qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29
  30/* register banks for CPU modes */
  31#define BANK_USRSYS 0
  32#define BANK_SVC    1
  33#define BANK_ABT    2
  34#define BANK_UND    3
  35#define BANK_IRQ    4
  36#define BANK_FIQ    5
  37#define BANK_HYP    6
  38#define BANK_MON    7
  39
  40static inline bool excp_is_internal(int excp)
  41{
  42    /* Return true if this exception number represents a QEMU-internal
  43     * exception that will not be passed to the guest.
  44     */
  45    return excp == EXCP_INTERRUPT
  46        || excp == EXCP_HLT
  47        || excp == EXCP_DEBUG
  48        || excp == EXCP_HALTED
  49        || excp == EXCP_EXCEPTION_EXIT
  50        || excp == EXCP_KERNEL_TRAP
  51        || excp == EXCP_SEMIHOST;
  52}
  53
  54/* Scale factor for generic timers, ie number of ns per tick.
  55 * This gives a 62.5MHz timer.
  56 */
  57#define GTIMER_SCALE 16
  58
  59/* Bit definitions for the v7M CONTROL register */
  60FIELD(V7M_CONTROL, NPRIV, 0, 1)
  61FIELD(V7M_CONTROL, SPSEL, 1, 1)
  62FIELD(V7M_CONTROL, FPCA, 2, 1)
  63FIELD(V7M_CONTROL, SFPA, 3, 1)
  64
  65/* Bit definitions for v7M exception return payload */
  66FIELD(V7M_EXCRET, ES, 0, 1)
  67FIELD(V7M_EXCRET, RES0, 1, 1)
  68FIELD(V7M_EXCRET, SPSEL, 2, 1)
  69FIELD(V7M_EXCRET, MODE, 3, 1)
  70FIELD(V7M_EXCRET, FTYPE, 4, 1)
  71FIELD(V7M_EXCRET, DCRS, 5, 1)
  72FIELD(V7M_EXCRET, S, 6, 1)
  73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  74
  75/* Minimum value which is a magic number for exception return */
  76#define EXC_RETURN_MIN_MAGIC 0xff000000
  77/* Minimum number which is a magic number for function or exception return
  78 * when using v8M security extension
  79 */
  80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  81
  82/* We use a few fake FSR values for internal purposes in M profile.
  83 * M profile cores don't have A/R format FSRs, but currently our
  84 * get_phys_addr() code assumes A/R profile and reports failures via
  85 * an A/R format FSR value. We then translate that into the proper
  86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  87 * Mostly the FSR values we use for this are those defined for v7PMSA,
  88 * since we share some of that codepath. A few kinds of fault are
  89 * only for M profile and have no A/R equivalent, though, so we have
  90 * to pick a value from the reserved range (which we never otherwise
  91 * generate) to use for these.
  92 * These values will never be visible to the guest.
  93 */
  94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  96
  97/*
  98 * For AArch64, map a given EL to an index in the banked_spsr array.
  99 * Note that this mapping and the AArch32 mapping defined in bank_number()
 100 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 101 * mandated mapping between each other.
