qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25
  26#if defined(TARGET_AARCH64)
  27  /* AArch64 definitions */
  28#  define TARGET_LONG_BITS 64
  29#else
  30#  define TARGET_LONG_BITS 32
  31#endif
  32
  33/* ARM processors have a weak memory model */
  34#define TCG_GUEST_DEFAULT_MO      (0)
  35
  36#define CPUArchState struct CPUARMState
  37
  38#include "qemu-common.h"
  39#include "cpu-qom.h"
  40#include "exec/cpu-defs.h"
  41
  42#define EXCP_UDEF            1   /* undefined instruction */
  43#define EXCP_SWI             2   /* software interrupt */
  44#define EXCP_PREFETCH_ABORT  3
  45#define EXCP_DATA_ABORT      4
  46#define EXCP_IRQ             5
  47#define EXCP_FIQ             6
  48#define EXCP_BKPT            7
  49#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  50#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  51#define EXCP_HVC            11   /* HyperVisor Call */
  52#define EXCP_HYP_TRAP       12
  53#define EXCP_SMC            13   /* Secure Monitor Call */
  54#define EXCP_VIRQ           14
  55#define EXCP_VFIQ           15
  56#define EXCP_SEMIHOST       16   /* semihosting call */
  57#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  58#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  59/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  60
  61#define ARMV7M_EXCP_RESET   1
  62#define ARMV7M_EXCP_NMI     2
  63#define ARMV7M_EXCP_HARD    3
  64#define ARMV7M_EXCP_MEM     4
  65#define ARMV7M_EXCP_BUS     5
  66#define ARMV7M_EXCP_USAGE   6
  67#define ARMV7M_EXCP_SECURE  7
  68#define ARMV7M_EXCP_SVC     11
  69#define ARMV7M_EXCP_DEBUG   12
  70#define ARMV7M_EXCP_PENDSV  14
  71#define ARMV7M_EXCP_SYSTICK 15
  72
  73/* For M profile, some registers are banked secure vs non-secure;
  74 * these are represented as a 2-element array where the first element
  75 * is the non-secure copy and the second is the secure copy.
  76 * When the CPU does not have implement the security extension then
  77 * only the first element is used.
  78 * This means that the copy for the current security state can be
  79 * accessed via env->registerfield[env->v7m.secure] (whether the security
  80 * extension is implemented or not).
  81 */
  82enum {
  83    M_REG_NS = 0,
  84    M_REG_S = 1,
  85    M_REG_NUM_BANKS = 2,
  86};
  87
  88/* ARM-specific interrupt pending bits.  */
  89#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  90#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  91#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  92
  93/* The usual mapping for an AArch64 system register to its AArch32
  94 * counterpart is for the 32 bit world to have access to the lower
  95 * half only (with writes leaving the upper half untouched). It's
  96 * therefore useful to be able to pass TCG the offset of the least
  97 * significant half of a uint64_t struct member.
  98 */
  99#ifdef HOST_WORDS_BIGENDIAN
 100#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 101#define offsetofhigh32(S, M) offsetof(S, M)
 102#else
 103#define offsetoflow32(S, M) offsetof(S, M)
 104#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 105#endif
 106
 107/* Meanings of the ARMCPU object's four inbound GPIO lines */
 108#define ARM_CPU_IRQ 0
 109#define ARM_CPU_FIQ 1
 110#define ARM_CPU_VIRQ 2
 111#define ARM_CPU_VFIQ 3
 112
 113#define NB_MMU_MODES 8
 114/* ARM-specific extra insn start words:
 115 * 1: Conditional execution bits
 116 * 2: Partial exception syndrome for data aborts
 117 */
 118#define TARGET_INSN_START_EXTRA_WORDS 2
 119
 120/* The 2nd extra word holding syndrome info for data aborts does not use
 121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 122 * help the sleb128 encoder do a better job.
 123 * When restoring the CPU state, we shift it back up.
 124 */
 125#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 126#define ARM_INSN_START_WORD2_SHIFT 14
 127
 128/* We currently assume float and double are IEEE single and double
 129   precision respectively.
 130   Doing runtime conversions is tricky because VFP registers may contain
 131   integer values (eg. as the result of a FTOSI instruction).
 132   s<2n> maps to the least significant half of d<n>
 133   s<2n+1> maps to the most significant half of d<n>
 134 */
 135
 136/**
 137 * DynamicGDBXMLInfo:
 138 * @desc: Contains the XML descriptions.
 139 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
 140 * @cpregs_keys: Array that contains the corresponding Key of
 141 * a given cpreg with the same order of the cpreg in the XML description.
 142 */
 143typedef struct DynamicGDBXMLInfo {
 144    char *desc;
 145    int num_cpregs;
 146    uint32_t *cpregs_keys;
 147} DynamicGDBXMLInfo;
 148
 149/* CPU state for each instance of a generic timer (in cp15 c14) */
 150typedef struct ARMGenericTimer {
 151    uint64_t cval; /* Timer CompareValue register */
 152    uint64_t ctl; /* Timer Control register */
 153} ARMGenericTimer;
 154
 155#define GTIMER_PHYS 0
 156#define GTIMER_VIRT 1
 157#define GTIMER_HYP  2
 158#define GTIMER_SEC  3
 159#define NUM_GTIMERS 4
 160
 161typedef struct {
 162    uint64_t raw_tcr;
 163    uint32_t mask;
 164    uint32_t base_mask;
 165} TCR;
 166
 167/* Define a maximum sized vector register.
 168 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 169 * For 64-bit, this is a 2048-bit SVE register.
 170 *
 171 * Note that the mapping between S, D, and Q views of the register bank
 172 * differs between AArch64 and AArch32.
 173 * In AArch32:
 174 *  Qn = regs[n].d[1]:regs[n].d[0]
 175 *  Dn = regs[n / 2].d[n & 1]
 176 *  Sn = regs[n / 4].d[n % 4 / 2],
 177 *       bits 31..0 for even n, and bits 63..32 for odd n
 178 *       (and regs[16] to regs[31] are inaccessible)
 179 * In AArch64:
 180 *  Zn = regs[n].d[*]
 181 *  Qn = regs[n].d[1]:regs[n].d[0]
 182 *  Dn = regs[n].d[0]
 183 *  Sn = regs[n].d[0] bits 31..0
 184 *  Hn = regs[n].d[0] bits 15..0
 185 *
 186 * This corresponds to the architecturally defined mapping between
 187 * the two execution states, and means we do not need to explicitly
 188 * map these registers when changing states.
 189 *
 190 * Align the data for use with TCG host vector operations.
 191 */
 192
 193#ifdef TARGET_AARCH64
 194# define ARM_MAX_VQ    16
 195#else
 196# define ARM_MAX_VQ    1
 197#endif
 198
 199typedef struct ARMVectorReg {
 200    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 201} ARMVectorReg;
 202
 203/* In AArch32 mode, predicate registers do not exist at all.  */
 204#ifdef TARGET_AARCH64
 205typedef struct ARMPredicateReg {
 206    uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
 207} ARMPredicateReg;
 208#endif
 209
 210
 211typedef struct CPUARMState {
 212    /* Regs for current mode.  */
 213    uint32_t regs[16];
 214
 215    /* 32/64 switch only happens when taking and returning from
 216     * exceptions so the overlap semantics are taken care of then
 217     * instead of having a complicated union.
 218     */
 219    /* Regs for A64 mode.  */
 220    uint64_t xregs[32];
 221    uint64_t pc;
 222    /* PSTATE isn't an architectural register for ARMv8. However, it is
 223     * convenient for us to assemble the underlying state into a 32 bit format
 224     * identical to the architectural format used for the SPSR. (This is also
 225     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 226     * 'pstate' register are.) Of the PSTATE bits:
 227     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 228     *    semantics as for AArch32, as described in the comments on each field)
 229     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 230     *  DAIF (exception masks) are kept in env->daif
 231     *  all other bits are stored in their correct places in env->pstate
 232     */
 233    uint32_t pstate;
 234    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 235
 236    /* Frequently accessed CPSR bits are stored separately for efficiency.
 237       This contains all the other bits.  Use cpsr_{read,write} to access
 238       the whole CPSR.  */
 239    uint32_t uncached_cpsr;
 240    uint32_t spsr;
 241
 242    /* Banked registers.  */
 243    uint64_t banked_spsr[8];
 244    uint32_t banked_r13[8];
 245    uint32_t banked_r14[8];
 246
 247    /* These hold r8-r12.  */
 248    uint32_t usr_regs[5];
 249    uint32_t fiq_regs[5];
 250
 251    /* cpsr flag cache for faster execution */
 252    uint32_t CF; /* 0 or 1 */
 253    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 254    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 255    uint32_t ZF; /* Z set if zero.  */
 256    uint32_t QF; /* 0 or 1 */
 257    uint32_t GE; /* cpsr[19:16] */
 258    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 259    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 260    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 261
 262    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 263    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 264
 265    /* System control coprocessor (cp15) */
 266    struct {
 267        uint32_t c0_cpuid;
 268        union { /* Cache size selection */
 269            struct {
 270                uint64_t _unused_csselr0;
 271                uint64_t csselr_ns;
 272                uint64_t _unused_csselr1;
 273                uint64_t csselr_s;
 274            };
 275            uint64_t csselr_el[4];
 276        };
 277        union { /* System control register. */
 278            struct {
 279                uint64_t _unused_sctlr;
 280                uint64_t sctlr_ns;
 281                uint64_t hsctlr;
 282                uint64_t sctlr_s;
 283            };
 284            uint64_t sctlr_el[4];
 285        };
 286        uint64_t cpacr_el1; /* Architectural feature access control register */
 287        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 288        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 289        uint64_t sder; /* Secure debug enable register. */
 290        uint32_t nsacr; /* Non-secure access control register. */
 291        union { /* MMU translation table base 0. */
 292            struct {
 293                uint64_t _unused_ttbr0_0;
 294                uint64_t ttbr0_ns;
 295                uint64_t _unused_ttbr0_1;
 296                uint64_t ttbr0_s;
 297            };
 298            uint64_t ttbr0_el[4];
 299        };
 300        union { /* MMU translation table base 1. */
 301            struct {
 302                uint64_t _unused_ttbr1_0;
 303                uint64_t ttbr1_ns;
 304                uint64_t _unused_ttbr1_1;
 305                uint64_t ttbr1_s;
 306            };
 307            uint64_t ttbr1_el[4];
 308        };
 309        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 310        /* MMU translation table base control. */
 311        TCR tcr_el[4];
 312        TCR vtcr_el2; /* Virtualization Translation Control.  */
 313        uint32_t c2_data; /* MPU data cacheable bits.  */
 314        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 315        union { /* MMU domain access control register
 316                 * MPU write buffer control.
