qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "target/arm/idau.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "cpu.h"
  26#include "internals.h"
  27#include "qemu-common.h"
  28#include "exec/exec-all.h"
  29#include "hw/qdev-properties.h"
  30#if !defined(CONFIG_USER_ONLY)
  31#include "hw/loader.h"
  32#endif
  33#include "hw/arm/arm.h"
  34#include "sysemu/sysemu.h"
  35#include "sysemu/hw_accel.h"
  36#include "kvm_arm.h"
  37#include "disas/capstone.h"
  38#include "fpu/softfloat.h"
  39
  40static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  41{
  42    ARMCPU *cpu = ARM_CPU(cs);
  43
  44    cpu->env.regs[15] = value;
  45}
  46
  47static bool arm_cpu_has_work(CPUState *cs)
  48{
  49    ARMCPU *cpu = ARM_CPU(cs);
  50
  51    return (cpu->power_state != PSCI_OFF)
  52        && cs->interrupt_request &
  53        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  54         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  55         | CPU_INTERRUPT_EXITTB);
  56}
  57
  58void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  59                                 void *opaque)
  60{
  61    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  62
  63    entry->hook = hook;
  64    entry->opaque = opaque;
  65
  66    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  67}
  68
  69void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  70                                 void *opaque)
  71{
  72    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  73
  74    entry->hook = hook;
  75    entry->opaque = opaque;
  76
  77    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
  78}
  79
  80static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
  81{
  82    /* Reset a single ARMCPRegInfo register */
  83    ARMCPRegInfo *ri = value;
  84    ARMCPU *cpu = opaque;
  85
  86    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
  87        return;
  88    }
  89
  90    if (ri->resetfn) {
  91        ri->resetfn(&cpu->env, ri);
  92        return;
  93    }
  94
  95    /* A zero offset is never possible as it would be regs[0]
  96     * so we use it to indicate that reset is being handled elsewhere.
  97     * This is basically only used for fields in non-core coprocessors
  98     * (like the pxa2xx ones).
  99     */
 100    if (!ri->fieldoffset) {
 101        return;
 102    }
 103
 104    if (cpreg_field_is_64bit(ri)) {
 105        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 106    } else {
 107        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 108    }
 109}
 110
 111static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 112{
 113    /* Purely an assertion check: we've already done reset once,
 114     * so now check that running the reset for the cpreg doesn't
 115     * change its value. This traps bugs where two different cpregs
 116     * both try to reset the same state field but to different values.
 117     */
 118    ARMCPRegInfo *ri = value;
 119    ARMCPU *cpu = opaque;
 120    uint64_t oldvalue, newvalue;
 121
 122    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 123        return;
 124    }
 125
 126    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 127    cp_reg_reset(key, value, opaque);
 128    newvalue = read_raw_cp_reg(&cpu->env, ri);
 129    assert(oldvalue == newvalue);
 130}
 131
 132/* CPUClass::reset() */
 133static void arm_cpu_reset(CPUState *s)
 134{
 135    ARMCPU *cpu = ARM_CPU(s);
 136    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 137    CPUARMState *env = &cpu->env;
 138
 139    acc->parent_reset(s);
 140
 141    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 142
 143    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 144    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 145
 146    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 147    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
 148    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
 149    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
 150
 151    cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
 152    s->halted = cpu->start_powered_off;
 153
 154    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 155        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 156    }
 157
 158    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 159        /* 64 bit CPUs always start in 64 bit mode */
 160        env->aarch64 = 1;
 161#if defined(CONFIG_USER_ONLY)
 162        env->pstate = PSTATE_MODE_EL0t;
 163        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 164        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 165        /* and to the FP/Neon instructions */
 166        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 167        /* and to the SVE instructions */
 168        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 169        env->cp15.cptr_el[3] |= CPTR_EZ;
 170        /* with maximum vector length */
 171        env->vfp.zcr_el[1] = ARM_MAX_VQ - 1;
 172        env->vfp.zcr_el[2] = ARM_MAX_VQ - 1;
 173        env->vfp.zcr_el[3] = ARM_MAX_VQ - 1;
 174#else
 175        /* Reset into the highest available EL */
 176        if (arm_feature(env, ARM_FEATURE_EL3)) {
 177            env->pstate = PSTATE_MODE_EL3h;
 178        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 179            env->pstate = PSTATE_MODE_EL2h;
 180        } else {
 181            env->pstate = PSTATE_MODE_EL1h;
 182        }
 183        env->pc = cpu->rvbar;
 184#endif
 185    } else {
 186#if defined(CONFIG_USER_ONLY)
 187        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 188        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 189#endif
 190    }
 191
 192#if defined(CONFIG_USER_ONLY)
 193    env->uncached_cpsr = ARM_CPU_MODE_USR;
 194    /* For user mode we must enable access to coprocessors */
 195    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 196    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 197        env->cp15.c15_cpar = 3;
 198    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 199        env->cp15.c15_cpar = 1;
 200    }
 201#else
 202    /* SVC mode with interrupts disabled.  */
 203    env->uncached_cpsr = ARM_CPU_MODE_SVC;
 204    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 205
 206    if (arm_feature(env, ARM_FEATURE_M)) {
 207        uint32_t initial_msp; /* Loaded from 0x0 */
 208        uint32_t initial_pc; /* Loaded from 0x4 */
 209        uint8_t *rom;
 210        uint32_t vecbase;
 211
 212        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 213            env->v7m.secure = true;
 214        } else {
 215            /* This bit resets to 0 if security is supported, but 1 if
 216             * it is not. The bit is not present in v7M, but we set it
 217             * here so we can avoid having to make checks on it conditional
 218             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 219             */
 220            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 221        }
 222
 223        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 224         * that it resets to 1, so QEMU always does that rather than making
 225         * it dependent on CPU model. In v8M it is RES1.
 226         */
 227        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 228        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 229        if (arm_feature(env, ARM_FEATURE_V8)) {
 230            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 231            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 232            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 233        }
 234
 235        /* Unlike A/R profile, M profile defines the reset LR value */
 236        env->regs[14] = 0xffffffff;
 237
 238        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 239
 240        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 241        vecbase = env->v7m.vecbase[env->v7m.secure];
 242        rom = rom_ptr(vecbase, 8);
 243        if (rom) {
 244            /* Address zero is covered by ROM which hasn't yet been
 245             * copied into physical memory.
 246             */
 247            initial_msp = ldl_p(rom);
 248            initial_pc = ldl_p(rom + 4);
 249        } else {
 250            /* Address zero not covered by a ROM blob, or the ROM blob
 251             * is in non-modifiable memory and this is a second reset after
 252             * it got copied into memory. In the latter case, rom_ptr
 253             * will return a NULL pointer and we should use ldl_phys instead.
 254             */
 255            initial_msp = ldl_phys(s->as, vecbase);
 256            initial_pc = ldl_phys(s->as, vecbase + 4);
 257        }
 258
 259        env->regs[13] = initial_msp & 0xFFFFFFFC;
 260        env->regs[15] = initial_pc & ~1;
 261        env->thumb = initial_pc & 1;
 262    }
 263
 264    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 265     * executing as AArch32 then check if highvecs are enabled and
 266     * adjust the PC accordingly.
 267     */
 268    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 269        env->regs[15] = 0xFFFF0000;
 270    }
 271
 272    /* M profile requires that reset clears the exclusive monitor;
 273     * A profile does not, but clearing it makes more sense than having it
 274     * set with an exclusive access on address zero.
 275     */
 276    arm_clear_exclusive(env);
 277
 278    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 279#endif
 280
 281    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 282        if (cpu->pmsav7_dregion > 0) {
 283            if (arm_feature(env, ARM_FEATURE_V8)) {
 284                memset(env->pmsav8.rbar[M_REG_NS], 0,
 285                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 286                       * cpu->pmsav7_dregion);
 287                memset(env->pmsav8.rlar[M_REG_NS], 0,
 288                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 289                       * cpu->pmsav7_dregion);
 290                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 291                    memset(env->pmsav8.rbar[M_REG_S], 0,
 292                           sizeof(*env->pmsav8.rbar[M_REG_S])
 293                           * cpu->pmsav7_dregion);
 294                    memset(env->pmsav8.rlar[M_REG_S], 0,
 295                           sizeof(*env->pmsav8.rlar[M_REG_S])
 296                           * cpu->pmsav7_dregion);
 297                }
 298            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 299                memset(env->pmsav7.drbar, 0,
 300                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 301                memset(env->pmsav7.drsr, 0,
 302                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 303                memset(env->pmsav7.dracr, 0,
 304                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 305            }
 306        }
 307        env->pmsav7.rnr[M_REG_NS] = 0;
 308        env->pmsav7.rnr[M_REG_S] = 0;
 309        env->pmsav8.mair0[M_REG_NS] = 0;
 310        env->pmsav8.mair0[M_REG_S] = 0;
 311        env->pmsav8.mair1[M_REG_NS] = 0;
 312        env->pmsav8.mair1[M_REG_S] = 0;
 313    }
 314
 315    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 316        if (cpu->sau_sregion > 0) {
 317            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 318            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 319        }
 320        env->sau.rnr = 0;
 321        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 322         * the Cortex-M33 does.