 102 */
 103static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 104{
 105    static const unsigned int map[4] = {
 106        [1] = BANK_SVC, /* EL1.  */
 107        [2] = BANK_HYP, /* EL2.  */
 108        [3] = BANK_MON, /* EL3.  */
 109    };
 110    assert(el >= 1 && el <= 3);
 111    return map[el];
 112}
 113
 114/* Map CPU modes onto saved register banks.  */
 115static inline int bank_number(int mode)
 116{
 117    switch (mode) {
 118    case ARM_CPU_MODE_USR:
 119    case ARM_CPU_MODE_SYS:
 120        return BANK_USRSYS;
 121    case ARM_CPU_MODE_SVC:
 122        return BANK_SVC;
 123    case ARM_CPU_MODE_ABT:
 124        return BANK_ABT;
 125    case ARM_CPU_MODE_UND:
 126        return BANK_UND;
 127    case ARM_CPU_MODE_IRQ:
 128        return BANK_IRQ;
 129    case ARM_CPU_MODE_FIQ:
 130        return BANK_FIQ;
 131    case ARM_CPU_MODE_HYP:
 132        return BANK_HYP;
 133    case ARM_CPU_MODE_MON:
 134        return BANK_MON;
 135    }
 136    g_assert_not_reached();
 137}
 138
 139void switch_mode(CPUARMState *, int);
 140void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 141void arm_translate_init(void);
 142
 143enum arm_fprounding {
 144    FPROUNDING_TIEEVEN,
 145    FPROUNDING_POSINF,
 146    FPROUNDING_NEGINF,
 147    FPROUNDING_ZERO,
 148    FPROUNDING_TIEAWAY,
 149    FPROUNDING_ODD
 150};
 151
 152int arm_rmode_to_sf(int rmode);
 153
 154static inline void aarch64_save_sp(CPUARMState *env, int el)
 155{
 156    if (env->pstate & PSTATE_SP) {
 157        env->sp_el[el] = env->xregs[31];
 158    } else {
 159        env->sp_el[0] = env->xregs[31];
 160    }
 161}
 162
 163static inline void aarch64_restore_sp(CPUARMState *env, int el)
 164{
 165    if (env->pstate & PSTATE_SP) {
 166        env->xregs[31] = env->sp_el[el];
 167    } else {
 168        env->xregs[31] = env->sp_el[0];
 169    }
 170}
 171
 172static inline void update_spsel(CPUARMState *env, uint32_t imm)
 173{
 174    unsigned int cur_el = arm_current_el(env);
 175    /* Update PSTATE SPSel bit; this requires us to update the
 176     * working stack pointer in xregs[31].
 177     */
 178    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 179        return;
 180    }
 181    aarch64_save_sp(env, cur_el);
 182    env->pstate = deposit32(env->pstate, 0, 1, imm);
 183
 184    /* We rely on illegal updates to SPsel from EL0 to get trapped
 185     * at translation time.
 186     */
 187    assert(cur_el >= 1 && cur_el <= 3);
 188    aarch64_restore_sp(env, cur_el);
 189}
 190
 191/*
 192 * arm_pamax
 193 * @cpu: ARMCPU
 194 *
 195 * Returns the implementation defined bit-width of physical addresses.
 196 * The ARMv8 reference manuals refer to this as PAMax().
 197 */
 198static inline unsigned int arm_pamax(ARMCPU *cpu)
 199{
 200    static const unsigned int pamax_map[] = {
 201        [0] = 32,
 202        [1] = 36,
 203        [2] = 40,
 204        [3] = 42,
 205        [4] = 44,
 206        [5] = 48,
 207    };
 208    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 209
 210    /* id_aa64mmfr0 is a read-only register so values outside of the
 211     * supported mappings can be considered an implementation error.  */
 212    assert(parange < ARRAY_SIZE(pamax_map));
 213    return pamax_map[parange];
 214}
 215
 216/* Return true if extended addresses are enabled.
 217 * This is always the case if our translation regime is 64 bit,
 218 * but depends on TTBCR.EAE for 32 bit.
 219 */
 220static inline bool extended_addresses_enabled(CPUARMState *env)
 221{
 222    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 223    return arm_el_is_aa64(env, 1) ||
 224           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 225}
 226
 227/* Valid Syndrome Register EC field values */
 228enum arm_exception_class {
 229    EC_UNCATEGORIZED          = 0x00,
 230    EC_WFX_TRAP               = 0x01,
 231    EC_CP15RTTRAP             = 0x03,
 232    EC_CP15RRTTRAP            = 0x04,
 233    EC_CP14RTTRAP             = 0x05,
 234    EC_CP14DTTRAP             = 0x06,
 235    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 236    EC_FPIDTRAP               = 0x08,
 237    EC_CP14RRTTRAP            = 0x0c,
 238    EC_ILLEGALSTATE           = 0x0e,
 239    EC_AA32_SVC               = 0x11,
 240    EC_AA32_HVC               = 0x12,
 241    EC_AA32_SMC               = 0x13,
 242    EC_AA64_SVC               = 0x15,
 243    EC_AA64_HVC               = 0x16,
 244    EC_AA64_SMC               = 0x17,
 245    EC_SYSTEMREGISTERTRAP     = 0x18,
 246    EC_SVEACCESSTRAP          = 0x19,
 247    EC_INSNABORT              = 0x20,
 248    EC_INSNABORT_SAME_EL      = 0x21,
 249    EC_PCALIGNMENT            = 0x22,
 250    EC_DATAABORT              = 0x24,
 251    EC_DATAABORT_SAME_EL      = 0x25,
 252    EC_SPALIGNMENT            = 0x26,
 253    EC_AA32_FPTRAP            = 0x28,
 254    EC_AA64_FPTRAP            = 0x2c,
 255    EC_SERROR                 = 0x2f,
 256    EC_BREAKPOINT             = 0x30,
 257    EC_BREAKPOINT_SAME_EL     = 0x31,
 258    EC_SOFTWARESTEP           = 0x32,
 259    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 260    EC_WATCHPOINT             = 0x34,
 261    EC_WATCHPOINT_SAME_EL     = 0x35,
 262    EC_AA32_BKPT              = 0x38,
 263    EC_VECTORCATCH            = 0x3a,
 264    EC_AA64_BKPT              = 0x3c,
 265};
 266
 267#define ARM_EL_EC_SHIFT 26
 268#define ARM_EL_IL_SHIFT 25
 269#define ARM_EL_ISV_SHIFT 24
 270#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 271#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 272
 273/* Utility functions for constructing various kinds of syndrome value.
 274 * Note that in general we follow the AArch64 syndrome values; in a
 275 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 276 * mode differs slightly, so if we ever implemented Hyp mode then the
 277 * syndrome value would need some massaging on exception entry.
 278 * (One example of this is that AArch64 defaults to IL bit set for
 279 * exceptions which don't specifically indicate information about the
 280 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 281 */
 282static inline uint32_t syn_uncategorized(void)
 283{
 284    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 285}