 317                 */
 318            struct {
 319                uint64_t dacr_ns;
 320                uint64_t dacr_s;
 321            };
 322            struct {
 323                uint64_t dacr32_el2;
 324            };
 325        };
 326        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 327        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 328        uint64_t hcr_el2; /* Hypervisor configuration register */
 329        uint64_t scr_el3; /* Secure configuration register.  */
 330        union { /* Fault status registers.  */
 331            struct {
 332                uint64_t ifsr_ns;
 333                uint64_t ifsr_s;
 334            };
 335            struct {
 336                uint64_t ifsr32_el2;
 337            };
 338        };
 339        union {
 340            struct {
 341                uint64_t _unused_dfsr;
 342                uint64_t dfsr_ns;
 343                uint64_t hsr;
 344                uint64_t dfsr_s;
 345            };
 346            uint64_t esr_el[4];
 347        };
 348        uint32_t c6_region[8]; /* MPU base/size registers.  */
 349        union { /* Fault address registers. */
 350            struct {
 351                uint64_t _unused_far0;
 352#ifdef HOST_WORDS_BIGENDIAN
 353                uint32_t ifar_ns;
 354                uint32_t dfar_ns;
 355                uint32_t ifar_s;
 356                uint32_t dfar_s;
 357#else
 358                uint32_t dfar_ns;
 359                uint32_t ifar_ns;
 360                uint32_t dfar_s;
 361                uint32_t ifar_s;
 362#endif
 363                uint64_t _unused_far3;
 364            };
 365            uint64_t far_el[4];
 366        };
 367        uint64_t hpfar_el2;
 368        uint64_t hstr_el2;
 369        union { /* Translation result. */
 370            struct {
 371                uint64_t _unused_par_0;
 372                uint64_t par_ns;
 373                uint64_t _unused_par_1;
 374                uint64_t par_s;
 375            };
 376            uint64_t par_el[4];
 377        };
 378
 379        uint32_t c9_insn; /* Cache lockdown registers.  */
 380        uint32_t c9_data;
 381        uint64_t c9_pmcr; /* performance monitor control register */
 382        uint64_t c9_pmcnten; /* perf monitor counter enables */
 383        uint64_t c9_pmovsr; /* perf monitor overflow status */
 384        uint64_t c9_pmuserenr; /* perf monitor user enable */
 385        uint64_t c9_pmselr; /* perf monitor counter selection register */
 386        uint64_t c9_pminten; /* perf monitor interrupt enables */
 387        union { /* Memory attribute redirection */
 388            struct {
 389#ifdef HOST_WORDS_BIGENDIAN
 390                uint64_t _unused_mair_0;
 391                uint32_t mair1_ns;
 392                uint32_t mair0_ns;
 393                uint64_t _unused_mair_1;
 394                uint32_t mair1_s;
 395                uint32_t mair0_s;
 396#else
 397                uint64_t _unused_mair_0;
 398                uint32_t mair0_ns;
 399                uint32_t mair1_ns;
 400                uint64_t _unused_mair_1;
 401                uint32_t mair0_s;
 402                uint32_t mair1_s;
 403#endif
 404            };
 405            uint64_t mair_el[4];
 406        };
 407        union { /* vector base address register */
 408            struct {
 409                uint64_t _unused_vbar;
 410                uint64_t vbar_ns;
 411                uint64_t hvbar;
 412                uint64_t vbar_s;
 413            };
 414            uint64_t vbar_el[4];
 415        };
 416        uint32_t mvbar; /* (monitor) vector base address register */
 417        struct { /* FCSE PID. */
 418            uint32_t fcseidr_ns;
 419            uint32_t fcseidr_s;
 420        };
 421        union { /* Context ID. */
 422            struct {
 423                uint64_t _unused_contextidr_0;
 424                uint64_t contextidr_ns;
 425                uint64_t _unused_contextidr_1;
 426                uint64_t contextidr_s;
 427            };
 428            uint64_t contextidr_el[4];
 429        };
 430        union { /* User RW Thread register. */
 431            struct {
 432                uint64_t tpidrurw_ns;
 433                uint64_t tpidrprw_ns;
 434                uint64_t htpidr;
 435                uint64_t _tpidr_el3;
 436            };
 437            uint64_t tpidr_el[4];
 438        };
 439        /* The secure banks of these registers don't map anywhere */
 440        uint64_t tpidrurw_s;
 441        uint64_t tpidrprw_s;
 442        uint64_t tpidruro_s;
 443
 444        union { /* User RO Thread register. */
 445            uint64_t tpidruro_ns;
 446            uint64_t tpidrro_el[1];
 447        };
 448        uint64_t c14_cntfrq; /* Counter Frequency register */
 449        uint64_t c14_cntkctl; /* Timer Control register */
 450        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 451        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 452        ARMGenericTimer c14_timer[NUM_GTIMERS];
 453        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 454        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 455        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 456        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 457        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 458        uint32_t c15_config_base_address; /* SCU base address.  */
 459        uint32_t c15_diagnostic; /* diagnostic register */
 460        uint32_t c15_power_diagnostic;
 461        uint32_t c15_power_control; /* power control */
 462        uint64_t dbgbvr[16]; /* breakpoint value registers */
 463        uint64_t dbgbcr[16]; /* breakpoint control registers */
 464        uint64_t dbgwvr[16]; /* watchpoint value registers */
 465        uint64_t dbgwcr[16]; /* watchpoint control registers */
 466        uint64_t mdscr_el1;
 467        uint64_t oslsr_el1; /* OS Lock Status */
 468        uint64_t mdcr_el2;
 469        uint64_t mdcr_el3;
 470        /* If the counter is enabled, this stores the last time the counter
 471         * was reset. Otherwise it stores the counter value
 472         */
 473        uint64_t c15_ccnt;
 474        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 475        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 476        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 477    } cp15;
 478
 479    struct {
 480        /* M profile has up to 4 stack pointers:
 481         * a Main Stack Pointer and a Process Stack Pointer for each
 482         * of the Secure and Non-Secure states. (If the CPU doesn't support
 483         * the security extension then it has only two SPs.)
 484         * In QEMU we always store the currently active SP in regs[13],
 485         * and the non-active SP for the current security state in
 486         * v7m.other_sp. The stack pointers for the inactive security state
 487         * are stored in other_ss_msp and other_ss_psp.
 488         * switch_v7m_security_state() is responsible for rearranging them
 489         * when we change security state.
 490         */
 491        uint32_t other_sp;
 492        uint32_t other_ss_msp;
 493        uint32_t other_ss_psp;
 494        uint32_t vecbase[M_REG_NUM_BANKS];
 495        uint32_t basepri[M_REG_NUM_BANKS];
 496        uint32_t control[M_REG_NUM_BANKS];
 497        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 498        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 499        uint32_t hfsr; /* HardFault Status */
 500        uint32_t dfsr; /* Debug Fault Status Register */
 501        uint32_t sfsr; /* Secure Fault Status Register */
 502        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 503        uint32_t bfar; /* BusFault Address */
 504        uint32_t sfar; /* Secure Fault Address Register */
 505        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 506        int exception;
 507        uint32_t primask[M_REG_NUM_BANKS];
 508        uint32_t faultmask[M_REG_NUM_BANKS];
 509        uint32_t aircr; /* only holds r/w state if security extn implemented */
 510        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 511        uint32_t csselr[M_REG_NUM_BANKS];
 512        uint32_t scr[M_REG_NUM_BANKS];
 513        uint32_t msplim[M_REG_NUM_BANKS];
 514        uint32_t psplim[M_REG_NUM_BANKS];
 515    } v7m;
 516
 517    /* Information associated with an exception about to be taken:
 518     * code which raises an exception must set cs->exception_index and
 519     * the relevant parts of this structure; the cpu_do_interrupt function
 520     * will then set the guest-visible registers as part of the exception
 521     * entry process.
 522     */
 523    struct {
 524        uint32_t syndrome; /* AArch64 format syndrome register */
 525        uint32_t fsr; /* AArch32 format fault status register info */
 526        uint64_t vaddress; /* virtual addr associated with exception, if any */
 527        uint32_t target_el; /* EL the exception should be targeted for */
 528        /* If we implement EL2 we will also need to store information
 529         * about the intermediate physical address for stage 2 faults.
 530         */
 531    } exception;
 532
 533    /* Thumb-2 EE state.  */
 534    uint32_t teecr;
 535    uint32_t teehbr;
 536
 537    /* VFP coprocessor state.  */
 538    struct {
 539        ARMVectorReg zregs[32];
 540
 541#ifdef TARGET_AARCH64
 542        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 543#define FFR_PRED_NUM 16
 544        ARMPredicateReg pregs[17];
 545        /* Scratch space for aa64 sve predicate temporary.  */
 546        ARMPredicateReg preg_tmp;
 547#endif
 548
 549        uint32_t xregs[16];
 550        /* We store these fpcsr fields separately for convenience.  */
 551        int vec_len;
 552        int vec_stride;
 553
 554        /* Scratch space for aa32 neon expansion.  */
 555        uint32_t scratch[8];
 556
 557        /* There are a number of distinct float control structures:
 558         *
 559         *  fp_status: is the "normal" fp status.
 560         *  fp_status_fp16: used for half-precision calculations
 561         *  standard_fp_status : the ARM "Standard FPSCR Value"
 562         *
 563         * Half-precision operations are governed by a separate
 564         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 565         * status structure to control this.
 566         *
 567         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 568         * round-to-nearest and is used by any operations (generally
 569         * Neon) which the architecture defines as controlled by the
 570         * standard FPSCR value rather than the FPSCR.
 571         *
 572         * To avoid having to transfer exception bits around, we simply
 573         * say that the FPSCR cumulative exception flags are the logical
 574         * OR of the flags in the three fp statuses. This relies on the
 575         * only thing which needs to read the exception flags being
 576         * an explicit FPSCR read.
 577         */
 578        float_status fp_status;
 579        float_status fp_status_f16;
 580        float_status standard_fp_status;
 581
 582        /* ZCR_EL[1-3] */
 583        uint64_t zcr_el[4];
 584    } vfp;
 585    uint64_t exclusive_addr;
 586    uint64_t exclusive_val;
 587    uint64_t exclusive_high;
 588
 589    /* iwMMXt coprocessor state.  */
 590    struct {
 591        uint64_t regs[16];
 592        uint64_t val;
 593
 594        uint32_t cregs[16];
 595    } iwmmxt;
 596
 597#if defined(CONFIG_USER_ONLY)
 598    /* For usermode syscall translation.  */
 599    int eabi;
 600#endif
 601
 602    struct CPUBreakpoint *cpu_breakpoint[16];
 603    struct CPUWatchpoint *cpu_watchpoint[16];
 604
 605    /* Fields up to this point are cleared by a CPU reset */
 606    struct {} end_reset_fields;
 607
 608    CPU_COMMON
 609
 610    /* Fields after CPU_COMMON are preserved across CPU reset. */
 611
 612    /* Internal CPU feature flags.  */
 613    uint64_t features;
 614
 615    /* PMSAv7 MPU */
 616    struct {
 617        uint32_t *drbar;
 618        uint32_t *drsr;
 619        uint32_t *dracr;
 620        uint32_t rnr[M_REG_NUM_BANKS];
 621    } pmsav7;
 622
 623    /* PMSAv8 MPU */
 624    struct {
 625        /* The PMSAv8 implementation also shares some PMSAv7 config
 626         * and state:
 627         *  pmsav7.rnr (region number register)
 628         *  pmsav7_dregion (number of configured regions)
 629         */
 630        uint32_t *rbar[M_REG_NUM_BANKS];
 631        uint32_t *rlar[M_REG_NUM_BANKS];
 632        uint32_t mair0[M_REG_NUM_BANKS];
 633        uint32_t mair1[M_REG_NUM_BANKS];
 634    } pmsav8;
 635
 636    /* v8M SAU */
 637    struct {
 638        uint32_t *rbar;
 639        uint32_t *rlar;
 640        uint32_t rnr;
 641        uint32_t ctrl;
 642    } sau;
 643
 644    void *nvic;
 645    const struct arm_boot_info *boot_info;
 646    /* Store GICv3CPUState to access from this struct */
 647    void *gicv3state;
 648} CPUARMState;
 649
 650/**
 651 * ARMELChangeHookFn:
 652 * type of a function which can be registered via arm_register_el_change_hook()
 653 * to get callbacks when the CPU changes its exception level or mode.
 654 */
 655typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 656typedef struct ARMELChangeHook ARMELChangeHook;
 657struct ARMELChangeHook {
 658    ARMELChangeHookFn *hook;
 659    void *opaque;
 660    QLIST_ENTRY(ARMELChangeHook) node;
 661};
 662
 663/* These values map onto the return values for
 664 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 665typedef enum ARMPSCIState {
 666    PSCI_ON = 0,
 667    PSCI_OFF = 1,
 668    PSCI_ON_PENDING = 2
 669} ARMPSCIState;
 670
 671/**
 672 * ARMCPU:
 673 * @env: #CPUARMState
 674 *
 675 * An ARM CPU core.
 676 */
 677struct ARMCPU {
 678    /*< private >*/
 679    CPUState parent_obj;
 680    /*< public >*/
 681
 682    CPUARMState env;
 683
 684    /* Coprocessor information */
 685    GHashTable *cp_regs;
 686    /* For marshalling (mostly coprocessor) register state between the
 687     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 688     * we use these arrays.
 689     */
 690    /* List of register indexes managed via these arrays; (full KVM style
 691     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 692     */
 693    uint64_t *cpreg_indexes;
 694    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 695    uint64_t *cpreg_values;
 696    /* Length of the indexes, values, reset_values arrays */
 697    int32_t cpreg_array_len;
 698    /* These are used only for migration: incoming data arrives in
 699     * these fields and is sanity checked in post_load before copying
 700     * to the working data structures above.