 323         */
 324        env->sau.ctrl = 0;
 325    }
 326
 327    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 328    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 329    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 330    set_float_detect_tininess(float_tininess_before_rounding,
 331                              &env->vfp.fp_status);
 332    set_float_detect_tininess(float_tininess_before_rounding,
 333                              &env->vfp.standard_fp_status);
 334    set_float_detect_tininess(float_tininess_before_rounding,
 335                              &env->vfp.fp_status_f16);
 336#ifndef CONFIG_USER_ONLY
 337    if (kvm_enabled()) {
 338        kvm_arm_reset_vcpu(cpu);
 339    }
 340#endif
 341
 342    hw_breakpoint_update_all(cpu);
 343    hw_watchpoint_update_all(cpu);
 344}
 345
 346bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 347{
 348    CPUClass *cc = CPU_GET_CLASS(cs);
 349    CPUARMState *env = cs->env_ptr;
 350    uint32_t cur_el = arm_current_el(env);
 351    bool secure = arm_is_secure(env);
 352    uint32_t target_el;
 353    uint32_t excp_idx;
 354    bool ret = false;
 355
 356    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 357        excp_idx = EXCP_FIQ;
 358        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 359        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 360            cs->exception_index = excp_idx;
 361            env->exception.target_el = target_el;
 362            cc->do_interrupt(cs);
 363            ret = true;
 364        }
 365    }
 366    if (interrupt_request & CPU_INTERRUPT_HARD) {
 367        excp_idx = EXCP_IRQ;
 368        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 369        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 370            cs->exception_index = excp_idx;
 371            env->exception.target_el = target_el;
 372            cc->do_interrupt(cs);
 373            ret = true;
 374        }
 375    }
 376    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 377        excp_idx = EXCP_VIRQ;
 378        target_el = 1;
 379        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 380            cs->exception_index = excp_idx;
 381            env->exception.target_el = target_el;
 382            cc->do_interrupt(cs);
 383            ret = true;
 384        }
 385    }
 386    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 387        excp_idx = EXCP_VFIQ;
 388        target_el = 1;
 389        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 390            cs->exception_index = excp_idx;
 391            env->exception.target_el = target_el;
 392            cc->do_interrupt(cs);
 393            ret = true;
 394        }
 395    }
 396
 397    return ret;
 398}
 399
 400#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
 401static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 402{
 403    CPUClass *cc = CPU_GET_CLASS(cs);
 404    ARMCPU *cpu = ARM_CPU(cs);
 405    CPUARMState *env = &cpu->env;
 406    bool ret = false;
 407
 408    /* ARMv7-M interrupt masking works differently than -A or -R.
 409     * There is no FIQ/IRQ distinction. Instead of I and F bits
 410     * masking FIQ and IRQ interrupts, an exception is taken only
 411     * if it is higher priority than the current execution priority
 412     * (which depends on state like BASEPRI, FAULTMASK and the
 413     * currently active exception).
 414     */
 415    if (interrupt_request & CPU_INTERRUPT_HARD
 416        && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
 417        cs->exception_index = EXCP_IRQ;
 418        cc->do_interrupt(cs);
 419        ret = true;
 420    }
 421    return ret;
 422}
 423#endif
 424
 425#ifndef CONFIG_USER_ONLY
 426static void arm_cpu_set_irq(void *opaque, int irq, int level)
 427{
 428    ARMCPU *cpu = opaque;
 429    CPUARMState *env = &cpu->env;
 430    CPUState *cs = CPU(cpu);
 431    static const int mask[] = {
 432        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 433        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 434        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 435        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 436    };
 437
 438    switch (irq) {
 439    case ARM_CPU_VIRQ:
 440    case ARM_CPU_VFIQ:
 441        assert(arm_feature(env, ARM_FEATURE_EL2));
 442        /* fall through */
 443    case ARM_CPU_IRQ:
 444    case ARM_CPU_FIQ:
 445        if (level) {
 446            cpu_interrupt(cs, mask[irq]);
 447        } else {
 448            cpu_reset_interrupt(cs, mask[irq]);
 449        }
 450        break;
 451    default:
 452        g_assert_not_reached();
 453    }
 454}
 455
 456static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 457{
 458#ifdef CONFIG_KVM
 459    ARMCPU *cpu = opaque;
 460    CPUState *cs = CPU(cpu);
 461    int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
 462
 463    switch (irq) {
 464    case ARM_CPU_IRQ:
 465        kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
 466        break;
 467    case ARM_CPU_FIQ:
 468        kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
 469        break;
 470    default:
 471        g_assert_not_reached();
 472    }
 473    kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
 474    kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
 475#endif
 476}
 477
 478static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 479{
 480    ARMCPU *cpu = ARM_CPU(cs);
 481    CPUARMState *env = &cpu->env;
 482
 483    cpu_synchronize_state(cs);
 484    return arm_cpu_data_is_big_endian(env);
 485}
 486
 487#endif
 488
 489static inline void set_feature(CPUARMState *env, int feature)
 490{
 491    env->features |= 1ULL << feature;
 492}
 493
 494static inline void unset_feature(CPUARMState *env, int feature)
 495{
 496    env->features &= ~(1ULL << feature);
 497}
 498
 499static int
 500print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 501{
 502  return print_insn_arm(pc | 1, info);
 503}
 504
 505static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 506{
 507    ARMCPU *ac = ARM_CPU(cpu);
 508    CPUARMState *env = &ac->env;
 509    bool sctlr_b;
 510
 511    if (is_a64(env)) {
 512        /* We might not be compiled with the A64 disassembler
 513         * because it needs a C++ compiler. Leave print_insn
 514         * unset in this case to use the caller default behaviour.
 515         */
 516#if defined(CONFIG_ARM_A64_DIS)
 517        info->print_insn = print_insn_arm_a64;
 518#endif
 519        info->cap_arch = CS_ARCH_ARM64;
 520        info->cap_insn_unit = 4;
 521        info->cap_insn_split = 4;
 522    } else {
 523        int cap_mode;
 524        if (env->thumb) {
 525            info->print_insn = print_insn_thumb1;
 526            info->cap_insn_unit = 2;
 527            info->cap_insn_split = 4;
 528            cap_mode = CS_MODE_THUMB;
 529        } else {
 530            info->print_insn = print_insn_arm;
 531            info->cap_insn_unit = 4;
 532            info->cap_insn_split = 4;
 533            cap_mode = CS_MODE_ARM;
 534        }
 535        if (arm_feature(env, ARM_FEATURE_V8)) {
 536            cap_mode |= CS_MODE_V8;
 537        }
 538        if (arm_feature(env, ARM_FEATURE_M)) {
 539            cap_mode |= CS_MODE_MCLASS;
 540        }
 541        info->cap_arch = CS_ARCH_ARM;
 542        info->cap_mode = cap_mode;
 543    }
 544
 545    sctlr_b = arm_sctlr_b(env);
 546    if (bswap_code(sctlr_b)) {
 547#ifdef TARGET_WORDS_BIGENDIAN
 548        info->endian = BFD_ENDIAN_LITTLE;
 549#else
 550        info->endian = BFD_ENDIAN_BIG;
 551#endif
 552    }
 553    info->flags &= ~INSN_ARM_BE32;
 554#ifndef CONFIG_USER_ONLY
 555    if (sctlr_b) {
 556        info->flags |= INSN_ARM_BE32;
 557    }
 558#endif
 559}
 560
 561uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
 562{
 563    uint32_t Aff1 = idx / clustersz;
 564    uint32_t Aff0 = idx % clustersz;
 565    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
 566}
 567
 568static void arm_cpu_initfn(Object *obj)
 569{
 570    CPUState *cs = CPU(obj);
 571    ARMCPU *cpu = ARM_CPU(obj);
 572
 573    cs->env_ptr = &cpu->env;
 574    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
 575                                         g_free, g_free);
 576
 577    QLIST_INIT(&cpu->pre_el_change_hooks);
 578    QLIST_INIT(&cpu->el_change_hooks);
 579
 580#ifndef CONFIG_USER_ONLY
 581    /* Our inbound IRQ and FIQ lines */
 582    if (kvm_enabled()) {
 583        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
 584         * the same interface as non-KVM CPUs.
