qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/kvm.h"
  21#include "kvm_arm.h"
  22#include "cpu.h"
  23#include "trace.h"
  24#include "internals.h"
  25#include "hw/arm/arm.h"
  26#include "hw/pci/pci.h"
  27#include "exec/memattrs.h"
  28#include "exec/address-spaces.h"
  29#include "hw/boards.h"
  30#include "qemu/log.h"
  31
  32const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  33    KVM_CAP_LAST_INFO
  34};
  35
  36static bool cap_has_mp_state;
  37
  38static ARMHostCPUFeatures arm_host_cpu_features;
  39
  40int kvm_arm_vcpu_init(CPUState *cs)
  41{
  42    ARMCPU *cpu = ARM_CPU(cs);
  43    struct kvm_vcpu_init init;
  44
  45    init.target = cpu->kvm_target;
  46    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  47
  48    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  49}
  50
  51bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  52                                      int *fdarray,
  53                                      struct kvm_vcpu_init *init)
  54{
  55    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
  56
  57    kvmfd = qemu_open("/dev/kvm", O_RDWR);
  58    if (kvmfd < 0) {
  59        goto err;
  60    }
  61    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  62    if (vmfd < 0) {
  63        goto err;
  64    }
  65    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  66    if (cpufd < 0) {
  67        goto err;
  68    }
  69
  70    if (!init) {
  71        /* Caller doesn't want the VCPU to be initialized, so skip it */
  72        goto finish;
  73    }
  74
  75    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
  76    if (ret >= 0) {
  77        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  78        if (ret < 0) {
  79            goto err;
  80        }
  81    } else if (cpus_to_try) {
  82        /* Old kernel which doesn't know about the
  83         * PREFERRED_TARGET ioctl: we know it will only support
  84         * creating one kind of guest CPU which is its preferred
  85         * CPU type.
  86         */
  87        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
  88            init->target = *cpus_to_try++;
  89            memset(init->features, 0, sizeof(init->features));
  90            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  91            if (ret >= 0) {
  92                break;
  93            }
  94        }
  95        if (ret < 0) {
  96            goto err;
  97        }
  98    } else {
  99        /* Treat a NULL cpus_to_try argument the same as an empty
 100         * list, which means we will fail the call since this must
 101         * be an old kernel which doesn't support PREFERRED_TARGET.
 102         */
 103        goto err;
 104    }
 105
 106finish:
 107    fdarray[0] = kvmfd;
 108    fdarray[1] = vmfd;
 109    fdarray[2] = cpufd;
 110
 111    return true;
 112
 113err:
 114    if (cpufd >= 0) {
 115        close(cpufd);
 116    }
 117    if (vmfd >= 0) {
 118        close(vmfd);
 119    }
 120    if (kvmfd >= 0) {
 121        close(kvmfd);
 122    }
 123
 124    return false;
 125}
 126
 127void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 128{
 129    int i;
 130
 131    for (i = 2; i >= 0; i--) {
 132        close(fdarray[i]);
 133    }
 134}
 135
 136void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 137{
 138    CPUARMState *env = &cpu->env;
 139
 140    if (!arm_host_cpu_features.dtb_compatible) {
 141        if (!kvm_enabled() ||
 142            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 143            /* We can't report this error yet, so flag that we need to
 144             * in arm_cpu_realizefn().
 145             */
 146            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 147            cpu->host_cpu_probe_failed = true;
 148            return;
 149        }
 150    }
 151
 152    cpu->kvm_target = arm_host_cpu_features.target;
 153    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 154    env->features = arm_host_cpu_features.features;
 155}
 156
 157int kvm_arch_init(MachineState *ms, KVMState *s)
 158{
 159    /* For ARM interrupt delivery is always asynchronous,
 160     * whether we are using an in-kernel VGIC or not.
 161     */
 162    kvm_async_interrupts_allowed = true;
 163
 164    /*
 165     * PSCI wakes up secondary cores, so we always need to
 166     * have vCPUs waiting in kernel space
 167     */
 168    kvm_halt_in_kernel_allowed = true;
 169
 170    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 171
 172    return 0;
 173}
 174
 175unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 176{
 177    return cpu->cpu_index;
 178}
 179
 180/* We track all the KVM devices which need their memory addresses
 181 * passing to the kernel in a list of these structures.
 182 * When board init is complete we run through the list and
 183 * tell the kernel the base addresses of the memory regions.
 184 * We use a MemoryListener to track mapping and unmapping of
 185 * the regions during board creation, so the board models don't
 186 * need to do anything special for the KVM case.
 187 *
 188 * Sometimes the address must be OR'ed with some other fields
 189 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 190 * @kda_addr_ormask aims at storing the value of those fields.