 701     */
 702    uint64_t *cpreg_vmstate_indexes;
 703    uint64_t *cpreg_vmstate_values;
 704    int32_t cpreg_vmstate_array_len;
 705
 706    DynamicGDBXMLInfo dyn_xml;
 707
 708    /* Timers used by the generic (architected) timer */
 709    QEMUTimer *gt_timer[NUM_GTIMERS];
 710    /* GPIO outputs for generic timer */
 711    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 712    /* GPIO output for GICv3 maintenance interrupt signal */
 713    qemu_irq gicv3_maintenance_interrupt;
 714    /* GPIO output for the PMU interrupt */
 715    qemu_irq pmu_interrupt;
 716
 717    /* MemoryRegion to use for secure physical accesses */
 718    MemoryRegion *secure_memory;
 719
 720    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 721    Object *idau;
 722
 723    /* 'compatible' string for this CPU for Linux device trees */
 724    const char *dtb_compatible;
 725
 726    /* PSCI version for this CPU
 727     * Bits[31:16] = Major Version
 728     * Bits[15:0] = Minor Version
 729     */
 730    uint32_t psci_version;
 731
 732    /* Should CPU start in PSCI powered-off state? */
 733    bool start_powered_off;
 734
 735    /* Current power state, access guarded by BQL */
 736    ARMPSCIState power_state;
 737
 738    /* CPU has virtualization extension */
 739    bool has_el2;
 740    /* CPU has security extension */
 741    bool has_el3;
 742    /* CPU has PMU (Performance Monitor Unit) */
 743    bool has_pmu;
 744
 745    /* CPU has memory protection unit */
 746    bool has_mpu;
 747    /* PMSAv7 MPU number of supported regions */
 748    uint32_t pmsav7_dregion;
 749    /* v8M SAU number of supported regions */
 750    uint32_t sau_sregion;
 751
 752    /* PSCI conduit used to invoke PSCI methods
 753     * 0 - disabled, 1 - smc, 2 - hvc
 754     */
 755    uint32_t psci_conduit;
 756
 757    /* For v8M, initial value of the Secure VTOR */
 758    uint32_t init_svtor;
 759
 760    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 761     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 762     */
 763    uint32_t kvm_target;
 764
 765    /* KVM init features for this CPU */
 766    uint32_t kvm_init_features[7];
 767
 768    /* Uniprocessor system with MP extensions */
 769    bool mp_is_up;
 770
 771    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 772     * and the probe failed (so we need to report the error in realize)
 773     */
 774    bool host_cpu_probe_failed;
 775
 776    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 777     * register.
 778     */
 779    int32_t core_count;
 780
 781    /* The instance init functions for implementation-specific subclasses
 782     * set these fields to specify the implementation-dependent values of
 783     * various constant registers and reset values of non-constant
 784     * registers.
 785     * Some of these might become QOM properties eventually.
 786     * Field names match the official register names as defined in the
 787     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 788     * is used for reset values of non-constant registers; no reset_
 789     * prefix means a constant register.
 790     */
 791    uint32_t midr;
 792    uint32_t revidr;
 793    uint32_t reset_fpsid;
 794    uint32_t mvfr0;
 795    uint32_t mvfr1;
 796    uint32_t mvfr2;
 797    uint32_t ctr;
 798    uint32_t reset_sctlr;
 799    uint32_t id_pfr0;
 800    uint32_t id_pfr1;
 801    uint32_t id_dfr0;
 802    uint32_t pmceid0;
 803    uint32_t pmceid1;
 804    uint32_t id_afr0;
 805    uint32_t id_mmfr0;
 806    uint32_t id_mmfr1;
 807    uint32_t id_mmfr2;
 808    uint32_t id_mmfr3;
 809    uint32_t id_mmfr4;
 810    uint32_t id_isar0;
 811    uint32_t id_isar1;
 812    uint32_t id_isar2;
 813    uint32_t id_isar3;
 814    uint32_t id_isar4;
 815    uint32_t id_isar5;
 816    uint32_t id_isar6;
 817    uint64_t id_aa64pfr0;
 818    uint64_t id_aa64pfr1;
 819    uint64_t id_aa64dfr0;
 820    uint64_t id_aa64dfr1;
 821    uint64_t id_aa64afr0;
 822    uint64_t id_aa64afr1;
 823    uint64_t id_aa64isar0;
 824    uint64_t id_aa64isar1;
 825    uint64_t id_aa64mmfr0;
 826    uint64_t id_aa64mmfr1;
 827    uint32_t dbgdidr;
 828    uint32_t clidr;
 829    uint64_t mp_affinity; /* MP ID without feature bits */
 830    /* The elements of this array are the CCSIDR values for each cache,
 831     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 832     */
 833    uint32_t ccsidr[16];
 834    uint64_t reset_cbar;
 835    uint32_t reset_auxcr;
 836    bool reset_hivecs;
 837    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 838    uint32_t dcz_blocksize;
 839    uint64_t rvbar;
 840
 841    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 842    int gic_num_lrs; /* number of list registers */
 843    int gic_vpribits; /* number of virtual priority bits */
 844    int gic_vprebits; /* number of virtual preemption bits */
 845
 846    /* Whether the cfgend input is high (i.e. this CPU should reset into
 847     * big-endian mode).  This setting isn't used directly: instead it modifies
 848     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 849     * architecture version.
 850     */
 851    bool cfgend;
 852
 853    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 854    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
 855
 856    int32_t node_id; /* NUMA node this CPU belongs to */
 857
 858    /* Used to synchronize KVM and QEMU in-kernel device levels */
 859    uint8_t device_irq_level;
 860};
 861
 862static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
 863{
 864    return container_of(env, ARMCPU, env);
 865}
 866
 867uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
 868
 869#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
 870
 871#define ENV_OFFSET offsetof(ARMCPU, env)
 872
 873#ifndef CONFIG_USER_ONLY
 874extern const struct VMStateDescription vmstate_arm_cpu;
 875#endif
 876
 877void arm_cpu_do_interrupt(CPUState *cpu);
 878void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 879bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 880
 881void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 882                        int flags);
 883
 884hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 885                                         MemTxAttrs *attrs);
 886
 887int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 888int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 889
 890/* Dynamically generates for gdb stub an XML description of the sysregs from
 891 * the cp_regs hashtable. Returns the registered sysregs number.
 892 */
 893int arm_gen_dynamic_xml(CPUState *cpu);
 894
 895/* Returns the dynamically generated XML for the gdb stub.
 896 * Returns a pointer to the XML contents for the specified XML file or NULL
 897 * if the XML name doesn't match the predefined one.
 898 */
 899const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
 900
 901int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 902                             int cpuid, void *opaque);
 903int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 904                             int cpuid, void *opaque);
 905
 906#ifdef TARGET_AARCH64
 907int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 908int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 909void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
 910#endif
 911
 912target_ulong do_arm_semihosting(CPUARMState *env);
 913void aarch64_sync_32_to_64(CPUARMState *env);
 914void aarch64_sync_64_to_32(CPUARMState *env);
 915
 916static inline bool is_a64(CPUARMState *env)
 917{
 918    return env->aarch64;
 919}
 920
 921/* you can call this signal handler from your SIGBUS and SIGSEGV
 922   signal handlers to inform the virtual CPU of exceptions. non zero
 923   is returned if the signal was handled by the virtual CPU.  */
 924int cpu_arm_signal_handler(int host_signum, void *pinfo,
 925                           void *puc);
 926
 927/**
 928 * pmccntr_sync
 929 * @env: CPUARMState
 930 *
 931 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 932 * once before any action that might affect the timer and again afterwards.
 933 * The function is used to swap the state of the register if required.
 934 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 935 */
 936void pmccntr_sync(CPUARMState *env);
 937
 938/* SCTLR bit meanings. Several bits have been reused in newer
 939 * versions of the architecture; in that case we define constants
 940 * for both old and new bit meanings. Code which tests against those
 941 * bits should probably check or otherwise arrange that the CPU
 942 * is the architectural version it expects.
 943 */
 944#define SCTLR_M       (1U << 0)
 945#define SCTLR_A       (1U << 1)
 946#define SCTLR_C       (1U << 2)
 947#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 948#define SCTLR_SA      (1U << 3)
 949#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 950#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 951#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 952#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 953#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 954#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 955#define SCTLR_ITD     (1U << 7) /* v8 onward */
 956#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 957#define SCTLR_SED     (1U << 8) /* v8 onward */
 958#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 959#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 960#define SCTLR_F       (1U << 10) /* up to v6 */
 961#define SCTLR_SW      (1U << 10) /* v7 onward */
 962#define SCTLR_Z       (1U << 11)
 963#define SCTLR_I       (1U << 12)
 964#define SCTLR_V       (1U << 13)
 965#define SCTLR_RR      (1U << 14) /* up to v7 */
 966#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 967#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 968#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 969#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 970#define SCTLR_nTWI    (1U << 16) /* v8 onward */
 971#define SCTLR_HA      (1U << 17)
 972#define SCTLR_BR      (1U << 17) /* PMSA only */
 973#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 974#define SCTLR_nTWE    (1U << 18) /* v8 onward */
 975#define SCTLR_WXN     (1U << 19)
 976#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 977#define SCTLR_UWXN    (1U << 20) /* v7 onward */
 978#define SCTLR_FI      (1U << 21)
 979#define SCTLR_U       (1U << 22)
 980#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 981#define SCTLR_VE      (1U << 24) /* up to v7 */
 982#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 983#define SCTLR_EE      (1U << 25)
 984#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 985#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 986#define SCTLR_NMFI    (1U << 27)
 987#define SCTLR_TRE     (1U << 28)
 988#define SCTLR_AFE     (1U << 29)
 989#define SCTLR_TE      (1U << 30)
 990
 991#define CPTR_TCPAC    (1U << 31)
 992#define CPTR_TTA      (1U << 20)
 993#define CPTR_TFP      (1U << 10)
 994#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
 995#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
 996
 997#define MDCR_EPMAD    (1U << 21)
 998#define MDCR_EDAD     (1U << 20)
 999#define MDCR_SPME     (1U << 17)
1000#define MDCR_SDD      (1U << 16)
1001#define MDCR_SPD      (3U << 14)
1002#define MDCR_TDRA     (1U << 11)
1003#define MDCR_TDOSA    (1U << 10)
1004#define MDCR_TDA      (1U << 9)
1005#define MDCR_TDE      (1U << 8)
1006#define MDCR_HPME     (1U << 7)
1007#define MDCR_TPM      (1U << 6)
1008#define MDCR_TPMCR    (1U << 5)
1009
1010/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1011#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1012
1013#define CPSR_M (0x1fU)
1014#define CPSR_T (1U << 5)
1015#define CPSR_F (1U << 6)
1016#define CPSR_I (1U << 7)
1017#define CPSR_A (1U << 8)
1018#define CPSR_E (1U << 9)
1019#define CPSR_IT_2_7 (0xfc00U)
1020#define CPSR_GE (0xfU << 16)
1021#define CPSR_IL (1U << 20)
1022/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1023 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1024 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1025 * where it is live state but not accessible to the AArch32 code.
1026 */
1027#define CPSR_RESERVED (0x7U << 21)
1028#define CPSR_J (1U << 24)
1029#define CPSR_IT_0_1 (3U << 25)
1030#define CPSR_Q (1U << 27)
1031#define CPSR_V (1U << 28)
1032#define CPSR_C (1U << 29)
1033#define CPSR_Z (1U << 30)
1034#define CPSR_N (1U << 31)
1035#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1036#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1037
1038#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1039#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1040    | CPSR_NZCV)
1041/* Bits writable in user mode.  */
1042#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1043/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1044#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1045/* Mask of bits which may be set by exception return copying them from SPSR */
1046#define CPSR_ERET_MASK (~CPSR_RESERVED)
1047
1048/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1049#define XPSR_EXCP 0x1ffU
1050#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1051#define XPSR_IT_2_7 CPSR_IT_2_7
1052#define XPSR_GE CPSR_GE
1053#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1054#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1055#define XPSR_IT_0_1 CPSR_IT_0_1
1056#define XPSR_Q CPSR_Q
1057#define XPSR_V CPSR_V
1058#define XPSR_C CPSR_C
1059#define XPSR_Z CPSR_Z
1060#define XPSR_N CPSR_N
1061#define XPSR_NZCV CPSR_NZCV
1062#define XPSR_IT CPSR_IT
1063
1064#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1065#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1066#define TTBCR_PD0    (1U << 4)
1067#define TTBCR_PD1    (1U << 5)
1068#define TTBCR_EPD0   (1U << 7)
1069#define TTBCR_IRGN0  (3U << 8)
1070#define TTBCR_ORGN0  (3U << 10)
1071#define TTBCR_SH0    (3U << 12)
1072#define TTBCR_T1SZ   (3U << 16)
1073#define TTBCR_A1     (1U << 22)
1074#define TTBCR_EPD1   (1U << 23)
1075#define TTBCR_IRGN1  (3U << 24)
1076#define TTBCR_ORGN1  (3U << 26)
1077#define TTBCR_SH1    (1U << 28)
1078#define TTBCR_EAE    (1U << 31)
1079
1080/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1081 * Only these are valid when in AArch64 mode; in
1082 * AArch32 mode SPSRs are basically CPSR-format.
