering up */
 245    target_cpu_state = arm_get_cpu_by_id(cpuid);
 246    if (!target_cpu_state) {
 247        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 248    }
 249    target_cpu = ARM_CPU(target_cpu_state);
 250    if (target_cpu->power_state == PSCI_OFF) {
 251        qemu_log_mask(LOG_GUEST_ERROR,
 252                      "[ARM]%s: CPU %" PRId64 " is already off\n",
 253                      __func__, cpuid);
 254        return QEMU_ARM_POWERCTL_IS_OFF;
 255    }
 256
 257    /* Queue work to run under the target vCPUs context */
 258    async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
 259                     RUN_ON_CPU_NULL);
 260
 261    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 262}
 263
 264static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
 265                                     run_on_cpu_data data)
 266{
 267    /* Reset the cpu */
 268    cpu_reset(target_cpu_state);
 269}
 270
 271int arm_reset_cpu(uint64_t cpuid)
 272{
 273    CPUState *target_cpu_state;
 274    ARMCPU *target_cpu;
 275
 276    assert(qemu_mutex_iothread_locked());
 277
 278    DPRINTF("cpu %" PRId64 "\n", cpuid);
 279
 280    /* change to the cpu we are resetting */
 281    target_cpu_state = arm_get_cpu_by_id(cpuid);
 282    if (!target_cpu_state) {
 283        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 284    }
 285    target_cpu = ARM_CPU(target_cpu_state);
 286
 287    if (target_cpu->power_state == PSCI_OFF) {
 288        qemu_log_mask(LOG_GUEST_ERROR,
 289                      "[ARM]%s: CPU %" PRId64 " is off\n",
 290                      __func__, cpuid);
 291        return QEMU_ARM_POWERCTL_IS_OFF;
 292    }
 293
 294    /* Queue work to run under the target vCPUs context */
 295    async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
 296                     RUN_ON_CPU_NULL);
 297
 298    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 299}
 300