 585         */
 586        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
 587    } else {
 588        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
 589    }
 590
 591    cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 592                                                arm_gt_ptimer_cb, cpu);
 593    cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 594                                                arm_gt_vtimer_cb, cpu);
 595    cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 596                                                arm_gt_htimer_cb, cpu);
 597    cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 598                                                arm_gt_stimer_cb, cpu);
 599    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
 600                       ARRAY_SIZE(cpu->gt_timer_outputs));
 601
 602    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
 603                             "gicv3-maintenance-interrupt", 1);
 604    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
 605                             "pmu-interrupt", 1);
 606#endif
 607
 608    /* DTB consumers generally don't in fact care what the 'compatible'
 609     * string is, so always provide some string and trust that a hypothetical
 610     * picky DTB consumer will also provide a helpful error message.
 611     */
 612    cpu->dtb_compatible = "qemu,unknown";
 613    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
 614    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 615
 616    if (tcg_enabled()) {
 617        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
 618    }
 619}
 620
 621static Property arm_cpu_reset_cbar_property =
 622            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
 623
 624static Property arm_cpu_reset_hivecs_property =
 625            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
 626
 627static Property arm_cpu_rvbar_property =
 628            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
 629
 630static Property arm_cpu_has_el2_property =
 631            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
 632
 633static Property arm_cpu_has_el3_property =
 634            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
 635
 636static Property arm_cpu_cfgend_property =
 637            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
 638
 639/* use property name "pmu" to match other archs and virt tools */
 640static Property arm_cpu_has_pmu_property =
 641            DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
 642
 643static Property arm_cpu_has_mpu_property =
 644            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
 645
 646/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
 647 * because the CPU initfn will have already set cpu->pmsav7_dregion to
 648 * the right value for that particular CPU type, and we don't want
 649 * to override that with an incorrect constant value.
 650 */
 651static Property arm_cpu_pmsav7_dregion_property =
 652            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
 653                                           pmsav7_dregion,
 654                                           qdev_prop_uint32, uint32_t);
 655
 656/* M profile: initial value of the Secure VTOR */
 657static Property arm_cpu_initsvtor_property =
 658            DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
 659
 660static void arm_cpu_post_init(Object *obj)
 661{
 662    ARMCPU *cpu = ARM_CPU(obj);
 663
 664    /* M profile implies PMSA. We have to do this here rather than
 665     * in realize with the other feature-implication checks because
 666     * we look at the PMSA bit to see if we should add some properties.
 667     */
 668    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 669        set_feature(&cpu->env, ARM_FEATURE_PMSA);
 670    }
 671
 672    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
 673        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
 674        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
 675                                 &error_abort);
 676    }
 677
 678    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
 679        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
 680                                 &error_abort);
 681    }
 682
 683    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 684        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
 685                                 &error_abort);
 686    }
 687
 688    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
 689        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
 690         * prevent "has_el3" from existing on CPUs which cannot support EL3.
 691         */
 692        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
 693                                 &error_abort);
 694
 695#ifndef CONFIG_USER_ONLY
 696        object_property_add_link(obj, "secure-memory",
 697                                 TYPE_MEMORY_REGION,
 698                                 (Object **)&cpu->secure_memory,
 699                                 qdev_prop_allow_set_link_before_realize,
 700                                 OBJ_PROP_LINK_STRONG,
 701                                 &error_abort);
 702#endif
 703    }
 704
 705    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
 706        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
 707                                 &error_abort);
 708    }
 709
 710    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
 711        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
 712                                 &error_abort);
 713    }
 714
 715    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
 716        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
 717                                 &error_abort);
 718        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 719            qdev_property_add_static(DEVICE(obj),
 720                                     &arm_cpu_pmsav7_dregion_property,
 721                                     &error_abort);
 722        }
 723    }
 724
 725    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
 726        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
 727                                 qdev_prop_allow_set_link_before_realize,
 728                                 OBJ_PROP_LINK_STRONG,
 729                                 &error_abort);
 730        qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
 731                                 &error_abort);
 732    }
 733
 734    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
 735                             &error_abort);
 736}
 737
 738static void arm_cpu_finalizefn(Object *obj)
 739{
 740    ARMCPU *cpu = ARM_CPU(obj);
 741    ARMELChangeHook *hook, *next;
 742
 743    g_hash_table_destroy(cpu->cp_regs);
 744
 745    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 746        QLIST_REMOVE(hook, node);
 747        g_free(hook);
 748    }
 749    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 750        QLIST_REMOVE(hook, node);
 751        g_free(hook);
 752    }
 753}
 754
 755static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
 756{
 757    CPUState *cs = CPU(dev);
 758    ARMCPU *cpu = ARM_CPU(dev);
 759    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
 760    CPUARMState *env = &cpu->env;
 761    int pagebits;
 762    Error *local_err = NULL;
 763
 764    /* If we needed to query the host kernel for the CPU features
 765     * then it's possible that might have failed in the initfn, but
 766     * this is the first point where we can report it.
 767     */
 768    if (cpu->host_cpu_probe_failed) {
 769        if (!kvm_enabled()) {
 770            error_setg(errp, "The 'host' CPU type can only be used with KVM");
 771        } else {
 772            error_setg(errp, "Failed to retrieve host CPU features");
 773        }
 774        return;
 775    }
 776
 777#ifndef CONFIG_USER_ONLY
 778    /* The NVIC and M-profile CPU are two halves of a single piece of
 779     * hardware; trying to use one without the other is a command line
 780     * error and will result in segfaults if not caught here.
 781     */
 782    if (arm_feature(env, ARM_FEATURE_M)) {
 783        if (!env->nvic) {
 784            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
 785            return;
 786        }
 787    } else {
 788        if (env->nvic) {
 789            error_setg(errp, "This board can only be used with Cortex-M CPUs");
 790            return;
 791        }
 792    }
 793#endif
 794
 795    cpu_exec_realizefn(cs, &local_err);
 796    if (local_err != NULL) {
 797        error_propagate(errp, local_err);
 798        return;
 799    }
 800
 801    /* Some features automatically imply others: */
 802    if (arm_feature(env, ARM_FEATURE_V8)) {
 803        set_feature(env, ARM_FEATURE_V7VE);
 804    }
 805    if (arm_feature(env, ARM_FEATURE_V7VE)) {
 806        /* v7 Virtualization Extensions. In real hardware this implies
 807         * EL2 and also the presence of the Security Extensions.
 808         * For QEMU, for backwards-compatibility we implement some
 809         * CPUs or CPU configs which have no actual EL2 or EL3 but do
 810         * include the various other features that V7VE implies.
 811         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
 812         * Security Extensions is ARM_FEATURE_EL3.
 813         */
 814        set_feature(env, ARM_FEATURE_ARM_DIV);
 815        set_feature(env, ARM_FEATURE_LPAE);
 816        set_feature(env, ARM_FEATURE_V7);
 817    }
 818    if (arm_feature(env, ARM_FEATURE_V7)) {
 819        set_feature(env, ARM_FEATURE_VAPA);
 820        set_feature(env, ARM_FEATURE_THUMB2);
 821        set_feature(env, ARM_FEATURE_MPIDR);
 822        if (!arm_feature(env, ARM_FEATURE_M)) {
 823            set_feature(env, ARM_FEATURE_V6K);
 824        } else {
 825            set_feature(env, ARM_FEATURE_V6);
 826        }
 827
 828        /* Always define VBAR for V7 CPUs even if it doesn't exist in
 829         * non-EL3 configs. This is needed by some legacy boards.
 830         */
 831        set_feature(env, ARM_FEATURE_VBAR);
 832    }
 833    if (arm_feature(env, ARM_FEATURE_V6K)) {
 834        set_feature(env, ARM_FEATURE_V6);
 835        set_feature(env, ARM_FEATURE_MVFR);
 836    }
 837    if (arm_feature(env, ARM_FEATURE_V6)) {
 838        set_feature(env, ARM_FEATURE_V5);
 839        set_feature(env, ARM_FEATURE_JAZELLE);
 840        if (!arm_feature(env, ARM_FEATURE_M)) {
 841            set_feature(env, ARM_FEATURE_AUXCR);
 842        }
 843    }
 844    if (arm_feature(env, ARM_FEATURE_V5)) {
 845        set_feature(env, ARM_FEATURE_V4T);
 846    }
 847    if (arm_feature(env, ARM_FEATURE_M)) {
 848        set_feature(env, ARM_FEATURE_THUMB_DIV);
 849    }
 850    if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
 851        set_feature(env, ARM_FEATURE_THUMB_DIV);
 852    }
 853    if (arm_feature(env, ARM_FEATURE_VFP4)) {
 854        set_feature(env, ARM_FEATURE_VFP3);
 855        set_feature(env, ARM_FEATURE_VFP_FP16);
 856    }
 857    if (arm_feature(env, ARM_FEATURE_VFP3)) {
 858        set_feature(env, ARM_FEATURE_VFP);
 859    }
 860    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 861        set_feature(env, ARM_FEATURE_V7MP);
 862        set_feature(env, ARM_FEATURE_PXN);
 863    }
 864    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
 865        set_feature(env, ARM_FEATURE_CBAR);
 866    }
 867    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
 868        !arm_feature(env, ARM_FEATURE_M)) {
 869        set_feature(env, ARM_FEATURE_THUMB_DSP);
 870    }
 871
 872    if (arm_feature(env, ARM_FEATURE_V7) &&
 873        !arm_feature(env, ARM_FEATURE_M) &&
 874        !arm_feature(env, ARM_FEATURE_PMSA)) {
 875        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
 876         * can use 4K pages.