1083 */
1084#define PSTATE_SP (1U)
1085#define PSTATE_M (0xFU)
1086#define PSTATE_nRW (1U << 4)
1087#define PSTATE_F (1U << 6)
1088#define PSTATE_I (1U << 7)
1089#define PSTATE_A (1U << 8)
1090#define PSTATE_D (1U << 9)
1091#define PSTATE_IL (1U << 20)
1092#define PSTATE_SS (1U << 21)
1093#define PSTATE_V (1U << 28)
1094#define PSTATE_C (1U << 29)
1095#define PSTATE_Z (1U << 30)
1096#define PSTATE_N (1U << 31)
1097#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1098#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1099#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1100/* Mode values for AArch64 */
1101#define PSTATE_MODE_EL3h 13
1102#define PSTATE_MODE_EL3t 12
1103#define PSTATE_MODE_EL2h 9
1104#define PSTATE_MODE_EL2t 8
1105#define PSTATE_MODE_EL1h 5
1106#define PSTATE_MODE_EL1t 4
1107#define PSTATE_MODE_EL0t 0
1108
1109/* Write a new value to v7m.exception, thus transitioning into or out
1110 * of Handler mode; this may result in a change of active stack pointer.
1111 */
1112void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1113
1114/* Map EL and handler into a PSTATE_MODE.  */
1115static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1116{
1117    return (el << 2) | handler;
1118}
1119
1120/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1121 * interprocessing, so we don't attempt to sync with the cpsr state used by
1122 * the 32 bit decoder.
1123 */
1124static inline uint32_t pstate_read(CPUARMState *env)
1125{
1126    int ZF;
1127
1128    ZF = (env->ZF == 0);
1129    return (env->NF & 0x80000000) | (ZF << 30)
1130        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1131        | env->pstate | env->daif;
1132}
1133
1134static inline void pstate_write(CPUARMState *env, uint32_t val)
1135{
1136    env->ZF = (~val) & PSTATE_Z;
1137    env->NF = val;
1138    env->CF = (val >> 29) & 1;
1139    env->VF = (val << 3) & 0x80000000;
1140    env->daif = val & PSTATE_DAIF;
1141    env->pstate = val & ~CACHED_PSTATE_BITS;
1142}
1143
1144/* Return the current CPSR value.  */
1145uint32_t cpsr_read(CPUARMState *env);
1146
1147typedef enum CPSRWriteType {
1148    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1149    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1150    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1151    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1152} CPSRWriteType;
1153
1154/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1155void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1156                CPSRWriteType write_type);
1157
1158/* Return the current xPSR value.  */
1159static inline uint32_t xpsr_read(CPUARMState *env)
1160{
1161    int ZF;
1162    ZF = (env->ZF == 0);
1163    return (env->NF & 0x80000000) | (ZF << 30)
1164        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1165        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1166        | ((env->condexec_bits & 0xfc) << 8)
1167        | env->v7m.exception;
1168}
1169
1170/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1171static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1172{
1173    if (mask & XPSR_NZCV) {
1174        env->ZF = (~val) & XPSR_Z;
1175        env->NF = val;
1176        env->CF = (val >> 29) & 1;
1177        env->VF = (val << 3) & 0x80000000;
1178    }
1179    if (mask & XPSR_Q) {
1180        env->QF = ((val & XPSR_Q) != 0);
1181    }
1182    if (mask & XPSR_T) {
1183        env->thumb = ((val & XPSR_T) != 0);
1184    }
1185    if (mask & XPSR_IT_0_1) {
1186        env->condexec_bits &= ~3;
1187        env->condexec_bits |= (val >> 25) & 3;
1188    }
1189    if (mask & XPSR_IT_2_7) {
1190        env->condexec_bits &= 3;
1191        env->condexec_bits |= (val >> 8) & 0xfc;
1192    }
1193    if (mask & XPSR_EXCP) {
1194        /* Note that this only happens on exception exit */
1195        write_v7m_exception(env, val & XPSR_EXCP);
1196    }
1197}
1198
1199#define HCR_VM        (1ULL << 0)
1200#define HCR_SWIO      (1ULL << 1)
1201#define HCR_PTW       (1ULL << 2)
1202#define HCR_FMO       (1ULL << 3)
1203#define HCR_IMO       (1ULL << 4)
1204#define HCR_AMO       (1ULL << 5)
1205#define HCR_VF        (1ULL << 6)
1206#define HCR_VI        (1ULL << 7)
1207#define HCR_VSE       (1ULL << 8)
1208#define HCR_FB        (1ULL << 9)
1209#define HCR_BSU_MASK  (3ULL << 10)
1210#define HCR_DC        (1ULL << 12)
1211#define HCR_TWI       (1ULL << 13)
1212#define HCR_TWE       (1ULL << 14)
1213#define HCR_TID0      (1ULL << 15)
1214#define HCR_TID1      (1ULL << 16)
1215#define HCR_TID2      (1ULL << 17)
1216#define HCR_TID3      (1ULL << 18)
1217#define HCR_TSC       (1ULL << 19)
1218#define HCR_TIDCP     (1ULL << 20)
1219#define HCR_TACR      (1ULL << 21)
1220#define HCR_TSW       (1ULL << 22)
1221#define HCR_TPC       (1ULL << 23)
1222#define HCR_TPU       (1ULL << 24)
1223#define HCR_TTLB      (1ULL << 25)
1224#define HCR_TVM       (1ULL << 26)
1225#define HCR_TGE       (1ULL << 27)
1226#define HCR_TDZ       (1ULL << 28)
1227#define HCR_HCD       (1ULL << 29)
1228#define HCR_TRVM      (1ULL << 30)
1229#define HCR_RW        (1ULL << 31)
1230#define HCR_CD        (1ULL << 32)
1231#define HCR_ID        (1ULL << 33)
1232#define HCR_MASK      ((1ULL << 34) - 1)
1233
1234#define SCR_NS                (1U << 0)
1235#define SCR_IRQ               (1U << 1)
1236#define SCR_FIQ               (1U << 2)
1237#define SCR_EA                (1U << 3)
1238#define SCR_FW                (1U << 4)
1239#define SCR_AW                (1U << 5)
1240#define SCR_NET               (1U << 6)
1241#define SCR_SMD               (1U << 7)
1242#define SCR_HCE               (1U << 8)
1243#define SCR_SIF               (1U << 9)
1244#define SCR_RW                (1U << 10)
1245#define SCR_ST                (1U << 11)
1246#define SCR_TWI               (1U << 12)
1247#define SCR_TWE               (1U << 13)
1248#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1249#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1250
1251/* Return the current FPSCR value.  */
1252uint32_t vfp_get_fpscr(CPUARMState *env);
1253void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1254
1255/* FPCR, Floating Point Control Register
1256 * FPSR, Floating Poiht Status Register
1257 *
1258 * For A64 the FPSCR is split into two logically distinct registers,
1259 * FPCR and FPSR. However since they still use non-overlapping bits
1260 * we store the underlying state in fpscr and just mask on read/write.
1261 */
1262#define FPSR_MASK 0xf800009f
1263#define FPCR_MASK 0x07f79f00
1264
1265#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1266#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1267#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1268
1269static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1270{
1271    return vfp_get_fpscr(env) & FPSR_MASK;
1272}
1273
1274static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1275{
1276    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1277    vfp_set_fpscr(env, new_fpscr);
1278}
1279
1280static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1281{
1282    return vfp_get_fpscr(env) & FPCR_MASK;
1283}
1284
1285static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1286{
1287    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1288    vfp_set_fpscr(env, new_fpscr);
1289}
1290
1291enum arm_cpu_mode {
1292  ARM_CPU_MODE_USR = 0x10,
1293  ARM_CPU_MODE_FIQ = 0x11,
1294  ARM_CPU_MODE_IRQ = 0x12,
1295  ARM_CPU_MODE_SVC = 0x13,
1296  ARM_CPU_MODE_MON = 0x16,
1297  ARM_CPU_MODE_ABT = 0x17,
1298  ARM_CPU_MODE_HYP = 0x1a,
1299  ARM_CPU_MODE_UND = 0x1b,
1300  ARM_CPU_MODE_SYS = 0x1f
1301};
1302
1303/* VFP system registers.  */
1304#define ARM_VFP_FPSID   0
1305#define ARM_VFP_FPSCR   1
1306#define ARM_VFP_MVFR2   5
1307#define ARM_VFP_MVFR1   6
1308#define ARM_VFP_MVFR0   7
1309#define ARM_VFP_FPEXC   8
1310#define ARM_VFP_FPINST  9
1311#define ARM_VFP_FPINST2 10
1312
1313/* iwMMXt coprocessor control registers.  */
1314#define ARM_IWMMXT_wCID         0
1315#define ARM_IWMMXT_wCon         1
1316#define ARM_IWMMXT_wCSSF        2
1317#define ARM_IWMMXT_wCASF        3
1318#define ARM_IWMMXT_wCGR0        8
1319#define ARM_IWMMXT_wCGR1        9
1320#define ARM_IWMMXT_wCGR2        10
1321#define ARM_IWMMXT_wCGR3        11
1322
1323/* V7M CCR bits */
1324FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1325FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1326FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1327FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1328FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1329FIELD(V7M_CCR, STKALIGN, 9, 1)
1330FIELD(V7M_CCR, DC, 16, 1)
1331FIELD(V7M_CCR, IC, 17, 1)
1332
1333/* V7M SCR bits */
1334FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1335FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1336FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1337FIELD(V7M_SCR, SEVONPEND, 4, 1)
1338
1339/* V7M AIRCR bits */
1340FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1341FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1342FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1343FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1344FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1345FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1346FIELD(V7M_AIRCR, PRIS, 14, 1)
1347FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1348FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1349
1350/* V7M CFSR bits for MMFSR */
1351FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1352FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1353FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1354FIELD(V7M_CFSR, MSTKERR, 4, 1)
1355FIELD(V7M_CFSR, MLSPERR, 5, 1)
1356FIELD(V7M_CFSR, MMARVALID, 7, 1)
1357
1358/* V7M CFSR bits for BFSR */
1359FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1360FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1361FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1362FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1363FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1364FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1365FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1366
1367/* V7M CFSR bits for UFSR */
1368FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1369FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1370FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1371FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1372FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1373FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1374
1375/* V7M CFSR bit masks covering all of the subregister bits */
1376FIELD(V7M_CFSR, MMFSR, 0, 8)
1377FIELD(V7M_CFSR, BFSR, 8, 8)
1378FIELD(V7M_CFSR, UFSR, 16, 16)
1379
1380/* V7M HFSR bits */
1381FIELD(V7M_HFSR, VECTTBL, 1, 1)
1382FIELD(V7M_HFSR, FORCED, 30, 1)
1383FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1384
1385/* V7M DFSR bits */
1386FIELD(V7M_DFSR, HALTED, 0, 1)
1387FIELD(V7M_DFSR, BKPT, 1, 1)
1388FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1389FIELD(V7M_DFSR, VCATCH, 3, 1)
1390FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1391
1392/* V7M SFSR bits */
1393FIELD(V7M_SFSR, INVEP, 0, 1)
1394FIELD(V7M_SFSR, INVIS, 1, 1)
1395FIELD(V7M_SFSR, INVER, 2, 1)
1396FIELD(V7M_SFSR, AUVIOL, 3, 1)
1397FIELD(V7M_SFSR, INVTRAN, 4, 1)
1398FIELD(V7M_SFSR, LSPERR, 5, 1)
1399FIELD(V7M_SFSR, SFARVALID, 6, 1)
1400FIELD(V7M_SFSR, LSERR, 7, 1)
1401
1402/* v7M MPU_CTRL bits */
1403FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1404FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1405FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1406
1407/* v7M CLIDR bits */
1408FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1409FIELD(V7M_CLIDR, LOUIS, 21, 3)
1410FIELD(V7M_CLIDR, LOC, 24, 3)
1411FIELD(V7M_CLIDR, LOUU, 27, 3)
1412FIELD(V7M_CLIDR, ICB, 30, 2)
1413
1414FIELD(V7M_CSSELR, IND, 0, 1)
1415FIELD(V7M_CSSELR, LEVEL, 1, 3)
1416/* We use the combination of InD and Level to index into cpu->ccsidr[];
1417 * define a mask for this and check that it doesn't permit running off
1418 * the end of the array.
