qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/vfio/vfio-calxeda-xgmac.h"
  38#include "hw/vfio/vfio-amd-xgbe.h"
  39#include "hw/display/ramfb.h"
  40#include "hw/devices.h"
  41#include "net/net.h"
  42#include "sysemu/device_tree.h"
  43#include "sysemu/numa.h"
  44#include "sysemu/sysemu.h"
  45#include "sysemu/kvm.h"
  46#include "hw/compat.h"
  47#include "hw/loader.h"
  48#include "exec/address-spaces.h"
  49#include "qemu/bitops.h"
  50#include "qemu/error-report.h"
  51#include "hw/pci-host/gpex.h"
  52#include "hw/arm/sysbus-fdt.h"
  53#include "hw/platform-bus.h"
  54#include "hw/arm/fdt.h"
  55#include "hw/intc/arm_gic.h"
  56#include "hw/intc/arm_gicv3_common.h"
  57#include "kvm_arm.h"
  58#include "hw/smbios/smbios.h"
  59#include "qapi/visitor.h"
  60#include "standard-headers/linux/input.h"
  61#include "hw/arm/smmuv3.h"
  62
  63#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  64    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  65                                                    void *data) \
  66    { \
  67        MachineClass *mc = MACHINE_CLASS(oc); \
  68        virt_machine_##major##_##minor##_options(mc); \
  69        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  70        if (latest) { \
  71            mc->alias = "virt"; \
  72        } \
  73    } \
  74    static const TypeInfo machvirt_##major##_##minor##_info = { \
  75        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  76        .parent = TYPE_VIRT_MACHINE, \
  77        .instance_init = virt_##major##_##minor##_instance_init, \
  78        .class_init = virt_##major##_##minor##_class_init, \
  79    }; \
  80    static void machvirt_machine_##major##_##minor##_init(void) \
  81    { \
  82        type_register_static(&machvirt_##major##_##minor##_info); \
  83    } \
  84    type_init(machvirt_machine_##major##_##minor##_init);
  85
  86#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
  87    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
  88#define DEFINE_VIRT_MACHINE(major, minor) \
  89    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
  90
  91
  92/* Number of external interrupt lines to configure the GIC with */
  93#define NUM_IRQS 256
  94
  95#define PLATFORM_BUS_NUM_IRQS 64
  96
  97/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
  98 * RAM can go up to the 256GB mark, leaving 256GB of the physical
  99 * address space unallocated and free for future use between 256G and 512G.
 100 * If we need to provide more RAM to VMs in the future then we need to:
 101 *  * allocate a second bank of RAM starting at 2TB and working up
 102 *  * fix the DT and ACPI table generation code in QEMU to correctly
 103 *    report two split lumps of RAM to the guest
 104 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 105 * (We don't want to fill all the way up to 512GB with RAM because
 106 * we might want it for non-RAM purposes later. Conversely it seems
 107 * reasonable to assume that anybody configuring a VM with a quarter
 108 * of a terabyte of RAM will be doing it on a host with more than a
 109 * terabyte of physical address space.)
 110 */
 111#define RAMLIMIT_GB 255
 112#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 113
 114/* Addresses and sizes of our components.
 115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 116 * 128MB..256MB is used for miscellaneous device I/O.
 117 * 256MB..1GB is reserved for possible future PCI support (ie where the
 118 * PCI memory window will go if we add a PCI host controller).
 119 * 1GB and up is RAM (which may happily spill over into the
 120 * high memory region beyond 4GB).
 121 * This represents a compromise between how much RAM can be given to
 122 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 123 * Note that devices should generally be placed at multiples of 0x10000,
 124 * to accommodate guests using 64K pages.
 125 */
 126static const MemMapEntry a15memmap[] = {
 127    /* Space up to 0x8000000 is reserved for a boot ROM */
 128    [VIRT_FLASH] =              {          0, 0x08000000 },
 129    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 130    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 131    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 132    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 133    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 134    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 135    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 136    /* This redistributor space allows up to 2*64kB*123 CPUs */
 137    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 138    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 139    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 140    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 141    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 142    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 143    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 144    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 145    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 146    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 147    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 148    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 149    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 150    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 151    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 152    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 153    [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
 154    [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
 155    /* Second PCIe window, 512GB wide at the 512GB boundary */
 156    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 157};
 158
 159static const int a15irqmap[] = {
 160    [VIRT_UART] = 1,
 161    [VIRT_RTC] = 2,
 162    [VIRT_PCIE] = 3, /* ... to 6 */
 163    [VIRT_GPIO] = 7,
 164    [VIRT_SECURE_UART] = 8,
 165    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 166    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 167    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 168    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 169};
 170
 171static const char *valid_cpus[] = {
 172    ARM_CPU_TYPE_NAME("cortex-a15"),
 173    ARM_CPU_TYPE_NAME("cortex-a53"),
 174    ARM_CPU_TYPE_NAME("cortex-a57"),
 175    ARM_CPU_TYPE_NAME("host"),
 176    ARM_CPU_TYPE_NAME("max"),
 177};
 178
 179static bool cpu_type_valid(const char *cpu)
 180{
 181    int i;
 182
 183    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 184        if (strcmp(cpu, valid_cpus[i]) == 0) {
 185            return true;
 186        }
 187    }
 188    return false;
 189}
 190
 191static void create_fdt(VirtMachineState *vms)
 192{
 193    void *fdt = create_device_tree(&vms->fdt_size);
 194
 195    if (!fdt) {
 196        error_report("create_device_tree() failed");
 197        exit(1);
 198    }
 199
 200    vms->fdt = fdt;
 201
 202    /* Header */
 203    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 204    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 205    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 206
 207    /* /chosen must exist for load_dtb to fill in necessary properties later */
 208    qemu_fdt_add_subnode(fdt, "/chosen");
 209
 210    /* Clock node, for the benefit of the UART. The kernel device tree
 211     * binding documentation claims the PL011 node clock properties are
 212     * optional but in practice if you omit them the kernel refuses to
 213     * probe for the device.