 877         */
 878        pagebits = 12;
 879    } else {
 880        /* For CPUs which might have tiny 1K pages, or which have an
 881         * MPU and might have small region sizes, stick with 1K pages.
 882         */
 883        pagebits = 10;
 884    }
 885    if (!set_preferred_target_page_bits(pagebits)) {
 886        /* This can only ever happen for hotplugging a CPU, or if
 887         * the board code incorrectly creates a CPU which it has
 888         * promised via minimum_page_size that it will not.
 889         */
 890        error_setg(errp, "This CPU requires a smaller page size than the "
 891                   "system is using");
 892        return;
 893    }
 894
 895    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
 896     * We don't support setting cluster ID ([16..23]) (known as Aff2
 897     * in later ARM ARM versions), or any of the higher affinity level fields,
 898     * so these bits always RAZ.
 899     */
 900    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
 901        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
 902                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
 903    }
 904
 905    if (cpu->reset_hivecs) {
 906            cpu->reset_sctlr |= (1 << 13);
 907    }
 908
 909    if (cpu->cfgend) {
 910        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 911            cpu->reset_sctlr |= SCTLR_EE;
 912        } else {
 913            cpu->reset_sctlr |= SCTLR_B;
 914        }
 915    }
 916
 917    if (!cpu->has_el3) {
 918        /* If the has_el3 CPU property is disabled then we need to disable the
 919         * feature.
 920         */
 921        unset_feature(env, ARM_FEATURE_EL3);
 922
 923        /* Disable the security extension feature bits in the processor feature
 924         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
 925         */
 926        cpu->id_pfr1 &= ~0xf0;
 927        cpu->id_aa64pfr0 &= ~0xf000;
 928    }
 929
 930    if (!cpu->has_el2) {
 931        unset_feature(env, ARM_FEATURE_EL2);
 932    }
 933
 934    if (!cpu->has_pmu) {
 935        unset_feature(env, ARM_FEATURE_PMU);
 936        cpu->id_aa64dfr0 &= ~0xf00;
 937    }
 938
 939    if (!arm_feature(env, ARM_FEATURE_EL2)) {
 940        /* Disable the hypervisor feature bits in the processor feature
 941         * registers if we don't have EL2. These are id_pfr1[15:12] and
 942         * id_aa64pfr0_el1[11:8].
 943         */
 944        cpu->id_aa64pfr0 &= ~0xf00;
 945        cpu->id_pfr1 &= ~0xf000;
 946    }
 947
 948    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
 949     * to false or by setting pmsav7-dregion to 0.
 950     */
 951    if (!cpu->has_mpu) {
 952        cpu->pmsav7_dregion = 0;
 953    }
 954    if (cpu->pmsav7_dregion == 0) {
 955        cpu->has_mpu = false;
 956    }
 957
 958    if (arm_feature(env, ARM_FEATURE_PMSA) &&
 959        arm_feature(env, ARM_FEATURE_V7)) {
 960        uint32_t nr = cpu->pmsav7_dregion;
 961
 962        if (nr > 0xff) {
 963            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
 964            return;
 965        }
 966
 967        if (nr) {
 968            if (arm_feature(env, ARM_FEATURE_V8)) {
 969                /* PMSAv8 */
 970                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
 971                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
 972                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 973                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
 974                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
 975                }
 976            } else {
 977                env->pmsav7.drbar = g_new0(uint32_t, nr);
 978                env->pmsav7.drsr = g_new0(uint32_t, nr);
 979                env->pmsav7.dracr = g_new0(uint32_t, nr);
 980            }
 981        }
 982    }
 983
 984    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 985        uint32_t nr = cpu->sau_sregion;
 986
 987        if (nr > 0xff) {
 988            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
 989            return;
 990        }
 991
 992        if (nr) {
 993            env->sau.rbar = g_new0(uint32_t, nr);
 994            env->sau.rlar = g_new0(uint32_t, nr);
 995        }
 996    }
 997
 998    if (arm_feature(env, ARM_FEATURE_EL3)) {
 999        set_feature(env, ARM_FEATURE_VBAR);
1000    }
1001
1002    register_cp_regs_for_features(cpu);
1003    arm_cpu_register_gdb_regs_for_features(cpu);
1004
1005    init_cpreg_list(cpu);
1006
1007#ifndef CONFIG_USER_ONLY
1008    if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1009        cs->num_ases = 2;
1010
1011        if (!cpu->secure_memory) {
1012            cpu->secure_memory = cs->memory;
1013        }
1014        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1015                               cpu->secure_memory);
1016    } else {
1017        cs->num_ases = 1;
1018    }
1019    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1020
1021    /* No core_count specified, default to smp_cpus. */
1022    if (cpu->core_count == -1) {
1023        cpu->core_count = smp_cpus;
1024    }
1025#endif
1026
1027    qemu_init_vcpu(cs);
1028    cpu_reset(cs);
1029
1030    acc->parent_realize(dev, errp);
1031}
1032
1033static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1034{
1035    ObjectClass *oc;
1036    char *typename;
1037    char **cpuname;
1038    const char *cpunamestr;
1039
1040    cpuname = g_strsplit(cpu_model, ",", 1);
1041    cpunamestr = cpuname[0];
1042#ifdef CONFIG_USER_ONLY
1043    /* For backwards compatibility usermode emulation allows "-cpu any",
1044     * which has the same semantics as "-cpu max".
1045     */
1046    if (!strcmp(cpunamestr, "any")) {
1047        cpunamestr = "max";
1048    }
1049#endif
1050    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1051    oc = object_class_by_name(typename);
1052    g_strfreev(cpuname);
1053    g_free(typename);
1054    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1055        object_class_is_abstract(oc)) {
1056        return NULL;
1057    }
1058    return oc;
1059}
1060
1061/* CPU models. These are not needed for the AArch64 linux-user build. */
1062#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1063
1064static void arm926_initfn(Object *obj)
1065{
1066    ARMCPU *cpu = ARM_CPU(obj);
1067
1068    cpu->dtb_compatible = "arm,arm926";
1069    set_feature(&cpu->env, ARM_FEATURE_V5);
1070    set_feature(&cpu->env, ARM_FEATURE_VFP);
1071    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1072    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1073    set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1074    cpu->midr = 0x41069265;
1075    cpu->reset_fpsid = 0x41011090;
1076    cpu->ctr = 0x1dd20d2;
1077    cpu->reset_sctlr = 0x00090078;
1078}
1079
1080static void arm946_initfn(Object *obj)
1081{
1082    ARMCPU *cpu = ARM_CPU(obj);
1083
1084    cpu->dtb_compatible = "arm,arm946";
1085    set_feature(&cpu->env, ARM_FEATURE_V5);
1086    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1087    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1088    cpu->midr = 0x41059461;
1089    cpu->ctr = 0x0f004006;
1090    cpu->reset_sctlr = 0x00000078;
1091}
1092
1093static void arm1026_initfn(Object *obj)
1094{
1095    ARMCPU *cpu = ARM_CPU(obj);
1096
1097    cpu->dtb_compatible = "arm,arm1026";
1098    set_feature(&cpu->env, ARM_FEATURE_V5);
1099    set_feature(&cpu->env, ARM_FEATURE_VFP);
1100    set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1101    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1102    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1103    set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1104    cpu->midr = 0x4106a262;
1105    cpu->reset_fpsid = 0x410110a0;
1106    cpu->ctr = 0x1dd20d2;
1107    cpu->reset_sctlr = 0x00090078;
1108    cpu->reset_auxcr = 1;
1109    {
1110        /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1111        ARMCPRegInfo ifar = {
1112            .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1113            .access = PL1_RW,
1114            .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1115            .resetvalue = 0
1116        };
1117        define_one_arm_cp_reg(cpu, &ifar);
1118    }
1119}
1120
1121static void arm1136_r2_initfn(Object *obj)
1122{
1123    ARMCPU *cpu = ARM_CPU(obj);
1124    /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1125     * older core than plain "arm1136". In particular this does not
1126     * have the v6K features.