1419 */
1420FIELD(V7M_CSSELR, INDEX, 0, 4)
1421
1422QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1423
1424/* If adding a feature bit which corresponds to a Linux ELF
1425 * HWCAP bit, remember to update the feature-bit-to-hwcap
1426 * mapping in linux-user/elfload.c:get_elf_hwcap().
1427 */
1428enum arm_features {
1429    ARM_FEATURE_VFP,
1430    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1431    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1432    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1433    ARM_FEATURE_V6,
1434    ARM_FEATURE_V6K,
1435    ARM_FEATURE_V7,
1436    ARM_FEATURE_THUMB2,
1437    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1438    ARM_FEATURE_VFP3,
1439    ARM_FEATURE_VFP_FP16,
1440    ARM_FEATURE_NEON,
1441    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1442    ARM_FEATURE_M, /* Microcontroller profile.  */
1443    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1444    ARM_FEATURE_THUMB2EE,
1445    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1446    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1447    ARM_FEATURE_V4T,
1448    ARM_FEATURE_V5,
1449    ARM_FEATURE_STRONGARM,
1450    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1451    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1452    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1453    ARM_FEATURE_GENERIC_TIMER,
1454    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1455    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1456    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1457    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1458    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1459    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1460    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1461    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1462    ARM_FEATURE_V8,
1463    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1464    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1465    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1466    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1467    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1468    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1469    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1470    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1471    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1472    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1473    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1474    ARM_FEATURE_PMU, /* has PMU support */
1475    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1476    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1477    ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1478    ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1479    ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1480    ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1481    ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1482    ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1483    ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
1484    ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
1485    ARM_FEATURE_V8_DOTPROD, /* implements v8.2 simd dot product */
1486    ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1487    ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions.  */
1488    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1489};
1490
1491static inline int arm_feature(CPUARMState *env, int feature)
1492{
1493    return (env->features & (1ULL << feature)) != 0;
1494}
1495
1496#if !defined(CONFIG_USER_ONLY)
1497/* Return true if exception levels below EL3 are in secure state,
1498 * or would be following an exception return to that level.
1499 * Unlike arm_is_secure() (which is always a question about the
1500 * _current_ state of the CPU) this doesn't care about the current
1501 * EL or mode.
1502 */
1503static inline bool arm_is_secure_below_el3(CPUARMState *env)
1504{
1505    if (arm_feature(env, ARM_FEATURE_EL3)) {
1506        return !(env->cp15.scr_el3 & SCR_NS);
1507    } else {
1508        /* If EL3 is not supported then the secure state is implementation
1509         * defined, in which case QEMU defaults to non-secure.
1510         */
1511        return false;
1512    }
1513}
1514
1515/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1516static inline bool arm_is_el3_or_mon(CPUARMState *env)
1517{
1518    if (arm_feature(env, ARM_FEATURE_EL3)) {
1519        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1520            /* CPU currently in AArch64 state and EL3 */
1521            return true;
1522        } else if (!is_a64(env) &&
1523                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1524            /* CPU currently in AArch32 state and monitor mode */
1525            return true;
1526        }
1527    }
1528    return false;
1529}
1530
1531/* Return true if the processor is in secure state */
1532static inline bool arm_is_secure(CPUARMState *env)
1533{
1534    if (arm_is_el3_or_mon(env)) {
1535        return true;
1536    }
1537    return arm_is_secure_below_el3(env);
1538}
1539
1540#else
1541static inline bool arm_is_secure_below_el3(CPUARMState *env)
1542{
1543    return false;
1544}
1545
1546static inline bool arm_is_secure(CPUARMState *env)
1547{
1548    return false;
1549}
1550#endif
1551
1552/* Return true if the specified exception level is running in AArch64 state. */
1553static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1554{
1555    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1556     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1557     */
1558    assert(el >= 1 && el <= 3);
1559    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1560
1561    /* The highest exception level is always at the maximum supported
1562     * register width, and then lower levels have a register width controlled
1563     * by bits in the SCR or HCR registers.
1564     */
1565    if (el == 3) {
1566        return aa64;
1567    }
1568
1569    if (arm_feature(env, ARM_FEATURE_EL3)) {
1570        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1571    }
1572
1573    if (el == 2) {
1574        return aa64;
1575    }
1576
1577    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1578        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1579    }
1580
1581    return aa64;
1582}
1583
1584/* Function for determing whether guest cp register reads and writes should
1585 * access the secure or non-secure bank of a cp register.  When EL3 is
1586 * operating in AArch32 state, the NS-bit determines whether the secure
1587 * instance of a cp register should be used. When EL3 is AArch64 (or if
1588 * it doesn't exist at all) then there is no register banking, and all
1589 * accesses are to the non-secure version.
1590 */
1591static inline bool access_secure_reg(CPUARMState *env)
1592{
1593    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1594                !arm_el_is_aa64(env, 3) &&
1595                !(env->cp15.scr_el3 & SCR_NS));
1596
1597    return ret;
1598}
1599
1600/* Macros for accessing a specified CP register bank */
1601#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1602    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1603
1604#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1605    do {                                                \
1606        if (_secure) {                                   \
1607            (_env)->cp15._regname##_s = (_val);            \
1608        } else {                                        \
1609            (_env)->cp15._regname##_ns = (_val);           \
1610        }                                               \
1611    } while (0)
1612
1613/* Macros for automatically accessing a specific CP register bank depending on
1614 * the current secure state of the system.  These macros are not intended for
1615 * supporting instruction translation reads/writes as these are dependent
1616 * solely on the SCR.NS bit and not the mode.
1617 */
1618#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1619    A32_BANKED_REG_GET((_env), _regname,                \
1620                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1621
1622#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1623    A32_BANKED_REG_SET((_env), _regname,                                    \
1624                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1625                       (_val))
1626
1627void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1628uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1629                                 uint32_t cur_el, bool secure);
1630
1631/* Interface between CPU and Interrupt controller.  */
1632#ifndef CONFIG_USER_ONLY
1633bool armv7m_nvic_can_take_pending_exception(void *opaque);
1634#else
1635static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1636{
1637    return true;
1638}
1639#endif
1640/**
1641 * armv7m_nvic_set_pending: mark the specified exception as pending
1642 * @opaque: the NVIC
1643 * @irq: the exception number to mark pending
1644 * @secure: false for non-banked exceptions or for the nonsecure
1645 * version of a banked exception, true for the secure version of a banked
1646 * exception.
1647 *
1648 * Marks the specified exception as pending. Note that we will assert()
1649 * if @secure is true and @irq does not specify one of the fixed set
1650 * of architecturally banked exceptions.
1651 */
1652void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1653/**
1654 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1655 * @opaque: the NVIC
1656 * @irq: the exception number to mark pending
1657 * @secure: false for non-banked exceptions or for the nonsecure
1658 * version of a banked exception, true for the secure version of a banked
1659 * exception.
1660 *
1661 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1662 * exceptions (exceptions generated in the course of trying to take
1663 * a different exception).
1664 */
1665void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1666/**
1667 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1668 *    exception, and whether it targets Secure state
1669 * @opaque: the NVIC
1670 * @pirq: set to pending exception number
1671 * @ptargets_secure: set to whether pending exception targets Secure
1672 *
1673 * This function writes the number of the highest priority pending
1674 * exception (the one which would be made active by
1675 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1676 * to true if the current highest priority pending exception should
1677 * be taken to Secure state, false for NS.
1678 */
1679void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1680                                      bool *ptargets_secure);
1681/**
1682 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1683 * @opaque: the NVIC
1684 *
1685 * Move the current highest priority pending exception from the pending
1686 * state to the active state, and update v7m.exception to indicate that
1687 * it is the exception currently being handled.
1688 */
1689void armv7m_nvic_acknowledge_irq(void *opaque);
1690/**
1691 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1692 * @opaque: the NVIC
1693 * @irq: the exception number to complete
1694 * @secure: true if this exception was secure
1695 *
1696 * Returns: -1 if the irq was not active
1697 *           1 if completing this irq brought us back to base (no active irqs)
1698 *           0 if there is still an irq active after this one was completed
1699 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1700 */
1701int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1702/**
1703 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1704 * @opaque: the NVIC
1705 *
1706 * Returns: the raw execution priority as defined by the v8M architecture.
1707 * This is the execution priority minus the effects of AIRCR.PRIS,
1708 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1709 * (v8M ARM ARM I_PKLD.)
1710 */
1711int armv7m_nvic_raw_execution_priority(void *opaque);
1712/**
1713 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1714 * priority is negative for the specified security state.
1715 * @opaque: the NVIC
1716 * @secure: the security state to test
1717 * This corresponds to the pseudocode IsReqExecPriNeg().
1718 */
1719#ifndef CONFIG_USER_ONLY
1720bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1721#else
1722static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1723{
1724    return false;
1725}
1726#endif
1727
1728/* Interface for defining coprocessor registers.
1729 * Registers are defined in tables of arm_cp_reginfo structs
1730 * which are passed to define_arm_cp_regs().
1731 */
1732
1733/* When looking up a coprocessor register we look for it
1734 * via an integer which encodes all of:
1735 *  coprocessor number
1736 *  Crn, Crm, opc1, opc2 fields
1737 *  32 or 64 bit register (ie is it accessed via MRC/MCR
1738 *    or via MRRC/MCRR?)
1739 *  non-secure/secure bank (AArch32 only)
1740 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1741 * (In this case crn and opc2 should be zero.)
1742 * For AArch64, there is no 32/64 bit size distinction;
1743 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1744 * and 4 bit CRn and CRm. The encoding patterns are chosen
1745 * to be easy to convert to and from the KVM encodings, and also
1746 * so that the hashtable can contain both AArch32 and AArch64
1747 * registers (to allow for interprocessing where we might run
1748 * 32 bit code on a 64 bit core).
1749 */
1750/* This bit is private to our hashtable cpreg; in KVM register
1751 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1752 * in the upper bits of the 64 bit ID.
1753 */
1754#define CP_REG_AA64_SHIFT 28
1755#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1756
1757/* To enable banking of coprocessor registers depending on ns-bit we
1758 * add a bit to distinguish between secure and non-secure cpregs in the
1759 * hashtable.
1760 */
1761#define CP_REG_NS_SHIFT 29
1762#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1763
1764#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1765    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1766     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1767
1768#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1769    (CP_REG_AA64_MASK |                                 \
1770     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1771     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1772     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1773     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1774     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1775     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1776
1777/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1778 * version used as a key for the coprocessor register hashtable
1779 */
1780static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1781{
1782    uint32_t cpregid = kvmid;
1783    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1784        cpregid |= CP_REG_AA64_MASK;
1785    } else {
1786        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1787            cpregid |= (1 << 15);
1788        }
1789
1790        /* KVM is always non-secure so add the NS flag on AArch32 register
1791         * entries.
1792         */
1793         cpregid |= 1 << CP_REG_NS_SHIFT;
1794    }
1795    return cpregid;
1796}
1797
1798/* Convert a truncated 32 bit hashtable key into the full
1799 * 64 bit KVM register ID.
1800 */
1801static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1802{
1803    uint64_t kvmid;
1804
1805    if (cpregid & CP_REG_AA64_MASK) {
1806        kvmid = cpregid & ~CP_REG_AA64_MASK;
1807        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1808    } else {
1809        kvmid = cpregid & ~(1 << 15);
1810        if (cpregid & (1 << 15)) {
1811            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1812        } else {
1813            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1814        }
1815    }
1816    return kvmid;
1817}
1818
1819/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1820 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1821 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1822 * TCG can assume the value to be constant (ie load at translate time)
1823 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1824 * indicates that the TB should not be ended after a write to this register
1825 * (the default is that the TB ends after cp writes). OVERRIDE permits
1826 * a register definition to override a previous definition for the
1827 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1828 * old must have the OVERRIDE bit set.
1829 * ALIAS indicates that this register is an alias view of some underlying
1830 * state which is also visible via another register, and that the other
1831 * register is handling migration and reset; registers marked ALIAS will not be
1832 * migrated but may have their state set by syncing of register state from KVM.