 191 */
 192typedef struct KVMDevice {
 193    struct kvm_arm_device_addr kda;
 194    struct kvm_device_attr kdattr;
 195    uint64_t kda_addr_ormask;
 196    MemoryRegion *mr;
 197    QSLIST_ENTRY(KVMDevice) entries;
 198    int dev_fd;
 199} KVMDevice;
 200
 201static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
 202
 203static void kvm_arm_devlistener_add(MemoryListener *listener,
 204                                    MemoryRegionSection *section)
 205{
 206    KVMDevice *kd;
 207
 208    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 209        if (section->mr == kd->mr) {
 210            kd->kda.addr = section->offset_within_address_space;
 211        }
 212    }
 213}
 214
 215static void kvm_arm_devlistener_del(MemoryListener *listener,
 216                                    MemoryRegionSection *section)
 217{
 218    KVMDevice *kd;
 219
 220    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 221        if (section->mr == kd->mr) {
 222            kd->kda.addr = -1;
 223        }
 224    }
 225}
 226
 227static MemoryListener devlistener = {
 228    .region_add = kvm_arm_devlistener_add,
 229    .region_del = kvm_arm_devlistener_del,
 230};
 231
 232static void kvm_arm_set_device_addr(KVMDevice *kd)
 233{
 234    struct kvm_device_attr *attr = &kd->kdattr;
 235    int ret;
 236
 237    /* If the device control API is available and we have a device fd on the
 238     * KVMDevice struct, let's use the newer API
 239     */
 240    if (kd->dev_fd >= 0) {
 241        uint64_t addr = kd->kda.addr;
 242
 243        addr |= kd->kda_addr_ormask;
 244        attr->addr = (uintptr_t)&addr;
 245        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 246    } else {
 247        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 248    }
 249
 250    if (ret < 0) {
 251        fprintf(stderr, "Failed to set device address: %s\n",
 252                strerror(-ret));
 253        abort();
 254    }
 255}
 256
 257static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 258{
 259    KVMDevice *kd, *tkd;
 260
 261    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 262        if (kd->kda.addr != -1) {
 263            kvm_arm_set_device_addr(kd);
 264        }
 265        memory_region_unref(kd->mr);
 266        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 267        g_free(kd);
 268    }
 269    memory_listener_unregister(&devlistener);
 270}
 271
 272static Notifier notify = {
 273    .notify = kvm_arm_machine_init_done,
 274};
 275
 276void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 277                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 278{
 279    KVMDevice *kd;
 280
 281    if (!kvm_irqchip_in_kernel()) {
 282        return;
 283    }
 284
 285    if (QSLIST_EMPTY(&kvm_devices_head)) {
 286        memory_listener_register(&devlistener, &address_space_memory);
 287        qemu_add_machine_init_done_notifier(&notify);
 288    }
 289    kd = g_new0(KVMDevice, 1);
 290    kd->mr = mr;
 291    kd->kda.id = devid;
 292    kd->kda.addr = -1;
 293    kd->kdattr.flags = 0;
 294    kd->kdattr.group = group;
 295    kd->kdattr.attr = attr;
 296    kd->dev_fd = dev_fd;
 297    kd->kda_addr_ormask = addr_ormask;
 298    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 299    memory_region_ref(kd->mr);
 300}
 301
 302static int compare_u64(const void *a, const void *b)
 303{
 304    if (*(uint64_t *)a > *(uint64_t *)b) {
 305        return 1;
 306    }
 307    if (*(uint64_t *)a < *(uint64_t *)b) {
 308        return -1;
 309    }
 310    return 0;
 311}
 312
 313/* Initialize the CPUState's cpreg list according to the kernel's
 314 * definition of what CPU registers it knows about (and throw away
 315 * the previous TCG-created cpreg list).
 316 */
 317int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 318{
 319    struct kvm_reg_list rl;
 320    struct kvm_reg_list *rlp;
 321    int i, ret, arraylen;
 322    CPUState *cs = CPU(cpu);
 323
 324    rl.n = 0;
 325    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 326    if (ret != -E2BIG) {
 327        return ret;
 328    }
 329    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 330    rlp->n = rl.n;
 331    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 332    if (ret) {
 333        goto out;
 334    }
 335    /* Sort the list we get back from the kernel, since cpreg_tuples
 336     * must be in strictly ascending order.