1127     * These ID register values are correct for 1136 but may be wrong
1128     * for 1136_r2 (in particular r0p2 does not actually implement most
1129     * of the ID registers).
1130     */
1131
1132    cpu->dtb_compatible = "arm,arm1136";
1133    set_feature(&cpu->env, ARM_FEATURE_V6);
1134    set_feature(&cpu->env, ARM_FEATURE_VFP);
1135    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1136    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1137    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1138    cpu->midr = 0x4107b362;
1139    cpu->reset_fpsid = 0x410120b4;
1140    cpu->mvfr0 = 0x11111111;
1141    cpu->mvfr1 = 0x00000000;
1142    cpu->ctr = 0x1dd20d2;
1143    cpu->reset_sctlr = 0x00050078;
1144    cpu->id_pfr0 = 0x111;
1145    cpu->id_pfr1 = 0x1;
1146    cpu->id_dfr0 = 0x2;
1147    cpu->id_afr0 = 0x3;
1148    cpu->id_mmfr0 = 0x01130003;
1149    cpu->id_mmfr1 = 0x10030302;
1150    cpu->id_mmfr2 = 0x01222110;
1151    cpu->id_isar0 = 0x00140011;
1152    cpu->id_isar1 = 0x12002111;
1153    cpu->id_isar2 = 0x11231111;
1154    cpu->id_isar3 = 0x01102131;
1155    cpu->id_isar4 = 0x141;
1156    cpu->reset_auxcr = 7;
1157}
1158
1159static void arm1136_initfn(Object *obj)
1160{
1161    ARMCPU *cpu = ARM_CPU(obj);
1162
1163    cpu->dtb_compatible = "arm,arm1136";
1164    set_feature(&cpu->env, ARM_FEATURE_V6K);
1165    set_feature(&cpu->env, ARM_FEATURE_V6);
1166    set_feature(&cpu->env, ARM_FEATURE_VFP);
1167    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1168    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1169    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1170    cpu->midr = 0x4117b363;
1171    cpu->reset_fpsid = 0x410120b4;
1172    cpu->mvfr0 = 0x11111111;
1173    cpu->mvfr1 = 0x00000000;
1174    cpu->ctr = 0x1dd20d2;
1175    cpu->reset_sctlr = 0x00050078;
1176    cpu->id_pfr0 = 0x111;
1177    cpu->id_pfr1 = 0x1;
1178    cpu->id_dfr0 = 0x2;
1179    cpu->id_afr0 = 0x3;
1180    cpu->id_mmfr0 = 0x01130003;
1181    cpu->id_mmfr1 = 0x10030302;
1182    cpu->id_mmfr2 = 0x01222110;
1183    cpu->id_isar0 = 0x00140011;
1184    cpu->id_isar1 = 0x12002111;
1185    cpu->id_isar2 = 0x11231111;
1186    cpu->id_isar3 = 0x01102131;
1187    cpu->id_isar4 = 0x141;
1188    cpu->reset_auxcr = 7;
1189}
1190
1191static void arm1176_initfn(Object *obj)
1192{
1193    ARMCPU *cpu = ARM_CPU(obj);
1194
1195    cpu->dtb_compatible = "arm,arm1176";
1196    set_feature(&cpu->env, ARM_FEATURE_V6K);
1197    set_feature(&cpu->env, ARM_FEATURE_VFP);
1198    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1199    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1200    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1201    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1202    set_feature(&cpu->env, ARM_FEATURE_EL3);
1203    cpu->midr = 0x410fb767;
1204    cpu->reset_fpsid = 0x410120b5;
1205    cpu->mvfr0 = 0x11111111;
1206    cpu->mvfr1 = 0x00000000;
1207    cpu->ctr = 0x1dd20d2;
1208    cpu->reset_sctlr = 0x00050078;
1209    cpu->id_pfr0 = 0x111;
1210    cpu->id_pfr1 = 0x11;
1211    cpu->id_dfr0 = 0x33;
1212    cpu->id_afr0 = 0;
1213    cpu->id_mmfr0 = 0x01130003;
1214    cpu->id_mmfr1 = 0x10030302;
1215    cpu->id_mmfr2 = 0x01222100;
1216    cpu->id_isar0 = 0x0140011;
1217    cpu->id_isar1 = 0x12002111;
1218    cpu->id_isar2 = 0x11231121;
1219    cpu->id_isar3 = 0x01102131;
1220    cpu->id_isar4 = 0x01141;
1221    cpu->reset_auxcr = 7;
1222}
1223
1224static void arm11mpcore_initfn(Object *obj)
1225{
1226    ARMCPU *cpu = ARM_CPU(obj);
1227
1228    cpu->dtb_compatible = "arm,arm11mpcore";
1229    set_feature(&cpu->env, ARM_FEATURE_V6K);
1230    set_feature(&cpu->env, ARM_FEATURE_VFP);
1231    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1232    set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1233    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1234    cpu->midr = 0x410fb022;
1235    cpu->reset_fpsid = 0x410120b4;
1236    cpu->mvfr0 = 0x11111111;
1237    cpu->mvfr1 = 0x00000000;
1238    cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1239    cpu->id_pfr0 = 0x111;
1240    cpu->id_pfr1 = 0x1;
1241    cpu->id_dfr0 = 0;
1242    cpu->id_afr0 = 0x2;
1243    cpu->id_mmfr0 = 0x01100103;
1244    cpu->id_mmfr1 = 0x10020302;
1245    cpu->id_mmfr2 = 0x01222000;
1246    cpu->id_isar0 = 0x00100011;
1247    cpu->id_isar1 = 0x12002111;
1248    cpu->id_isar2 = 0x11221011;
1249    cpu->id_isar3 = 0x01102131;
1250    cpu->id_isar4 = 0x141;
1251    cpu->reset_auxcr = 1;
1252}
1253
1254static void cortex_m3_initfn(Object *obj)
1255{
1256    ARMCPU *cpu = ARM_CPU(obj);
1257    set_feature(&cpu->env, ARM_FEATURE_V7);
1258    set_feature(&cpu->env, ARM_FEATURE_M);
1259    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1260    cpu->midr = 0x410fc231;
1261    cpu->pmsav7_dregion = 8;
1262    cpu->id_pfr0 = 0x00000030;
1263    cpu->id_pfr1 = 0x00000200;
1264    cpu->id_dfr0 = 0x00100000;
1265    cpu->id_afr0 = 0x00000000;
1266    cpu->id_mmfr0 = 0x00000030;
1267    cpu->id_mmfr1 = 0x00000000;
1268    cpu->id_mmfr2 = 0x00000000;
1269    cpu->id_mmfr3 = 0x00000000;
1270    cpu->id_isar0 = 0x01141110;
1271    cpu->id_isar1 = 0x02111000;
1272    cpu->id_isar2 = 0x21112231;
1273    cpu->id_isar3 = 0x01111110;
1274    cpu->id_isar4 = 0x01310102;
1275    cpu->id_isar5 = 0x00000000;
1276    cpu->id_isar6 = 0x00000000;
1277}
1278
1279static void cortex_m4_initfn(Object *obj)
1280{
1281    ARMCPU *cpu = ARM_CPU(obj);
1282
1283    set_feature(&cpu->env, ARM_FEATURE_V7);
1284    set_feature(&cpu->env, ARM_FEATURE_M);
1285    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1286    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1287    cpu->midr = 0x410fc240; /* r0p0 */
1288    cpu->pmsav7_dregion = 8;
1289    cpu->id_pfr0 = 0x00000030;
1290    cpu->id_pfr1 = 0x00000200;
1291    cpu->id_dfr0 = 0x00100000;
1292    cpu->id_afr0 = 0x00000000;
1293    cpu->id_mmfr0 = 0x00000030;
1294    cpu->id_mmfr1 = 0x00000000;
1295    cpu->id_mmfr2 = 0x00000000;
1296    cpu->id_mmfr3 = 0x00000000;
1297    cpu->id_isar0 = 0x01141110;
1298    cpu->id_isar1 = 0x02111000;
1299    cpu->id_isar2 = 0x21112231;
1300    cpu->id_isar3 = 0x01111110;
1301    cpu->id_isar4 = 0x01310102;
1302    cpu->id_isar5 = 0x00000000;
1303    cpu->id_isar6 = 0x00000000;
1304}
1305
1306static void cortex_m33_initfn(Object *obj)
1307{
1308    ARMCPU *cpu = ARM_CPU(obj);
1309
1310    set_feature(&cpu->env, ARM_FEATURE_V8);
1311    set_feature(&cpu->env, ARM_FEATURE_M);
1312    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1313    set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1314    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1315    cpu->midr = 0x410fd213; /* r0p3 */
1316    cpu->pmsav7_dregion = 16;
1317    cpu->sau_sregion = 8;
1318    cpu->id_pfr0 = 0x00000030;
1319    cpu->id_pfr1 = 0x00000210;
1320    cpu->id_dfr0 = 0x00200000;
1321    cpu->id_afr0 = 0x00000000;
1322    cpu->id_mmfr0 = 0x00101F40;
1323    cpu->id_mmfr1 = 0x00000000;
1324    cpu->id_mmfr2 = 0x01000000;
1325    cpu->id_mmfr3 = 0x00000000;
1326    cpu->id_isar0 = 0x01101110;
1327    cpu->id_isar1 = 0x02212000;
1328    cpu->id_isar2 = 0x20232232;
1329    cpu->id_isar3 = 0x01111131;
1330    cpu->id_isar4 = 0x01310132;
1331    cpu->id_isar5 = 0x00000000;
1332    cpu->id_isar6 = 0x00000000;
1333    cpu->clidr = 0x00000000;