 286
 287static inline uint32_t syn_aa64_svc(uint32_t imm16)
 288{
 289    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 290}
 291
 292static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 293{
 294    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 295}
 296
 297static inline uint32_t syn_aa64_smc(uint32_t imm16)
 298{
 299    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 300}
 301
 302static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 303{
 304    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 305        | (is_16bit ? 0 : ARM_EL_IL);
 306}
 307
 308static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 309{
 310    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 311}
 312
 313static inline uint32_t syn_aa32_smc(void)
 314{
 315    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 316}
 317
 318static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 319{
 320    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 321}
 322
 323static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 324{
 325    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 326        | (is_16bit ? 0 : ARM_EL_IL);
 327}
 328
 329static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 330                                           int crn, int crm, int rt,
 331                                           int isread)
 332{
 333    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 334        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 335        | (crm << 1) | isread;
 336}
 337
 338static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 339                                        int crn, int crm, int rt, int isread,
 340                                        bool is_16bit)
 341{
 342    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 343        | (is_16bit ? 0 : ARM_EL_IL)
 344        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 345        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 346}
 347
 348static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 349                                        int crn, int crm, int rt, int isread,
 350                                        bool is_16bit)
 351{
 352    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 353        | (is_16bit ? 0 : ARM_EL_IL)
 354        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 355        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 356}
 357
 358static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 359                                         int rt, int rt2, int isread,
 360                                         bool is_16bit)
 361{
 362    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 363        | (is_16bit ? 0 : ARM_EL_IL)
 364        | (cv << 24) | (cond << 20) | (opc1 << 16)
 365        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 366}
 367
 368static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 369                                         int rt, int rt2, int isread,
 370                                         bool is_16bit)
 371{
 372    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 373        | (is_16bit ? 0 : ARM_EL_IL)
 374        | (cv << 24) | (cond << 20) | (opc1 << 16)
 375        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 376}
 377
 378static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 379{
 380    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 381        | (is_16bit ? 0 : ARM_EL_IL)
 382        | (cv << 24) | (cond << 20);
 383}
 384
 385static inline uint32_t syn_sve_access_trap(void)
 386{
 387    return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
 388}
 389
 390static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 391{
 392    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 393        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 394}
 395
 396static inline uint32_t syn_data_abort_no_iss(int same_el,
 397                                             int ea, int cm, int s1ptw,
 398                                             int wnr, int fsc)
 399{
 400    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 401           | ARM_EL_IL
 402           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 403}
 404
 405static inline uint32_t syn_data_abort_with_iss(int same_el,
 406                                               int sas, int sse, int srt,
 407                                               int sf, int ar,
 408                                               int ea, int cm, int s1ptw,
 409                                               int wnr, int fsc,
 410                                               bool is_16bit)
 411{
 412    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 413           | (is_16bit ? 0 : ARM_EL_IL)
 414           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 415           | (sf << 15) | (ar << 14)
 416           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 417}
 418
 419static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 420{
 421    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 422        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 423}
 424
 425static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 426{
 427    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 428        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 429}
 430
 431static inline uint32_t syn_breakpoint(int same_el)
 432{
 433    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 434        | ARM_EL_IL | 0x22;
 435}
 436
 437static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
 438{
 439    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 440           (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
 441           (cv << 24) | (cond << 20) | ti;
 442}
 443
 444/* Update a QEMU watchpoint based on the information the guest has set in the
 445 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 446 */
 447void hw_watchpoint_update(ARMCPU *cpu, int n);
 448/* Update the QEMU watchpoints for every guest watchpoint. This does a
 449 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 450 * suitable for use after migration or on reset.