 337     */
 338    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 339
 340    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 341        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 342            continue;
 343        }
 344        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 345        case KVM_REG_SIZE_U32:
 346        case KVM_REG_SIZE_U64:
 347            break;
 348        default:
 349            fprintf(stderr, "Can't handle size of register in kernel list\n");
 350            ret = -EINVAL;
 351            goto out;
 352        }
 353
 354        arraylen++;
 355    }
 356
 357    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 358    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 359    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 360                                         arraylen);
 361    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 362                                        arraylen);
 363    cpu->cpreg_array_len = arraylen;
 364    cpu->cpreg_vmstate_array_len = arraylen;
 365
 366    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 367        uint64_t regidx = rlp->reg[i];
 368        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 369            continue;
 370        }
 371        cpu->cpreg_indexes[arraylen] = regidx;
 372        arraylen++;
 373    }
 374    assert(cpu->cpreg_array_len == arraylen);
 375
 376    if (!write_kvmstate_to_list(cpu)) {
 377        /* Shouldn't happen unless kernel is inconsistent about
 378         * what registers exist.
 379         */
 380        fprintf(stderr, "Initial read of kernel register state failed\n");
 381        ret = -EINVAL;
 382        goto out;
 383    }
 384
 385out:
 386    g_free(rlp);
 387    return ret;
 388}
 389
 390bool write_kvmstate_to_list(ARMCPU *cpu)
 391{
 392    CPUState *cs = CPU(cpu);
 393    int i;
 394    bool ok = true;
 395
 396    for (i = 0; i < cpu->cpreg_array_len; i++) {
 397        struct kvm_one_reg r;
 398        uint64_t regidx = cpu->cpreg_indexes[i];
 399        uint32_t v32;
 400        int ret;
 401
 402        r.id = regidx;
 403
 404        switch (regidx & KVM_REG_SIZE_MASK) {
 405        case KVM_REG_SIZE_U32:
 406            r.addr = (uintptr_t)&v32;
 407            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 408            if (!ret) {
 409                cpu->cpreg_values[i] = v32;
 410            }
 411            break;
 412        case KVM_REG_SIZE_U64:
 413            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 414            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 415            break;
 416        default:
 417            abort();
 418        }
 419        if (ret) {
 420            ok = false;
 421        }
 422    }
 423    return ok;
 424}
 425
 426bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 427{
 428    CPUState *cs = CPU(cpu);
 429    int i;
 430    bool ok = true;
 431
 432    for (i = 0; i < cpu->cpreg_array_len; i++) {
 433        struct kvm_one_reg r;
 434        uint64_t regidx = cpu->cpreg_indexes[i];
 435        uint32_t v32;
 436        int ret;
 437
 438        if (kvm_arm_cpreg_level(regidx) > level) {
 439            continue;
 440        }
 441
 442        r.id = regidx;
 443        switch (regidx & KVM_REG_SIZE_MASK) {
 444        case KVM_REG_SIZE_U32:
 445            v32 = cpu->cpreg_values[i];
 446            r.addr = (uintptr_t)&v32;
 447            break;
 448        case KVM_REG_SIZE_U64:
 449            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 450            break;
 451        default:
 452            abort();
 453        }
 454        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 455        if (ret) {
 456            /* We might fail for "unknown register" and also for
 457             * "you tried to set a register which is constant with
 458             * a different value from what it actually contains".
 459             */
 460            ok = false;
 461        }
 462    }
 463    return ok;
 464}
 465
 466void kvm_arm_reset_vcpu(ARMCPU *cpu)
 467{
 468    int ret;
 469
 470    /* Re-init VCPU so that all registers are set to
 471     * their respective reset values.
 472     */
 473    ret = kvm_arm_vcpu_init(CPU(cpu));
 474    if (ret < 0) {
 475        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 476        abort();
 477    }
 478    if (!write_kvmstate_to_list(cpu)) {
 479        fprintf(stderr, "write_kvmstate_to_list failed\n");
 480        abort();
 481    }
 482}
 483
 484/*
 485 * Update KVM's MP_STATE based on what QEMU thinks it is
 486 */
 487int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 488{
 489    if (cap_has_mp_state) {
 490        struct kvm_mp_state mp_state = {
 491            .mp_state = (cpu->power_state == PSCI_OFF) ?
 492            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 493        };
 494        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 495        if (ret) {
 496            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 497                    __func__, ret, strerror(-ret));
 498            return -1;
 499        }
 500    }
 501
 502    return 0;
 503}
 504
 505/*
 506 * Sync the KVM MP_STATE into QEMU
 507 */
 508int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 509{
 510    if (cap_has_mp_state) {
 511        struct kvm_mp_state mp_state;
 512        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 513        if (ret) {
 514            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 515                    __func__, ret, strerror(-ret));
 516            abort();
 517        }
 518        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 519            PSCI_OFF : PSCI_ON;
 520    }
 521
 522    return 0;
 523}
 524
 525void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 526{
 527}
 528
 529MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 530{
 531    ARMCPU *cpu;
 532    uint32_t switched_level;
 533
 534    if (kvm_irqchip_in_kernel()) {
 535        /*
 536         * We only need to sync timer states with user-space interrupt
 537         * controllers, so return early and save cycles if we don't.