1334    cpu->ctr = 0x8000c000;
1335}
1336
1337static void arm_v7m_class_init(ObjectClass *oc, void *data)
1338{
1339    CPUClass *cc = CPU_CLASS(oc);
1340
1341#ifndef CONFIG_USER_ONLY
1342    cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1343#endif
1344
1345    cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1346}
1347
1348static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1349    /* Dummy the TCM region regs for the moment */
1350    { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1351      .access = PL1_RW, .type = ARM_CP_CONST },
1352    { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1353      .access = PL1_RW, .type = ARM_CP_CONST },
1354    { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1355      .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1356    REGINFO_SENTINEL
1357};
1358
1359static void cortex_r5_initfn(Object *obj)
1360{
1361    ARMCPU *cpu = ARM_CPU(obj);
1362
1363    set_feature(&cpu->env, ARM_FEATURE_V7);
1364    set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1365    set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1366    set_feature(&cpu->env, ARM_FEATURE_V7MP);
1367    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1368    cpu->midr = 0x411fc153; /* r1p3 */
1369    cpu->id_pfr0 = 0x0131;
1370    cpu->id_pfr1 = 0x001;
1371    cpu->id_dfr0 = 0x010400;
1372    cpu->id_afr0 = 0x0;
1373    cpu->id_mmfr0 = 0x0210030;
1374    cpu->id_mmfr1 = 0x00000000;
1375    cpu->id_mmfr2 = 0x01200000;
1376    cpu->id_mmfr3 = 0x0211;
1377    cpu->id_isar0 = 0x2101111;
1378    cpu->id_isar1 = 0x13112111;
1379    cpu->id_isar2 = 0x21232141;
1380    cpu->id_isar3 = 0x01112131;
1381    cpu->id_isar4 = 0x0010142;
1382    cpu->id_isar5 = 0x0;
1383    cpu->id_isar6 = 0x0;
1384    cpu->mp_is_up = true;
1385    cpu->pmsav7_dregion = 16;
1386    define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1387}
1388
1389static void cortex_r5f_initfn(Object *obj)
1390{
1391    ARMCPU *cpu = ARM_CPU(obj);
1392
1393    cortex_r5_initfn(obj);
1394    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1395}
1396
1397static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1398    { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1399      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1400    { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1401      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1402    REGINFO_SENTINEL
1403};
1404
1405static void cortex_a8_initfn(Object *obj)
1406{
1407    ARMCPU *cpu = ARM_CPU(obj);
1408
1409    cpu->dtb_compatible = "arm,cortex-a8";
1410    set_feature(&cpu->env, ARM_FEATURE_V7);
1411    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1412    set_feature(&cpu->env, ARM_FEATURE_NEON);
1413    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1414    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1415    set_feature(&cpu->env, ARM_FEATURE_EL3);
1416    cpu->midr = 0x410fc080;
1417    cpu->reset_fpsid = 0x410330c0;
1418    cpu->mvfr0 = 0x11110222;
1419    cpu->mvfr1 = 0x00011111;
1420    cpu->ctr = 0x82048004;
1421    cpu->reset_sctlr = 0x00c50078;
1422    cpu->id_pfr0 = 0x1031;
1423    cpu->id_pfr1 = 0x11;
1424    cpu->id_dfr0 = 0x400;
1425    cpu->id_afr0 = 0;
1426    cpu->id_mmfr0 = 0x31100003;
1427    cpu->id_mmfr1 = 0x20000000;
1428    cpu->id_mmfr2 = 0x01202000;
1429    cpu->id_mmfr3 = 0x11;
1430    cpu->id_isar0 = 0x00101111;
1431    cpu->id_isar1 = 0x12112111;
1432    cpu->id_isar2 = 0x21232031;
1433    cpu->id_isar3 = 0x11112131;
1434    cpu->id_isar4 = 0x00111142;
1435    cpu->dbgdidr = 0x15141000;
1436    cpu->clidr = (1 << 27) | (2 << 24) | 3;
1437    cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1438    cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1439    cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1440    cpu->reset_auxcr = 2;
1441    define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1442}
1443
1444static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1445    /* power_control should be set to maximum latency. Again,
1446     * default to 0 and set by private hook
1447     */
1448    { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1449      .access = PL1_RW, .resetvalue = 0,
1450      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1451    { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1452      .access = PL1_RW, .resetvalue = 0,
1453      .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1454    { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1455      .access = PL1_RW, .resetvalue = 0,
1456      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1457    { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1458      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1459    /* TLB lockdown control */
1460    { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1461      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1462    { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1463      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1464    { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1465      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1466    { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1467      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1468    { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1469      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1470    REGINFO_SENTINEL
1471};
1472
1473static void cortex_a9_initfn(Object *obj)
1474{
1475    ARMCPU *cpu = ARM_CPU(obj);
1476
1477    cpu->dtb_compatible = "arm,cortex-a9";
1478    set_feature(&cpu->env, ARM_FEATURE_V7);
1479    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1480    set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1481    set_feature(&cpu->env, ARM_FEATURE_NEON);
1482    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1483    set_feature(&cpu->env, ARM_FEATURE_EL3);
1484    /* Note that A9 supports the MP extensions even for
1485     * A9UP and single-core A9MP (which are both different
1486     * and valid configurations; we don't model A9UP).
1487     */
1488    set_feature(&cpu->env, ARM_FEATURE_V7MP);
1489    set_feature(&cpu->env, ARM_FEATURE_CBAR);
1490    cpu->midr = 0x410fc090;
1491    cpu->reset_fpsid = 0x41033090;
1492    cpu->mvfr0 = 0x11110222;
1493    cpu->mvfr1 = 0x01111111;
1494    cpu->ctr = 0x80038003;
1495    cpu->reset_sctlr = 0x00c50078;
1496    cpu->id_pfr0 = 0x1031;
1497    cpu->id_pfr1 = 0x11;
1498    cpu->id_dfr0 = 0x000;
1499    cpu->id_afr0 = 0;
1500    cpu->id_mmfr0 = 0x00100103;
1501    cpu->id_mmfr1 = 0x20000000;
1502    cpu->id_mmfr2 = 0x01230000;
1503    cpu->id_mmfr3 = 0x00002111;
1504    cpu->id_isar0 = 0x00101111;
1505    cpu->id_isar1 = 0x13112111;
1506    cpu->id_isar2 = 0x21232041;
1507    cpu->id_isar3 = 0x11112131;
1508    cpu->id_isar4 = 0x00111142;
1509    cpu->dbgdidr = 0x35141000;
1510    cpu->clidr = (1 << 27) | (1 << 24) | 3;
1511    cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1512    cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1513    define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1514}
1515
1516#ifndef CONFIG_USER_ONLY
1517static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1518{
1519    /* Linux wants the number of processors from here.
1520     * Might as well set the interrupt-controller bit too.