 451 */
 452void hw_watchpoint_update_all(ARMCPU *cpu);
 453/* Update a QEMU breakpoint based on the information the guest has set in the
 454 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 455 */
 456void hw_breakpoint_update(ARMCPU *cpu, int n);
 457/* Update the QEMU breakpoints for every guest breakpoint. This does a
 458 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 459 * suitable for use after migration or on reset.
 460 */
 461void hw_breakpoint_update_all(ARMCPU *cpu);
 462
 463/* Callback function for checking if a watchpoint should trigger. */
 464bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 465
 466/* Adjust addresses (in BE32 mode) before testing against watchpoint
 467 * addresses.
 468 */
 469vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 470
 471/* Callback function for when a watchpoint or breakpoint triggers. */
 472void arm_debug_excp_handler(CPUState *cs);
 473
 474#ifdef CONFIG_USER_ONLY
 475static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 476{
 477    return false;
 478}
 479#else
 480/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 481bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 482/* Actually handle a PSCI call */
 483void arm_handle_psci_call(ARMCPU *cpu);
 484#endif
 485
 486/**
 487 * arm_clear_exclusive: clear the exclusive monitor
 488 * @env: CPU env
 489 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 490 */
 491static inline void arm_clear_exclusive(CPUARMState *env)
 492{
 493    env->exclusive_addr = -1;
 494}
 495
 496/**
 497 * ARMFaultType: type of an ARM MMU fault
 498 * This corresponds to the v8A pseudocode's Fault enumeration,
 499 * with extensions for QEMU internal conditions.
 500 */
 501typedef enum ARMFaultType {
 502    ARMFault_None,
 503    ARMFault_AccessFlag,
 504    ARMFault_Alignment,
 505    ARMFault_Background,
 506    ARMFault_Domain,
 507    ARMFault_Permission,
 508    ARMFault_Translation,
 509    ARMFault_AddressSize,
 510    ARMFault_SyncExternal,
 511    ARMFault_SyncExternalOnWalk,
 512    ARMFault_SyncParity,
 513    ARMFault_SyncParityOnWalk,
 514    ARMFault_AsyncParity,
 515    ARMFault_AsyncExternal,
 516    ARMFault_Debug,
 517    ARMFault_TLBConflict,
 518    ARMFault_Lockdown,
 519    ARMFault_Exclusive,
 520    ARMFault_ICacheMaint,
 521    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 522    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 523} ARMFaultType;
 524
 525/**
 526 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 527 * @type: Type of fault
 528 * @level: Table walk level (for translation, access flag and permission faults)
 529 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 530 * @s2addr: Address that caused a fault at stage 2
 531 * @stage2: True if we faulted at stage 2
 532 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 533 * @ea: True if we should set the EA (external abort type) bit in syndrome
 534 */
 535typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 536struct ARMMMUFaultInfo {
 537    ARMFaultType type;
 538    target_ulong s2addr;
 539    int level;
 540    int domain;
 541    bool stage2;
 542    bool s1ptw;
 543    bool ea;
 544};
 545
 546/**
 547 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 548 * Compare pseudocode EncodeSDFSC(), though unlike that function
 549 * we set up a whole FSR-format code including domain field and
 550 * putting the high bit of the FSC into bit 10.