 538         */
 539        return MEMTXATTRS_UNSPECIFIED;
 540    }
 541
 542    cpu = ARM_CPU(cs);
 543
 544    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 545    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 546        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 547
 548        qemu_mutex_lock_iothread();
 549
 550        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 551            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 552                         !!(run->s.regs.device_irq_level &
 553                            KVM_ARM_DEV_EL1_VTIMER));
 554            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 555        }
 556
 557        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 558            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 559                         !!(run->s.regs.device_irq_level &
 560                            KVM_ARM_DEV_EL1_PTIMER));
 561            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 562        }
 563
 564        if (switched_level & KVM_ARM_DEV_PMU) {
 565            qemu_set_irq(cpu->pmu_interrupt,
 566                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 567            switched_level &= ~KVM_ARM_DEV_PMU;
 568        }
 569
 570        if (switched_level) {
 571            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 572                          __func__, switched_level);
 573        }
 574
 575        /* We also mark unknown levels as processed to not waste cycles */
 576        cpu->device_irq_level = run->s.regs.device_irq_level;
 577        qemu_mutex_unlock_iothread();
 578    }
 579
 580    return MEMTXATTRS_UNSPECIFIED;
 581}
 582
 583
 584int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 585{
 586    int ret = 0;
 587
 588    switch (run->exit_reason) {
 589    case KVM_EXIT_DEBUG:
 590        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 591            ret = EXCP_DEBUG;
 592        } /* otherwise return to guest */
 593        break;
 594    default:
 595        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 596                      __func__, run->exit_reason);
 597        break;
 598    }
 599    return ret;
 600}
 601
 602bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 603{
 604    return true;
 605}
 606
 607int kvm_arch_process_async_events(CPUState *cs)
 608{
 609    return 0;
 610}
 611
 612/* The #ifdef protections are until 32bit headers are imported and can
 613 * be removed once both 32 and 64 bit reach feature parity.
 614 */
 615void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 616{
 617#ifdef KVM_GUESTDBG_USE_SW_BP
 618    if (kvm_sw_breakpoints_active(cs)) {
 619        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 620    }
 621#endif
 622#ifdef KVM_GUESTDBG_USE_HW
 623    if (kvm_arm_hw_debug_active(cs)) {
 624        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 625        kvm_arm_copy_hw_debug_data(&dbg->arch);
 626    }
 627#endif
 628}
 629
 630void kvm_arch_init_irq_routing(KVMState *s)
 631{
 632}
 633
 634int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 635{
 636     if (machine_kernel_irqchip_split(ms)) {
 637         perror("-machine kernel_irqchip=split is not supported on ARM.");
 638         exit(1);
 639    }
 640
 641    /* If we can create the VGIC using the newer device control API, we
 642     * let the device do this when it initializes itself, otherwise we
 643     * fall back to the old API */
 644    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 645}
 646
 647int kvm_arm_vgic_probe(void)
 648{
 649    if (kvm_create_device(kvm_state,
 650                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 651        return 3;
 652    } else if (kvm_create_device(kvm_state,
 653                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 654        return 2;
 655    } else {
 656        return 0;
 657    }
 658}
 659
 660int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 661                             uint64_t address, uint32_t data, PCIDevice *dev)
 662{
 663    AddressSpace *as = pci_device_iommu_address_space(dev);
 664    hwaddr xlat, len, doorbell_gpa;
 665    MemoryRegionSection mrs;
 666    MemoryRegion *mr;
 667    int ret = 1;
 668
 669    if (as == &address_space_memory) {
 670        return 0;
 671    }
 672
 673    /* MSI doorbell address is translated by an IOMMU */
 674
 675    rcu_read_lock();
 676    mr = address_space_translate(as, address, &xlat, &len, true,
 677                                 MEMTXATTRS_UNSPECIFIED);
 678    if (!mr) {
 679        goto unlock;
 680    }
 681    mrs = memory_region_find(mr, xlat, 1);
 682    if (!mrs.mr) {
 683        goto unlock;
 684    }
 685
 686    doorbell_gpa = mrs.offset_within_address_space;
 687    memory_region_unref(mrs.mr);
 688
 689    route->u.msi.address_lo = doorbell_gpa;
 690    route->u.msi.address_hi = doorbell_gpa >> 32;
 691
 692    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
 693
 694    ret = 0;
 695
 696unlock:
 697    rcu_read_unlock();
 698    return ret;
 699}
 700
 701int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
 702                                int vector, PCIDevice *dev)
 703{
 704    return 0;
 705}
 706
 707int kvm_arch_release_virq_post(int virq)
 708{
 709    return 0;
 710}
 711
 712int kvm_arch_msi_data_to_gsi(uint32_t data)
 713{
 714    return (data - 32) & 0xffff;
 715}
 716