1833 * NO_RAW indicates that this register has no underlying state and does not
1834 * support raw access for state saving/loading; it will not be used for either
1835 * migration or KVM state synchronization. (Typically this is for "registers"
1836 * which are actually used as instructions for cache maintenance and so on.)
1837 * IO indicates that this register does I/O and therefore its accesses
1838 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1839 * registers which implement clocks or timers require this.
1840 */
1841#define ARM_CP_SPECIAL           0x0001
1842#define ARM_CP_CONST             0x0002
1843#define ARM_CP_64BIT             0x0004
1844#define ARM_CP_SUPPRESS_TB_END   0x0008
1845#define ARM_CP_OVERRIDE          0x0010
1846#define ARM_CP_ALIAS             0x0020
1847#define ARM_CP_IO                0x0040
1848#define ARM_CP_NO_RAW            0x0080
1849#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
1850#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
1851#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
1852#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
1853#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
1854#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
1855#define ARM_CP_FPU               0x1000
1856#define ARM_CP_SVE               0x2000
1857#define ARM_CP_NO_GDB            0x4000
1858/* Used only as a terminator for ARMCPRegInfo lists */
1859#define ARM_CP_SENTINEL          0xffff
1860/* Mask of only the flag bits in a type field */
1861#define ARM_CP_FLAG_MASK         0x70ff
1862
1863/* Valid values for ARMCPRegInfo state field, indicating which of
1864 * the AArch32 and AArch64 execution states this register is visible in.
1865 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1866 * If the reginfo is declared to be visible in both states then a second
1867 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1868 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1869 * Note that we rely on the values of these enums as we iterate through
1870 * the various states in some places.
1871 */
1872enum {
1873    ARM_CP_STATE_AA32 = 0,
1874    ARM_CP_STATE_AA64 = 1,
1875    ARM_CP_STATE_BOTH = 2,
1876};
1877
1878/* ARM CP register secure state flags.  These flags identify security state
1879 * attributes for a given CP register entry.
1880 * The existence of both or neither secure and non-secure flags indicates that
1881 * the register has both a secure and non-secure hash entry.  A single one of
1882 * these flags causes the register to only be hashed for the specified
1883 * security state.
1884 * Although definitions may have any combination of the S/NS bits, each
1885 * registered entry will only have one to identify whether the entry is secure
1886 * or non-secure.
1887 */
1888enum {
1889    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1890    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1891};
1892
1893/* Return true if cptype is a valid type field. This is used to try to
1894 * catch errors where the sentinel has been accidentally left off the end
1895 * of a list of registers.
1896 */
1897static inline bool cptype_valid(int cptype)
1898{
1899    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1900        || ((cptype & ARM_CP_SPECIAL) &&
1901            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1902}
1903
1904/* Access rights:
1905 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1906 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1907 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1908 * (ie any of the privileged modes in Secure state, or Monitor mode).
1909 * If a register is accessible in one privilege level it's always accessible
1910 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1911 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1912 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1913 * terminology a little and call this PL3.
1914 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1915 * with the ELx exception levels.
1916 *
1917 * If access permissions for a register are more complex than can be
1918 * described with these bits, then use a laxer set of restrictions, and
1919 * do the more restrictive/complex check inside a helper function.
1920 */
1921#define PL3_R 0x80
1922#define PL3_W 0x40
1923#define PL2_R (0x20 | PL3_R)
1924#define PL2_W (0x10 | PL3_W)
1925#define PL1_R (0x08 | PL2_R)
1926#define PL1_W (0x04 | PL2_W)
1927#define PL0_R (0x02 | PL1_R)
1928#define PL0_W (0x01 | PL1_W)
1929
1930#define PL3_RW (PL3_R | PL3_W)
1931#define PL2_RW (PL2_R | PL2_W)
1932#define PL1_RW (PL1_R | PL1_W)
1933#define PL0_RW (PL0_R | PL0_W)
1934
1935/* Return the highest implemented Exception Level */
1936static inline int arm_highest_el(CPUARMState *env)
1937{
1938    if (arm_feature(env, ARM_FEATURE_EL3)) {
1939        return 3;
1940    }
1941    if (arm_feature(env, ARM_FEATURE_EL2)) {
1942        return 2;
1943    }
1944    return 1;
1945}
1946
1947/* Return true if a v7M CPU is in Handler mode */
1948static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1949{
1950    return env->v7m.exception != 0;
1951}
1952
1953/* Return the current Exception Level (as per ARMv8; note that this differs
1954 * from the ARMv7 Privilege Level).
1955 */
1956static inline int arm_current_el(CPUARMState *env)
1957{
1958    if (arm_feature(env, ARM_FEATURE_M)) {
1959        return arm_v7m_is_handler_mode(env) ||
1960            !(env->v7m.control[env->v7m.secure] & 1);
1961    }
1962
1963    if (is_a64(env)) {
1964        return extract32(env->pstate, 2, 2);
1965    }
1966
1967    switch (env->uncached_cpsr & 0x1f) {
1968    case ARM_CPU_MODE_USR:
1969        return 0;
1970    case ARM_CPU_MODE_HYP:
1971        return 2;
1972    case ARM_CPU_MODE_MON:
1973        return 3;
1974    default:
1975        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1976            /* If EL3 is 32-bit then all secure privileged modes run in
1977             * EL3
1978             */
1979            return 3;
1980        }
1981
1982        return 1;
1983    }
1984}
1985
1986typedef struct ARMCPRegInfo ARMCPRegInfo;
1987
1988typedef enum CPAccessResult {
1989    /* Access is permitted */
1990    CP_ACCESS_OK = 0,
1991    /* Access fails due to a configurable trap or enable which would
1992     * result in a categorized exception syndrome giving information about
1993     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1994     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1995     * PL1 if in EL0, otherwise to the current EL).
1996     */
1997    CP_ACCESS_TRAP = 1,
1998    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1999     * Note that this is not a catch-all case -- the set of cases which may
2000     * result in this failure is specifically defined by the architecture.
2001     */
2002    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2003    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2004    CP_ACCESS_TRAP_EL2 = 3,
2005    CP_ACCESS_TRAP_EL3 = 4,
2006    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2007    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2008    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2009    /* Access fails and results in an exception syndrome for an FP access,
2010     * trapped directly to EL2 or EL3
2011     */
2012    CP_ACCESS_TRAP_FP_EL2 = 7,
2013    CP_ACCESS_TRAP_FP_EL3 = 8,
2014} CPAccessResult;
2015
2016/* Access functions for coprocessor registers. These cannot fail and
2017 * may not raise exceptions.
2018 */
2019typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2020typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2021                       uint64_t value);
2022/* Access permission check functions for coprocessor registers. */
2023typedef CPAccessResult CPAccessFn(CPUARMState *env,
2024                                  const ARMCPRegInfo *opaque,
2025                                  bool isread);
2026/* Hook function for register reset */
2027typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2028
2029#define CP_ANY 0xff
2030
2031/* Definition of an ARM coprocessor register */
2032struct ARMCPRegInfo {
2033    /* Name of register (useful mainly for debugging, need not be unique) */
2034    const char *name;
2035    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2036     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2037     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2038     * will be decoded to this register. The register read and write
2039     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2040     * used by the program, so it is possible to register a wildcard and
2041     * then behave differently on read/write if necessary.
2042     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2043     * must both be zero.
2044     * For AArch64-visible registers, opc0 is also used.
2045     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2046     * way to distinguish (for KVM's benefit) guest-visible system registers
2047     * from demuxed ones provided to preserve the "no side effects on
2048     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2049     * visible (to match KVM's encoding); cp==0 will be converted to
2050     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2051     */
2052    uint8_t cp;
2053    uint8_t crn;
2054    uint8_t crm;
2055    uint8_t opc0;
2056    uint8_t opc1;
2057    uint8_t opc2;
2058    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2059    int state;
2060    /* Register type: ARM_CP_* bits/values */
2061    int type;
2062    /* Access rights: PL*_[RW] */
2063    int access;
2064    /* Security state: ARM_CP_SECSTATE_* bits/values */
2065    int secure;
2066    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2067     * this register was defined: can be used to hand data through to the
2068     * register read/write functions, since they are passed the ARMCPRegInfo*.
2069     */
2070    void *opaque;
2071    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2072     * fieldoffset is non-zero, the reset value of the register.
2073     */
2074    uint64_t resetvalue;
2075    /* Offset of the field in CPUARMState for this register.
2076     *
2077     * This is not needed if either:
2078     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2079     *  2. both readfn and writefn are specified
2080     */
2081    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2082
2083    /* Offsets of the secure and non-secure fields in CPUARMState for the
2084     * register if it is banked.  These fields are only used during the static
2085     * registration of a register.  During hashing the bank associated
2086     * with a given security state is copied to fieldoffset which is used from
2087     * there on out.
2088     *
2089     * It is expected that register definitions use either fieldoffset or
2090     * bank_fieldoffsets in the definition but not both.  It is also expected
2091     * that both bank offsets are set when defining a banked register.  This
2092     * use indicates that a register is banked.
2093     */
2094    ptrdiff_t bank_fieldoffsets[2];
2095
2096    /* Function for making any access checks for this register in addition to
2097     * those specified by the 'access' permissions bits. If NULL, no extra
2098     * checks required. The access check is performed at runtime, not at
2099     * translate time.
2100     */
2101    CPAccessFn *accessfn;
2102    /* Function for handling reads of this register. If NULL, then reads
2103     * will be done by loading from the offset into CPUARMState specified
2104     * by fieldoffset.
2105     */
2106    CPReadFn *readfn;
2107    /* Function for handling writes of this register. If NULL, then writes
2108     * will be done by writing to the offset into CPUARMState specified
2109     * by fieldoffset.
2110     */
2111    CPWriteFn *writefn;
2112    /* Function for doing a "raw" read; used when we need to copy
2113     * coprocessor state to the kernel for KVM or out for
2114     * migration. This only needs to be provided if there is also a
2115     * readfn and it has side effects (for instance clear-on-read bits).
2116     */
2117    CPReadFn *raw_readfn;
2118    /* Function for doing a "raw" write; used when we need to copy KVM
2119     * kernel coprocessor state into userspace, or for inbound
2120     * migration. This only needs to be provided if there is also a
2121     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2122     * or similar behaviour.
2123     */
2124    CPWriteFn *raw_writefn;
2125    /* Function for resetting the register. If NULL, then reset will be done
2126     * by writing resetvalue to the field specified in fieldoffset. If
2127     * fieldoffset is 0 then no reset will be done.
2128     */
2129    CPResetFn *resetfn;
2130};
2131
2132/* Macros which are lvalues for the field in CPUARMState for the
2133 * ARMCPRegInfo *ri.
2134 */
2135#define CPREG_FIELD32(env, ri) \
2136    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2137#define CPREG_FIELD64(env, ri) \
2138    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2139
2140#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2141
2142void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2143                                    const ARMCPRegInfo *regs, void *opaque);
2144void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2145                                       const ARMCPRegInfo *regs, void *opaque);
2146static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2147{
2148    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2149}
2150static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2151{
2152    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2153}
2154const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2155
2156/* CPWriteFn that can be used to implement writes-ignored behaviour */
2157void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2158                         uint64_t value);
2159/* CPReadFn that can be used for read-as-zero behaviour */
2160uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2161
2162/* CPResetFn that does nothing, for use if no reset is required even
2163 * if fieldoffset is non zero.
2164 */
2165void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2166
2167/* Return true if this reginfo struct's field in the cpu state struct
2168 * is 64 bits wide.
2169 */
2170static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2171{
2172    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2173}
2174
2175static inline bool cp_access_ok(int current_el,
2176                                const ARMCPRegInfo *ri, int isread)
2177{
2178    return (ri->access >> ((current_el * 2) + isread)) & 1;
2179}
2180
2181/* Raw read of a coprocessor register (as needed for migration, etc) */
2182uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2183
2184/**
2185 * write_list_to_cpustate
2186 * @cpu: ARMCPU
2187 *
2188 * For each register listed in the ARMCPU cpreg_indexes list, write
2189 * its value from the cpreg_values list into the ARMCPUState structure.
2190 * This updates TCG's working data structures from KVM data or
2191 * from incoming migration state.
2192 *
2193 * Returns: true if all register values were updated correctly,
2194 * false if some register was unknown or could not be written.
2195 * Note that we do not stop early on failure -- we will attempt
2196 * writing all registers in the list.