1521     */
1522    return ((smp_cpus - 1) << 24) | (1 << 23);
1523}
1524#endif
1525
1526static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1527#ifndef CONFIG_USER_ONLY
1528    { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1529      .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1530      .writefn = arm_cp_write_ignore, },
1531#endif
1532    { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1533      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1534    REGINFO_SENTINEL
1535};
1536
1537static void cortex_a7_initfn(Object *obj)
1538{
1539    ARMCPU *cpu = ARM_CPU(obj);
1540
1541    cpu->dtb_compatible = "arm,cortex-a7";
1542    set_feature(&cpu->env, ARM_FEATURE_V7VE);
1543    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1544    set_feature(&cpu->env, ARM_FEATURE_NEON);
1545    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1546    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1547    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1548    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1549    set_feature(&cpu->env, ARM_FEATURE_EL3);
1550    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1551    cpu->midr = 0x410fc075;
1552    cpu->reset_fpsid = 0x41023075;
1553    cpu->mvfr0 = 0x10110222;
1554    cpu->mvfr1 = 0x11111111;
1555    cpu->ctr = 0x84448003;
1556    cpu->reset_sctlr = 0x00c50078;
1557    cpu->id_pfr0 = 0x00001131;
1558    cpu->id_pfr1 = 0x00011011;
1559    cpu->id_dfr0 = 0x02010555;
1560    cpu->pmceid0 = 0x00000000;
1561    cpu->pmceid1 = 0x00000000;
1562    cpu->id_afr0 = 0x00000000;
1563    cpu->id_mmfr0 = 0x10101105;
1564    cpu->id_mmfr1 = 0x40000000;
1565    cpu->id_mmfr2 = 0x01240000;
1566    cpu->id_mmfr3 = 0x02102211;
1567    cpu->id_isar0 = 0x01101110;
1568    cpu->id_isar1 = 0x13112111;
1569    cpu->id_isar2 = 0x21232041;
1570    cpu->id_isar3 = 0x11112131;
1571    cpu->id_isar4 = 0x10011142;
1572    cpu->dbgdidr = 0x3515f005;
1573    cpu->clidr = 0x0a200023;
1574    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1575    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1576    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1577    define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1578}
1579
1580static void cortex_a15_initfn(Object *obj)
1581{
1582    ARMCPU *cpu = ARM_CPU(obj);
1583
1584    cpu->dtb_compatible = "arm,cortex-a15";
1585    set_feature(&cpu->env, ARM_FEATURE_V7VE);
1586    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1587    set_feature(&cpu->env, ARM_FEATURE_NEON);
1588    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1589    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1590    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1591    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1592    set_feature(&cpu->env, ARM_FEATURE_EL3);
1593    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1594    cpu->midr = 0x412fc0f1;
1595    cpu->reset_fpsid = 0x410430f0;
1596    cpu->mvfr0 = 0x10110222;
1597    cpu->mvfr1 = 0x11111111;
1598    cpu->ctr = 0x8444c004;
1599    cpu->reset_sctlr = 0x00c50078;
1600    cpu->id_pfr0 = 0x00001131;
1601    cpu->id_pfr1 = 0x00011011;
1602    cpu->id_dfr0 = 0x02010555;
1603    cpu->pmceid0 = 0x0000000;
1604    cpu->pmceid1 = 0x00000000;
1605    cpu->id_afr0 = 0x00000000;
1606    cpu->id_mmfr0 = 0x10201105;
1607    cpu->id_mmfr1 = 0x20000000;
1608    cpu->id_mmfr2 = 0x01240000;
1609    cpu->id_mmfr3 = 0x02102211;
1610    cpu->id_isar0 = 0x02101110;
1611    cpu->id_isar1 = 0x13112111;
1612    cpu->id_isar2 = 0x21232041;
1613    cpu->id_isar3 = 0x11112131;
1614    cpu->id_isar4 = 0x10011142;
1615    cpu->dbgdidr = 0x3515f021;
1616    cpu->clidr = 0x0a200023;
1617    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1618    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1619    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1620    define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1621}
1622
1623static void ti925t_initfn(Object *obj)
1624{
1625    ARMCPU *cpu = ARM_CPU(obj);
1626    set_feature(&cpu->env, ARM_FEATURE_V4T);
1627    set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1628    cpu->midr = ARM_CPUID_TI925T;
1629    cpu->ctr = 0x5109149;
1630    cpu->reset_sctlr = 0x00000070;
1631}
1632
1633static void sa1100_initfn(Object *obj)
1634{
1635    ARMCPU *cpu = ARM_CPU(obj);
1636
1637    cpu->dtb_compatible = "intel,sa1100";
1638    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1639    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1640    cpu->midr = 0x4401A11B;
1641    cpu->reset_sctlr = 0x00000070;
1642}
1643
1644static void sa1110_initfn(Object *obj)
1645{
1646    ARMCPU *cpu = ARM_CPU(obj);
1647    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1648    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1649    cpu->midr = 0x6901B119;
1650    cpu->reset_sctlr = 0x00000070;
1651}
1652
1653static void pxa250_initfn(Object *obj)
1654{
1655    ARMCPU *cpu = ARM_CPU(obj);
1656
1657    cpu->dtb_compatible = "marvell,xscale";
1658    set_feature(&cpu->env, ARM_FEATURE_V5);
1659    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1660    cpu->midr = 0x69052100;
1661    cpu->ctr = 0xd172172;
1662    cpu->reset_sctlr = 0x00000078;
1663}
1664
1665static void pxa255_initfn(Object *obj)
1666{
1667    ARMCPU *cpu = ARM_CPU(obj);
1668
1669    cpu->dtb_compatible = "marvell,xscale";
1670    set_feature(&cpu->env, ARM_FEATURE_V5);
1671    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1672    cpu->midr = 0x69052d00;
1673    cpu->ctr = 0xd172172;
1674    cpu->reset_sctlr = 0x00000078;
1675}
1676
1677static void pxa260_initfn(Object *obj)
1678{
1679    ARMCPU *cpu = ARM_CPU(obj);
1680
1681    cpu->dtb_compatible = "marvell,xscale";
1682    set_feature(&cpu->env, ARM_FEATURE_V5);
1683    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1684    cpu->midr = 0x69052903;
1685    cpu->ctr = 0xd172172;
1686    cpu->reset_sctlr = 0x00000078;
1687}
1688
1689static void pxa261_initfn(Object *obj)
1690{
1691    ARMCPU *cpu = ARM_CPU(obj);
1692
1693    cpu->dtb_compatible = "marvell,xscale";
1694    set_feature(&cpu->env, ARM_FEATURE_V5);
1695    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1696    cpu->midr = 0x69052d05;
1697    cpu->ctr = 0xd172172;
1698    cpu->reset_sctlr = 0x00000078;
1699}
1700
1701static void pxa262_initfn(Object *obj)
1702{
1703    ARMCPU *cpu = ARM_CPU(obj);
1704
1705    cpu->dtb_compatible = "marvell,xscale";
1706    set_feature(&cpu->env, ARM_FEATURE_V5);
1707    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1708    cpu->midr = 0x69052d06;
1709    cpu->ctr = 0xd172172;
1710    cpu->reset_sctlr = 0x00000078;
1711}
1712
1713static void pxa270a0_initfn(Object *obj)
1714{
1715    ARMCPU *cpu = ARM_CPU(obj);
1716
1717    cpu->dtb_compatible = "marvell,xscale";
1718    set_feature(&cpu->env, ARM_FEATURE_V5);
1719    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1720    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1721    cpu->midr = 0x69054110;
1722    cpu->ctr = 0xd172172;
1723    cpu->reset_sctlr = 0x00000078;
1724}
1725
1726static void pxa270a1_initfn(Object *obj)
1727{
1728    ARMCPU *cpu = ARM_CPU(obj);
1729
1730    cpu->dtb_compatible = "marvell,xscale";
1731    set_feature(&cpu->env, ARM_FEATURE_V5);
1732    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1733    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1734    cpu->midr = 0x69054111;
1735    cpu->ctr = 0xd172172;
1736    cpu->reset_sctlr = 0x00000078;
1737}
1738
1739static void pxa270b0_initfn(Object *obj)
1740{
1741    ARMCPU *cpu = ARM_CPU(obj);
1742
1743    cpu->dtb_compatible = "marvell,xscale";
1744    set_feature(&cpu->env, ARM_FEATURE_V5);
1745    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1746    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1747    cpu->midr = 0x69054112;
1748    cpu->ctr = 0xd172172;
1749    cpu->reset_sctlr = 0x00000078;
1750}
1751
1752static void pxa270b1_initfn(Object *obj)
1753{
1754    ARMCPU *cpu = ARM_CPU(obj);
1755
1756    cpu->dtb_compatible = "marvell,xscale";
1757    set_feature(&cpu->env, ARM_FEATURE_V5);
1758    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1759    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1760    cpu->midr = 0x69054113;
1761    cpu->ctr = 0xd172172;
1762    cpu->reset_sctlr = 0x00000078;
1763}
1764
1765static void pxa270c0_initfn(Object *obj)
1766{
1767    ARMCPU *cpu = ARM_CPU(obj);
1768
1769    cpu->dtb_compatible = "marvell,xscale";
1770    set_feature(&cpu->env, ARM_FEATURE_V5);
1771    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1772    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1773    cpu->midr = 0x69054114;
1774    cpu->ctr = 0xd172172;
1775    cpu->reset_sctlr = 0x00000078;
1776}
1777
1778static void pxa270c5_initfn(Object *obj)
1779{
1780    ARMCPU *cpu = ARM_CPU(obj);
1781
1782    cpu->dtb_compatible = "marvell,xscale";
1783    set_feature(&cpu->env, ARM_FEATURE_V5);
1784    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1785    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1786    cpu->midr = 0x69054117;
1787    cpu->ctr = 0xd172172;
1788    cpu->reset_sctlr = 0x00000078;
1789}
1790
1791#ifndef TARGET_AARCH64
1792/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1793 * otherwise, a CPU with as many features enabled as our emulation supports.