 551 */
 552static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 553{
 554    uint32_t fsc;
 555
 556    switch (fi->type) {
 557    case ARMFault_None:
 558        return 0;
 559    case ARMFault_AccessFlag:
 560        fsc = fi->level == 1 ? 0x3 : 0x6;
 561        break;
 562    case ARMFault_Alignment:
 563        fsc = 0x1;
 564        break;
 565    case ARMFault_Permission:
 566        fsc = fi->level == 1 ? 0xd : 0xf;
 567        break;
 568    case ARMFault_Domain:
 569        fsc = fi->level == 1 ? 0x9 : 0xb;
 570        break;
 571    case ARMFault_Translation:
 572        fsc = fi->level == 1 ? 0x5 : 0x7;
 573        break;
 574    case ARMFault_SyncExternal:
 575        fsc = 0x8 | (fi->ea << 12);
 576        break;
 577    case ARMFault_SyncExternalOnWalk:
 578        fsc = fi->level == 1 ? 0xc : 0xe;
 579        fsc |= (fi->ea << 12);
 580        break;
 581    case ARMFault_SyncParity:
 582        fsc = 0x409;
 583        break;
 584    case ARMFault_SyncParityOnWalk:
 585        fsc = fi->level == 1 ? 0x40c : 0x40e;
 586        break;
 587    case ARMFault_AsyncParity:
 588        fsc = 0x408;
 589        break;
 590    case ARMFault_AsyncExternal:
 591        fsc = 0x406 | (fi->ea << 12);
 592        break;
 593    case ARMFault_Debug:
 594        fsc = 0x2;
 595        break;
 596    case ARMFault_TLBConflict:
 597        fsc = 0x400;
 598        break;
 599    case ARMFault_Lockdown:
 600        fsc = 0x404;
 601        break;
 602    case ARMFault_Exclusive:
 603        fsc = 0x405;
 604        break;
 605    case ARMFault_ICacheMaint:
 606        fsc = 0x4;
 607        break;
 608    case ARMFault_Background:
 609        fsc = 0x0;
 610        break;
 611    case ARMFault_QEMU_NSCExec:
 612        fsc = M_FAKE_FSR_NSC_EXEC;
 613        break;
 614    case ARMFault_QEMU_SFault:
 615        fsc = M_FAKE_FSR_SFAULT;
 616        break;
 617    default:
 618        /* Other faults can't occur in a context that requires a
 619         * short-format status code.
 620         */
 621        g_assert_not_reached();
 622    }
 623
 624    fsc |= (fi->domain << 4);
 625    return fsc;
 626}
 627
 628/**
 629 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 630 * Compare pseudocode EncodeLDFSC(), though unlike that function
 631 * we fill in also the LPAE bit 9 of a DFSR format.
 632 */
 633static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 634{
 635    uint32_t fsc;
 636
 637    switch (fi->type) {
 638    case ARMFault_None:
 639        return 0;
 640    case ARMFault_AddressSize:
 641        fsc = fi->level & 3;
 642        break;
 643    case ARMFault_AccessFlag:
 644        fsc = (fi->level & 3) | (0x2 << 2);
 645        break;
 646    case ARMFault_Permission:
 647        fsc = (fi->level & 3) | (0x3 << 2);
 648        break;
 649    case ARMFault_Translation:
 650        fsc = (fi->level & 3) | (0x1 << 2);
 651        break;
 652    case ARMFault_SyncExternal:
 653        fsc = 0x10 | (fi->ea << 12);
 654        break;
 655    case ARMFault_SyncExternalOnWalk:
 656        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
 657        break;
 658    case ARMFault_SyncParity:
 659        fsc = 0x18;
 660        break;
 661    case ARMFault_SyncParityOnWalk:
 662        fsc = (fi->level & 3) | (0x7 << 2);
 663        break;
 664    case ARMFault_AsyncParity:
 665        fsc = 0x19;
 666        break;
 667    case ARMFault_AsyncExternal:
 668        fsc = 0x11 | (fi->ea << 12);
 669        break;
 670    case ARMFault_Alignment:
 671        fsc = 0x21;
 672        break;
 673    case ARMFault_Debug:
 674        fsc = 0x22;
 675        break;
 676    case ARMFault_TLBConflict:
 677        fsc = 0x30;
 678        break;
 679    case ARMFault_Lockdown:
 680        fsc = 0x34;
 681        break;
 682    case ARMFault_Exclusive:
 683        fsc = 0x35;
 684        break;
 685    default:
 686        /* Other faults can't occur in a context that requires a
 687         * long-format status code.