2197 */
2198bool write_list_to_cpustate(ARMCPU *cpu);
2199
2200/**
2201 * write_cpustate_to_list:
2202 * @cpu: ARMCPU
2203 *
2204 * For each register listed in the ARMCPU cpreg_indexes list, write
2205 * its value from the ARMCPUState structure into the cpreg_values list.
2206 * This is used to copy info from TCG's working data structures into
2207 * KVM or for outbound migration.
2208 *
2209 * Returns: true if all register values were read correctly,
2210 * false if some register was unknown or could not be read.
2211 * Note that we do not stop early on failure -- we will attempt
2212 * reading all registers in the list.
2213 */
2214bool write_cpustate_to_list(ARMCPU *cpu);
2215
2216#define ARM_CPUID_TI915T      0x54029152
2217#define ARM_CPUID_TI925T      0x54029252
2218
2219#if defined(CONFIG_USER_ONLY)
2220#define TARGET_PAGE_BITS 12
2221#else
2222/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2223 * have to support 1K tiny pages.
2224 */
2225#define TARGET_PAGE_BITS_VARY
2226#define TARGET_PAGE_BITS_MIN 10
2227#endif
2228
2229#if defined(TARGET_AARCH64)
2230#  define TARGET_PHYS_ADDR_SPACE_BITS 48
2231#  define TARGET_VIRT_ADDR_SPACE_BITS 64
2232#else
2233#  define TARGET_PHYS_ADDR_SPACE_BITS 40
2234#  define TARGET_VIRT_ADDR_SPACE_BITS 32
2235#endif
2236
2237static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2238                                     unsigned int target_el)
2239{
2240    CPUARMState *env = cs->env_ptr;
2241    unsigned int cur_el = arm_current_el(env);
2242    bool secure = arm_is_secure(env);
2243    bool pstate_unmasked;
2244    int8_t unmasked = 0;
2245
2246    /* Don't take exceptions if they target a lower EL.
2247     * This check should catch any exceptions that would not be taken but left
2248     * pending.
2249     */
2250    if (cur_el > target_el) {
2251        return false;
2252    }
2253
2254    switch (excp_idx) {
2255    case EXCP_FIQ:
2256        pstate_unmasked = !(env->daif & PSTATE_F);
2257        break;
2258
2259    case EXCP_IRQ:
2260        pstate_unmasked = !(env->daif & PSTATE_I);
2261        break;
2262
2263    case EXCP_VFIQ:
2264        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2265            /* VFIQs are only taken when hypervized and non-secure.  */
2266            return false;
2267        }
2268        return !(env->daif & PSTATE_F);
2269    case EXCP_VIRQ:
2270        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2271            /* VIRQs are only taken when hypervized and non-secure.  */
2272            return false;
2273        }
2274        return !(env->daif & PSTATE_I);
2275    default:
2276        g_assert_not_reached();
2277    }
2278
2279    /* Use the target EL, current execution state and SCR/HCR settings to
2280     * determine whether the corresponding CPSR bit is used to mask the
2281     * interrupt.
2282     */
2283    if ((target_el > cur_el) && (target_el != 1)) {
2284        /* Exceptions targeting a higher EL may not be maskable */
2285        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2286            /* 64-bit masking rules are simple: exceptions to EL3
2287             * can't be masked, and exceptions to EL2 can only be
2288             * masked from Secure state. The HCR and SCR settings
2289             * don't affect the masking logic, only the interrupt routing.
2290             */
2291            if (target_el == 3 || !secure) {
2292                unmasked = 1;
2293            }
2294        } else {
2295            /* The old 32-bit-only environment has a more complicated
2296             * masking setup. HCR and SCR bits not only affect interrupt
2297             * routing but also change the behaviour of masking.
2298             */
2299            bool hcr, scr;
2300
2301            switch (excp_idx) {
2302            case EXCP_FIQ:
2303                /* If FIQs are routed to EL3 or EL2 then there are cases where
2304                 * we override the CPSR.F in determining if the exception is
2305                 * masked or not. If neither of these are set then we fall back
2306                 * to the CPSR.F setting otherwise we further assess the state
2307                 * below.
2308                 */
2309                hcr = (env->cp15.hcr_el2 & HCR_FMO);
2310                scr = (env->cp15.scr_el3 & SCR_FIQ);
2311
2312                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2313                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2314                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2315                 * when non-secure but only when FIQs are only routed to EL3.
2316                 */
2317                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2318                break;
2319            case EXCP_IRQ:
2320                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2321                 * we may override the CPSR.I masking when in non-secure state.
2322                 * The SCR.IRQ setting has already been taken into consideration
2323                 * when setting the target EL, so it does not have a further
2324                 * affect here.
2325                 */
2326                hcr = (env->cp15.hcr_el2 & HCR_IMO);
2327                scr = false;
2328                break;
2329            default:
2330                g_assert_not_reached();
2331            }
2332
2333            if ((scr || hcr) && !secure) {
2334                unmasked = 1;
2335            }
2336        }
2337    }
2338
2339    /* The PSTATE bits only mask the interrupt if we have not overriden the
2340     * ability above.
2341     */
2342    return unmasked || pstate_unmasked;
2343}
2344
2345#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2346#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2347#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2348
2349#define cpu_signal_handler cpu_arm_signal_handler
2350#define cpu_list arm_cpu_list
2351
2352/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2353 *
2354 * If EL3 is 64-bit:
2355 *  + NonSecure EL1 & 0 stage 1
2356 *  + NonSecure EL1 & 0 stage 2
2357 *  + NonSecure EL2
2358 *  + Secure EL1 & EL0
2359 *  + Secure EL3
2360 * If EL3 is 32-bit:
2361 *  + NonSecure PL1 & 0 stage 1
2362 *  + NonSecure PL1 & 0 stage 2
2363 *  + NonSecure PL2
2364 *  + Secure PL0 & PL1
2365 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2366 *
2367 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2368 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2369 *     may differ in access permissions even if the VA->PA map is the same
2370 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2371 *     translation, which means that we have one mmu_idx that deals with two
2372 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2373 *     architecturally permitted]
2374 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2375 *     handling via the TLB. The only way to do a stage 1 translation without
2376 *     the immediate stage 2 translation is via the ATS or AT system insns,
2377 *     which can be slow-pathed and always do a page table walk.
2378 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2379 *     translation regimes, because they map reasonably well to each other
2380 *     and they can't both be active at the same time.
2381 * This gives us the following list of mmu_idx values:
2382 *
2383 * NS EL0 (aka NS PL0) stage 1+2
2384 * NS EL1 (aka NS PL1) stage 1+2
2385 * NS EL2 (aka NS PL2)
2386 * S EL3 (aka S PL1)
2387 * S EL0 (aka S PL0)
2388 * S EL1 (not used if EL3 is 32 bit)
2389 * NS EL0+1 stage 2
2390 *
2391 * (The last of these is an mmu_idx because we want to be able to use the TLB
2392 * for the accesses done as part of a stage 1 page table walk, rather than
2393 * having to walk the stage 2 page table over and over.)
2394 *
2395 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2396 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2397 * NS EL2 if we ever model a Cortex-R52).
2398 *
2399 * M profile CPUs are rather different as they do not have a true MMU.
2400 * They have the following different MMU indexes:
2401 *  User
2402 *  Privileged
2403 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2404 *  Privileged, execution priority negative (ditto)
2405 * If the CPU supports the v8M Security Extension then there are also:
2406 *  Secure User
2407 *  Secure Privileged
2408 *  Secure User, execution priority negative
2409 *  Secure Privileged, execution priority negative
2410 *
2411 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2412 * are not quite the same -- different CPU types (most notably M profile
2413 * vs A/R profile) would like to use MMU indexes with different semantics,
2414 * but since we don't ever need to use all of those in a single CPU we
2415 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2416 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2417 * the same for any particular CPU.
2418 * Variables of type ARMMUIdx are always full values, and the core
2419 * index values are in variables of type 'int'.
2420 *
2421 * Our enumeration includes at the end some entries which are not "true"
2422 * mmu_idx values in that they don't have corresponding TLBs and are only
2423 * valid for doing slow path page table walks.
2424 *
2425 * The constant names here are patterned after the general style of the names
2426 * of the AT/ATS operations.
2427 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2428 * For M profile we arrange them to have a bit for priv, a bit for negpri
2429 * and a bit for secure.
2430 */
2431#define ARM_MMU_IDX_A 0x10 /* A profile */
2432#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2433#define ARM_MMU_IDX_M 0x40 /* M profile */
2434
2435/* meanings of the bits for M profile mmu idx values */
2436#define ARM_MMU_IDX_M_PRIV 0x1
2437#define ARM_MMU_IDX_M_NEGPRI 0x2
2438#define ARM_MMU_IDX_M_S 0x4
2439
2440#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2441#define ARM_MMU_IDX_COREIDX_MASK 0x7
2442
2443typedef enum ARMMMUIdx {
2444    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2445    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2446    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2447    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2448    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2449    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2450    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2451    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2452    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2453    ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2454    ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2455    ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2456    ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2457    ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2458    ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2459    /* Indexes below here don't have TLBs and are used only for AT system
2460     * instructions or for the first stage of an S12 page table walk.
2461     */
2462    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2463    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2464} ARMMMUIdx;
2465
2466/* Bit macros for the core-mmu-index values for each index,
2467 * for use when calling tlb_flush_by_mmuidx() and friends.
2468 */
2469typedef enum ARMMMUIdxBit {
2470    ARMMMUIdxBit_S12NSE0 = 1 << 0,
2471    ARMMMUIdxBit_S12NSE1 = 1 << 1,
2472    ARMMMUIdxBit_S1E2 = 1 << 2,
2473    ARMMMUIdxBit_S1E3 = 1 << 3,
2474    ARMMMUIdxBit_S1SE0 = 1 << 4,
2475    ARMMMUIdxBit_S1SE1 = 1 << 5,
2476    ARMMMUIdxBit_S2NS = 1 << 6,
2477    ARMMMUIdxBit_MUser = 1 << 0,
2478    ARMMMUIdxBit_MPriv = 1 << 1,
2479    ARMMMUIdxBit_MUserNegPri = 1 << 2,
2480    ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2481    ARMMMUIdxBit_MSUser = 1 << 4,
2482    ARMMMUIdxBit_MSPriv = 1 << 5,
2483    ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2484    ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2485} ARMMMUIdxBit;
2486
2487#define MMU_USER_IDX 0
2488
2489static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2490{
2491    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2492}
2493
2494static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2495{
2496    if (arm_feature(env, ARM_FEATURE_M)) {
2497        return mmu_idx | ARM_MMU_IDX_M;
2498    } else {
2499        return mmu_idx | ARM_MMU_IDX_A;
2500    }
2501}
2502
2503/* Return the exception level we're running at if this is our mmu_idx */
2504static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2505{
2506    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2507    case ARM_MMU_IDX_A:
2508        return mmu_idx & 3;
2509    case ARM_MMU_IDX_M:
2510        return mmu_idx & ARM_MMU_IDX_M_PRIV;
2511    default:
2512        g_assert_not_reached();
2513    }
2514}
2515
2516/* Return the MMU index for a v7M CPU in the specified security and
2517 * privilege state
2518 */
2519static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2520                                                              bool secstate,
2521                                                              bool priv)
2522{
2523    ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2524
2525    if (priv) {
2526        mmu_idx |= ARM_MMU_IDX_M_PRIV;
2527    }
2528
2529    if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2530        mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2531    }
2532
2533    if (secstate) {
2534        mmu_idx |= ARM_MMU_IDX_M_S;
2535    }
2536
2537    return mmu_idx;
2538}
2539
2540/* Return the MMU index for a v7M CPU in the specified security state */
2541static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2542                                                     bool secstate)
2543{
2544    bool priv = arm_current_el(env) != 0;
2545
2546    return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2547}
2548
2549/* Determine the current mmu_idx to use for normal loads/stores */
2550static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2551{
2552    int el = arm_current_el(env);
2553
2554    if (arm_feature(env, ARM_FEATURE_M)) {
2555        ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2556
2557        return arm_to_core_mmu_idx(mmu_idx);
2558    }
2559
2560    if (el < 2 && arm_is_secure_below_el3(env)) {
2561        return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2562    }
2563    return el;
2564}
2565
2566/* Indexes used when registering address spaces with cpu_address_space_init */
2567typedef enum ARMASIdx {
2568    ARMASIdx_NS = 0,
2569    ARMASIdx_S = 1,
2570} ARMASIdx;
2571
2572/* Return the Exception Level targeted by debug exceptions. */
2573static inline int arm_debug_target_el(CPUARMState *env)
2574{
2575    bool secure = arm_is_secure(env);
2576    bool route_to_el2 = false;
2577
2578    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2579        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2580                       env->cp15.mdcr_el2 & (1 << 8);
2581    }
2582
2583    if (route_to_el2) {
2584        return 2;
2585    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2586               !arm_el_is_aa64(env, 3) && secure) {
2587        return 3;
2588    } else {
2589        return 1;
2590    }
2591}
2592
2593static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2594{
2595    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2596     * CSSELR is RAZ/WI.