1794 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1795 * this only needs to handle 32 bits.
1796 */
1797static void arm_max_initfn(Object *obj)
1798{
1799    ARMCPU *cpu = ARM_CPU(obj);
1800
1801    if (kvm_enabled()) {
1802        kvm_arm_set_cpu_features_from_host(cpu);
1803    } else {
1804        cortex_a15_initfn(obj);
1805#ifdef CONFIG_USER_ONLY
1806        /* We don't set these in system emulation mode for the moment,
1807         * since we don't correctly set the ID registers to advertise them,
1808         */
1809        set_feature(&cpu->env, ARM_FEATURE_V8);
1810        set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1811        set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1812        set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1813        set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1814        set_feature(&cpu->env, ARM_FEATURE_CRC);
1815        set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1816        set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
1817        set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1818#endif
1819    }
1820}
1821#endif
1822
1823#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1824
1825typedef struct ARMCPUInfo {
1826    const char *name;
1827    void (*initfn)(Object *obj);
1828    void (*class_init)(ObjectClass *oc, void *data);
1829} ARMCPUInfo;
1830
1831static const ARMCPUInfo arm_cpus[] = {
1832#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1833    { .name = "arm926",      .initfn = arm926_initfn },
1834    { .name = "arm946",      .initfn = arm946_initfn },
1835    { .name = "arm1026",     .initfn = arm1026_initfn },
1836    /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1837     * older core than plain "arm1136". In particular this does not
1838     * have the v6K features.
1839     */
1840    { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1841    { .name = "arm1136",     .initfn = arm1136_initfn },
1842    { .name = "arm1176",     .initfn = arm1176_initfn },
1843    { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1844    { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1845                             .class_init = arm_v7m_class_init },
1846    { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1847                             .class_init = arm_v7m_class_init },
1848    { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1849                             .class_init = arm_v7m_class_init },
1850    { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1851    { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1852    { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1853    { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1854    { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1855    { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1856    { .name = "ti925t",      .initfn = ti925t_initfn },
1857    { .name = "sa1100",      .initfn = sa1100_initfn },
1858    { .name = "sa1110",      .initfn = sa1110_initfn },
1859    { .name = "pxa250",      .initfn = pxa250_initfn },
1860    { .name = "pxa255",      .initfn = pxa255_initfn },
1861    { .name = "pxa260",      .initfn = pxa260_initfn },
1862    { .name = "pxa261",      .initfn = pxa261_initfn },
1863    { .name = "pxa262",      .initfn = pxa262_initfn },
1864    /* "pxa270" is an alias for "pxa270-a0" */
1865    { .name = "pxa270",      .initfn = pxa270a0_initfn },
1866    { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1867    { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1868    { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1869    { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1870    { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1871    { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1872#ifndef TARGET_AARCH64
1873    { .name = "max",         .initfn = arm_max_initfn },
1874#endif
1875#ifdef CONFIG_USER_ONLY
1876    { .name = "any",         .initfn = arm_max_initfn },
1877#endif
1878#endif
1879    { .name = NULL }
1880};
1881
1882static Property arm_cpu_properties[] = {
1883    DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1884    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1885    DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1886    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1887                        mp_affinity, ARM64_AFFINITY_INVALID),
1888    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1889    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1890    DEFINE_PROP_END_OF_LIST()
1891};
1892
1893#ifdef CONFIG_USER_ONLY
1894static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1895                                    int rw, int mmu_idx)
1896{
1897    ARMCPU *cpu = ARM_CPU(cs);
1898    CPUARMState *env = &cpu->env;
1899
1900    env->exception.vaddress = address;
1901    if (rw == 2) {
1902        cs->exception_index = EXCP_PREFETCH_ABORT;
1903    } else {
1904        cs->exception_index = EXCP_DATA_ABORT;
1905    }
1906    return 1;
1907}
1908#endif
1909
1910static gchar *arm_gdb_arch_name(CPUState *cs)
1911{
1912    ARMCPU *cpu = ARM_CPU(cs);
1913    CPUARMState *env = &cpu->env;
1914
1915    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1916        return g_strdup("iwmmxt");
1917    }
1918    return g_strdup("arm");
1919}
1920
1921static void arm_cpu_class_init(ObjectClass *oc, void *data)
1922{
1923    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1924    CPUClass *cc = CPU_CLASS(acc);
1925    DeviceClass *dc = DEVICE_CLASS(oc);
1926
1927    device_class_set_parent_realize(dc, arm_cpu_realizefn,
1928                                    &acc->parent_realize);
1929    dc->props = arm_cpu_properties;
1930
1931    acc->parent_reset = cc->reset;
1932    cc->reset = arm_cpu_reset;
1933
1934    cc->class_by_name = arm_cpu_class_by_name;
1935    cc->has_work = arm_cpu_has_work;
1936    cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1937    cc->dump_state = arm_cpu_dump_state;
1938    cc->set_pc = arm_cpu_set_pc;
1939    cc->gdb_read_register = arm_cpu_gdb_read_register;
1940    cc->gdb_write_register = arm_cpu_gdb_write_register;
1941#ifdef CONFIG_USER_ONLY
1942    cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1943#else
1944    cc->do_interrupt = arm_cpu_do_interrupt;
1945    cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1946    cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1947    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1948    cc->asidx_from_attrs = arm_asidx_from_attrs;
1949    cc->vmsd = &vmstate_arm_cpu;
1950    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1951    cc->write_elf64_note = arm_cpu_write_elf64_note;
1952    cc->write_elf32_note = arm_cpu_write_elf32_note;
1953#endif
1954    cc->gdb_num_core_regs = 26;
1955    cc->gdb_core_xml_file = "arm-core.xml";
1956    cc->gdb_arch_name = arm_gdb_arch_name;
1957    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1958    cc->gdb_stop_before_watchpoint = true;
1959    cc->debug_excp_handler = arm_debug_excp_handler;
1960    cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1961#if !defined(CONFIG_USER_ONLY)
1962    cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1963#endif
1964
1965    cc->disas_set_info = arm_disas_set_info;
1966#ifdef CONFIG_TCG
1967    cc->tcg_initialize = arm_translate_init;
1968#endif
1969}
1970
1971#ifdef CONFIG_KVM
1972static void arm_host_initfn(Object *obj)
1973{
1974    ARMCPU *cpu = ARM_CPU(obj);
1975
1976    kvm_arm_set_cpu_features_from_host(cpu);
1977}
1978
1979static const TypeInfo host_arm_cpu_type_info = {
1980    .name = TYPE_ARM_HOST_CPU,
1981#ifdef TARGET_AARCH64
1982    .parent = TYPE_AARCH64_CPU,
1983#else
1984    .parent = TYPE_ARM_CPU,
1985#endif
1986    .instance_init = arm_host_initfn,
1987};
1988
1989#endif
1990
1991static void cpu_register(const ARMCPUInfo *info)
1992{
1993    TypeInfo type_info = {
1994        .parent = TYPE_ARM_CPU,
1995        .instance_size = sizeof(ARMCPU),
1996        .instance_init = info->initfn,
1997        .class_size = sizeof(ARMCPUClass),
1998        .class_init = info->class_init,
1999    };
2000
2001    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2002    type_register(&type_info);
2003    g_free((void *)type_info.name);
2004}
2005
2006static const TypeInfo arm_cpu_type_info = {
2007    .name = TYPE_ARM_CPU,
2008    .parent = TYPE_CPU,
2009    .instance_size = sizeof(ARMCPU),
2010    .instance_init = arm_cpu_initfn,
2011    .instance_post_init = arm_cpu_post_init,
2012    .instance_finalize = arm_cpu_finalizefn,
2013    .abstract = true,
2014    .class_size = sizeof(ARMCPUClass),
2015    .class_init = arm_cpu_class_init,
2016};
2017
2018static const TypeInfo idau_interface_type_info = {
2019    .name = TYPE_IDAU_INTERFACE,
2020    .parent = TYPE_INTERFACE,
2021    .class_size = sizeof(IDAUInterfaceClass),
2022};
2023
2024static void arm_cpu_register_types(void)
2025{
2026    const ARMCPUInfo *info = arm_cpus;
2027
2028    type_register_static(&arm_cpu_type_info);
2029    type_register_static(&idau_interface_type_info);
2030
2031    while (info->name) {
2032        cpu_register(info);
2033        info++;
2034    }
2035
2036#ifdef CONFIG_KVM
2037    type_register_static(&host_arm_cpu_type_info);
2038#endif
2039}
2040
2041type_init(arm_cpu_register_types)
2042