 688         */
 689        g_assert_not_reached();
 690    }
 691
 692    fsc |= 1 << 9;
 693    return fsc;
 694}
 695
 696static inline bool arm_extabort_type(MemTxResult result)
 697{
 698    /* The EA bit in syndromes and fault status registers is an
 699     * IMPDEF classification of external aborts. ARM implementations
 700     * usually use this to indicate AXI bus Decode error (0) or
 701     * Slave error (1); in QEMU we follow that.
 702     */
 703    return result != MEMTX_DECODE_ERROR;
 704}
 705
 706/* Do a page table walk and add page to TLB if possible */
 707bool arm_tlb_fill(CPUState *cpu, vaddr address,
 708                  MMUAccessType access_type, int mmu_idx,
 709                  ARMMMUFaultInfo *fi);
 710
 711/* Return true if the stage 1 translation regime is using LPAE format page
 712 * tables */
 713bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 714
 715/* Raise a data fault alignment exception for the specified virtual address */
 716void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 717                                 MMUAccessType access_type,
 718                                 int mmu_idx, uintptr_t retaddr);
 719
 720/* arm_cpu_do_transaction_failed: handle a memory system error response
 721 * (eg "no device/memory present at address") by raising an external abort
 722 * exception
 723 */
 724void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 725                                   vaddr addr, unsigned size,
 726                                   MMUAccessType access_type,
 727                                   int mmu_idx, MemTxAttrs attrs,
 728                                   MemTxResult response, uintptr_t retaddr);
 729
 730/* Call any registered EL change hooks */
 731static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 732{
 733    ARMELChangeHook *hook, *next;
 734    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 735        hook->hook(cpu, hook->opaque);
 736    }
 737}
 738static inline void arm_call_el_change_hook(ARMCPU *cpu)
 739{
 740    ARMELChangeHook *hook, *next;
 741    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 742        hook->hook(cpu, hook->opaque);
 743    }
 744}
 745
 746/* Return true if this address translation regime is secure */
 747static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 748{
 749    switch (mmu_idx) {
 750    case ARMMMUIdx_S12NSE0:
 751    case ARMMMUIdx_S12NSE1:
 752    case ARMMMUIdx_S1NSE0:
 753    case ARMMMUIdx_S1NSE1:
 754    case ARMMMUIdx_S1E2:
 755    case ARMMMUIdx_S2NS:
 756    case ARMMMUIdx_MPrivNegPri:
 757    case ARMMMUIdx_MUserNegPri:
 758    case ARMMMUIdx_MPriv:
 759    case ARMMMUIdx_MUser:
 760        return false;
 761    case ARMMMUIdx_S1E3:
 762    case ARMMMUIdx_S1SE0:
 763    case ARMMMUIdx_S1SE1:
 764    case ARMMMUIdx_MSPrivNegPri:
 765    case ARMMMUIdx_MSUserNegPri:
 766    case ARMMMUIdx_MSPriv:
 767    case ARMMMUIdx_MSUser:
 768        return true;
 769    default:
 770        g_assert_not_reached();
 771    }
 772}
 773
 774/* Return the FSR value for a debug exception (watchpoint, hardware
 775 * breakpoint or BKPT insn) targeting the specified exception level.
 776 */
 777static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
 778{
 779    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 780    int target_el = arm_debug_target_el(env);
 781    bool using_lpae = false;
 782
 783    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 784        using_lpae = true;
 785    } else {
 786        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 787            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
 788            using_lpae = true;
 789        }
 790    }
 791
 792    if (using_lpae) {
 793        return arm_fi_to_lfsc(&fi);
 794    } else {
 795        return arm_fi_to_sfsc(&fi);
 796    }
 797}
 798
 799#endif
 800