2597     */
2598    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2599}
2600
2601static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2602{
2603    if (arm_is_secure(env)) {
2604        /* MDCR_EL3.SDD disables debug events from Secure state */
2605        if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2606            || arm_current_el(env) == 3) {
2607            return false;
2608        }
2609    }
2610
2611    if (arm_current_el(env) == arm_debug_target_el(env)) {
2612        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2613            || (env->daif & PSTATE_D)) {
2614            return false;
2615        }
2616    }
2617    return true;
2618}
2619
2620static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2621{
2622    int el = arm_current_el(env);
2623
2624    if (el == 0 && arm_el_is_aa64(env, 1)) {
2625        return aa64_generate_debug_exceptions(env);
2626    }
2627
2628    if (arm_is_secure(env)) {
2629        int spd;
2630
2631        if (el == 0 && (env->cp15.sder & 1)) {
2632            /* SDER.SUIDEN means debug exceptions from Secure EL0
2633             * are always enabled. Otherwise they are controlled by
2634             * SDCR.SPD like those from other Secure ELs.
2635             */
2636            return true;
2637        }
2638
2639        spd = extract32(env->cp15.mdcr_el3, 14, 2);
2640        switch (spd) {
2641        case 1:
2642            /* SPD == 0b01 is reserved, but behaves as 0b00. */
2643        case 0:
2644            /* For 0b00 we return true if external secure invasive debug
2645             * is enabled. On real hardware this is controlled by external
2646             * signals to the core. QEMU always permits debug, and behaves
2647             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2648             */
2649            return true;
2650        case 2:
2651            return false;
2652        case 3:
2653            return true;
2654        }
2655    }
2656
2657    return el != 2;
2658}
2659
2660/* Return true if debugging exceptions are currently enabled.
2661 * This corresponds to what in ARM ARM pseudocode would be
2662 *    if UsingAArch32() then
2663 *        return AArch32.GenerateDebugExceptions()
2664 *    else
2665 *        return AArch64.GenerateDebugExceptions()
2666 * We choose to push the if() down into this function for clarity,
2667 * since the pseudocode has it at all callsites except for the one in
2668 * CheckSoftwareStep(), where it is elided because both branches would
2669 * always return the same value.
2670 *
2671 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2672 * don't yet implement those exception levels or their associated trap bits.
2673 */
2674static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2675{
2676    if (env->aarch64) {
2677        return aa64_generate_debug_exceptions(env);
2678    } else {
2679        return aa32_generate_debug_exceptions(env);
2680    }
2681}
2682
2683/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2684 * implicitly means this always returns false in pre-v8 CPUs.)
2685 */
2686static inline bool arm_singlestep_active(CPUARMState *env)
2687{
2688    return extract32(env->cp15.mdscr_el1, 0, 1)
2689        && arm_el_is_aa64(env, arm_debug_target_el(env))
2690        && arm_generate_debug_exceptions(env);
2691}
2692
2693static inline bool arm_sctlr_b(CPUARMState *env)
2694{
2695    return
2696        /* We need not implement SCTLR.ITD in user-mode emulation, so
2697         * let linux-user ignore the fact that it conflicts with SCTLR_B.
2698         * This lets people run BE32 binaries with "-cpu any".
2699         */
2700#ifndef CONFIG_USER_ONLY
2701        !arm_feature(env, ARM_FEATURE_V7) &&
2702#endif
2703        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2704}
2705
2706/* Return true if the processor is in big-endian mode. */
2707static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2708{
2709    int cur_el;
2710
2711    /* In 32bit endianness is determined by looking at CPSR's E bit */
2712    if (!is_a64(env)) {
2713        return
2714#ifdef CONFIG_USER_ONLY
2715            /* In system mode, BE32 is modelled in line with the
2716             * architecture (as word-invariant big-endianness), where loads
2717             * and stores are done little endian but from addresses which
2718             * are adjusted by XORing with the appropriate constant. So the
2719             * endianness to use for the raw data access is not affected by
2720             * SCTLR.B.
2721             * In user mode, however, we model BE32 as byte-invariant
2722             * big-endianness (because user-only code cannot tell the
2723             * difference), and so we need to use a data access endianness
2724             * that depends on SCTLR.B.
2725             */
2726            arm_sctlr_b(env) ||
2727#endif
2728                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2729    }
2730
2731    cur_el = arm_current_el(env);
2732
2733    if (cur_el == 0) {
2734        return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2735    }
2736
2737    return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2738}
2739
2740#include "exec/cpu-all.h"
2741
2742/* Bit usage in the TB flags field: bit 31 indicates whether we are
2743 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2744 * We put flags which are shared between 32 and 64 bit mode at the top
2745 * of the word, and flags which apply to only one mode at the bottom.
2746 */
2747#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2748#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2749#define ARM_TBFLAG_MMUIDX_SHIFT 28
2750#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2751#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2752#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2753#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2754#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2755/* Target EL if we take a floating-point-disabled exception */
2756#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2757#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2758
2759/* Bit usage when in AArch32 state: */
2760#define ARM_TBFLAG_THUMB_SHIFT      0
2761#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2762#define ARM_TBFLAG_VECLEN_SHIFT     1
2763#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2764#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2765#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2766#define ARM_TBFLAG_VFPEN_SHIFT      7
2767#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2768#define ARM_TBFLAG_CONDEXEC_SHIFT   8
2769#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2770#define ARM_TBFLAG_SCTLR_B_SHIFT    16
2771#define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2772/* We store the bottom two bits of the CPAR as TB flags and handle
2773 * checks on the other bits at runtime
2774 */
2775#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2776#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2777/* Indicates whether cp register reads and writes by guest code should access
2778 * the secure or nonsecure bank of banked registers; note that this is not
2779 * the same thing as the current security state of the processor!
2780 */
2781#define ARM_TBFLAG_NS_SHIFT         19
2782#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2783#define ARM_TBFLAG_BE_DATA_SHIFT    20
2784#define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2785/* For M profile only, Handler (ie not Thread) mode */
2786#define ARM_TBFLAG_HANDLER_SHIFT    21
2787#define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2788
2789/* Bit usage when in AArch64 state */
2790#define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2791#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2792#define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2793#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2794#define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
2795#define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2796#define ARM_TBFLAG_ZCR_LEN_SHIFT    4
2797#define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2798
2799/* some convenience accessor macros */
2800#define ARM_TBFLAG_AARCH64_STATE(F) \
2801    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2802#define ARM_TBFLAG_MMUIDX(F) \
2803    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2804#define ARM_TBFLAG_SS_ACTIVE(F) \
2805    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2806#define ARM_TBFLAG_PSTATE_SS(F) \
2807    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2808#define ARM_TBFLAG_FPEXC_EL(F) \
2809    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2810#define ARM_TBFLAG_THUMB(F) \
2811    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2812#define ARM_TBFLAG_VECLEN(F) \
2813    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2814#define ARM_TBFLAG_VECSTRIDE(F) \
2815    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2816#define ARM_TBFLAG_VFPEN(F) \
2817    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2818#define ARM_TBFLAG_CONDEXEC(F) \
2819    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2820#define ARM_TBFLAG_SCTLR_B(F) \
2821    (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2822#define ARM_TBFLAG_XSCALE_CPAR(F) \
2823    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2824#define ARM_TBFLAG_NS(F) \
2825    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2826#define ARM_TBFLAG_BE_DATA(F) \
2827    (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2828#define ARM_TBFLAG_HANDLER(F) \
2829    (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2830#define ARM_TBFLAG_TBI0(F) \
2831    (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2832#define ARM_TBFLAG_TBI1(F) \
2833    (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2834#define ARM_TBFLAG_SVEEXC_EL(F) \
2835    (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2836#define ARM_TBFLAG_ZCR_LEN(F) \
2837    (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2838
2839static inline bool bswap_code(bool sctlr_b)
2840{
2841#ifdef CONFIG_USER_ONLY
2842    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2843     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2844     * would also end up as a mixed-endian mode with BE code, LE data.
2845     */
2846    return
2847#ifdef TARGET_WORDS_BIGENDIAN
2848        1 ^
2849#endif
2850        sctlr_b;
2851#else
2852    /* All code access in ARM is little endian, and there are no loaders
2853     * doing swaps that need to be reversed
2854     */
2855    return 0;
2856#endif
2857}
2858
2859#ifdef CONFIG_USER_ONLY
2860static inline bool arm_cpu_bswap_data(CPUARMState *env)
2861{
2862    return
2863#ifdef TARGET_WORDS_BIGENDIAN
2864       1 ^
2865#endif
2866       arm_cpu_data_is_big_endian(env);
2867}
2868#endif
2869
2870#ifndef CONFIG_USER_ONLY
2871/**
2872 * arm_regime_tbi0:
2873 * @env: CPUARMState
2874 * @mmu_idx: MMU index indicating required translation regime
2875 *
2876 * Extracts the TBI0 value from the appropriate TCR for the current EL
2877 *
2878 * Returns: the TBI0 value.
2879 */
2880uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2881
2882/**
2883 * arm_regime_tbi1:
2884 * @env: CPUARMState
2885 * @mmu_idx: MMU index indicating required translation regime
2886 *
2887 * Extracts the TBI1 value from the appropriate TCR for the current EL
2888 *
2889 * Returns: the TBI1 value.
2890 */
2891uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2892#else
2893/* We can't handle tagged addresses properly in user-only mode */
2894static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2895{
2896    return 0;
2897}
2898
2899static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2900{
2901    return 0;
2902}
2903#endif
2904
2905void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2906                          target_ulong *cs_base, uint32_t *flags);
2907
2908enum {
2909    QEMU_PSCI_CONDUIT_DISABLED = 0,
2910    QEMU_PSCI_CONDUIT_SMC = 1,
2911    QEMU_PSCI_CONDUIT_HVC = 2,
2912};
2913
2914#ifndef CONFIG_USER_ONLY
2915/* Return the address space index to use for a memory access */
2916static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2917{
2918    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2919}
2920
2921/* Return the AddressSpace to use for a memory access
2922 * (which depends on whether the access is S or NS, and whether
2923 * the board gave us a separate AddressSpace for S accesses).
2924 */
2925static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2926{
2927    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2928}
2929#endif
2930
2931/**
2932 * arm_register_pre_el_change_hook:
2933 * Register a hook function which will be called immediately before this
2934 * CPU changes exception level or mode. The hook function will be
2935 * passed a pointer to the ARMCPU and the opaque data pointer passed
2936 * to this function when the hook was registered.
2937 *
2938 * Note that if a pre-change hook is called, any registered post-change hooks
2939 * are guaranteed to subsequently be called.
2940 */
2941void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
2942                                 void *opaque);
2943/**
2944 * arm_register_el_change_hook:
2945 * Register a hook function which will be called immediately after this
2946 * CPU changes exception level or mode. The hook function will be
2947 * passed a pointer to the ARMCPU and the opaque data pointer passed
2948 * to this function when the hook was registered.
2949 *
2950 * Note that any registered hooks registered here are guaranteed to be called
2951 * if pre-change hooks have been.
2952 */
2953void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
2954        *opaque);
2955
2956/**
2957 * aa32_vfp_dreg:
2958 * Return a pointer to the Dn register within env in 32-bit mode.
2959 */
2960static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2961{
2962    return &env->vfp.zregs[regno >> 1].d[regno & 1];
2963}
2964
2965/**
2966 * aa32_vfp_qreg:
2967 * Return a pointer to the Qn register within env in 32-bit mode.
2968 */
2969static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2970{
2971    return &env->vfp.zregs[regno].d[0];
2972}
2973
2974/**
2975 * aa64_vfp_qreg:
2976 * Return a pointer to the Qn register within env in 64-bit mode.
2977 */
2978static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2979{
2980    return &env->vfp.zregs[regno].d[0];
2981}
2982
2983/* Shared between translate-sve.c and sve_helper.c.  */
2984extern const uint64_t pred_esz_masks[4];
2985
2986#endif
2987