 214     */
 215    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 216    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 217    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 218    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 219    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 220    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 221                                "clk24mhz");
 222    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 223
 224    if (have_numa_distance) {
 225        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 226        uint32_t *matrix = g_malloc0(size);
 227        int idx, i, j;
 228
 229        for (i = 0; i < nb_numa_nodes; i++) {
 230            for (j = 0; j < nb_numa_nodes; j++) {
 231                idx = (i * nb_numa_nodes + j) * 3;
 232                matrix[idx + 0] = cpu_to_be32(i);
 233                matrix[idx + 1] = cpu_to_be32(j);
 234                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 235            }
 236        }
 237
 238        qemu_fdt_add_subnode(fdt, "/distance-map");
 239        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 240                                "numa-distance-map-v1");
 241        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 242                         matrix, size);
 243        g_free(matrix);
 244    }
 245}
 246
 247static void fdt_add_timer_nodes(const VirtMachineState *vms)
 248{
 249    /* On real hardware these interrupts are level-triggered.
 250     * On KVM they were edge-triggered before host kernel version 4.4,
 251     * and level-triggered afterwards.
 252     * On emulated QEMU they are level-triggered.
 253     *
 254     * Getting the DTB info about them wrong is awkward for some
 255     * guest kernels:
 256     *  pre-4.8 ignore the DT and leave the interrupt configured
 257     *   with whatever the GIC reset value (or the bootloader) left it at
 258     *  4.8 before rc6 honour the incorrect data by programming it back
 259     *   into the GIC, causing problems
 260     *  4.8rc6 and later ignore the DT and always write "level triggered"
 261     *   into the GIC
 262     *
 263     * For backwards-compatibility, virt-2.8 and earlier will continue
 264     * to say these are edge-triggered, but later machines will report
 265     * the correct information.
 266     */
 267    ARMCPU *armcpu;
 268    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 269    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 270
 271    if (vmc->claim_edge_triggered_timers) {
 272        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 273    }
 274
 275    if (vms->gic_version == 2) {
 276        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 277                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 278                             (1 << vms->smp_cpus) - 1);
 279    }
 280
 281    qemu_fdt_add_subnode(vms->fdt, "/timer");
 282
 283    armcpu = ARM_CPU(qemu_get_cpu(0));
 284    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 285        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 286        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 287                         compat, sizeof(compat));
 288    } else {
 289        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 290                                "arm,armv7-timer");
 291    }
 292    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 293    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 294                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 295                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 296                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 297                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 298}
 299
 300static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 301{
 302    int cpu;
 303    int addr_cells = 1;
 304    const MachineState *ms = MACHINE(vms);
 305
 306    /*
 307     * From Documentation/devicetree/bindings/arm/cpus.txt
 308     *  On ARM v8 64-bit systems value should be set to 2,
 309     *  that corresponds to the MPIDR_EL1 register size.
 310     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 311     *  in the system, #address-cells can be set to 1, since
 312     *  MPIDR_EL1[63:32] bits are not used for CPUs
 313     *  identification.
 314     *
 315     *  Here we actually don't know whether our system is 32- or 64-bit one.
 316     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 317     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 318     */
 319    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 320        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 321
 322        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 323            addr_cells = 2;
 324            break;
 325        }
 326    }
 327
 328    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 329    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 330    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 331
 332    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 333        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 334        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 335        CPUState *cs = CPU(armcpu);
 336
 337        qemu_fdt_add_subnode(vms->fdt, nodename);
 338        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 339        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 340                                    armcpu->dtb_compatible);
 341
 342        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 343            && vms->smp_cpus > 1) {
 344            qemu_fdt_setprop_string(vms->fdt, nodename,
 345                                        "enable-method", "psci");
 346        }
 347
 348        if (addr_cells == 2) {
 349            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 350                                 armcpu->mp_affinity);
 351        } else {
 352            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 353                                  armcpu->mp_affinity);
 354        }
 355
 356        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 357            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 358                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 359        }
 360
 361        g_free(nodename);
 362    }
 363}
 364
 365static void fdt_add_its_gic_node(VirtMachineState *vms)
 366{
 367    char *nodename;
 368
 369    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 370    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 371                               vms->memmap[VIRT_GIC_ITS].base);
 372    qemu_fdt_add_subnode(vms->fdt, nodename);
 373    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 374                            "arm,gic-v3-its");
 375    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 376    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 377                                 2, vms->memmap[VIRT_GIC_ITS].base,
 378                                 2, vms->memmap[VIRT_GIC_ITS].size);
 379    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 380    g_free(nodename);
 381}
 382
 383static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 384{
 385    char *nodename;
 386
 387    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 388                               vms->memmap[VIRT_GIC_V2M].base);
 389    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 390    qemu_fdt_add_subnode(vms->fdt, nodename);
 391    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 392                            "arm,gic-v2m-frame");
 393    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 394    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 395                                 2, vms->memmap[VIRT_GIC_V2M].base,
 396                                 2, vms->memmap[VIRT_GIC_V2M].size);
 397    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 398    g_free(nodename);
 399}
 400
 401static void fdt_add_gic_node(VirtMachineState *vms)
 402{
 403    char *nodename;
 404
 405    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 406    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 407
 408    nodename = g_strdup_printf("/intc@%" PRIx64,
 409                               vms->memmap[VIRT_GIC_DIST].base);
 410    qemu_fdt_add_subnode(vms->fdt, nodename);
 411    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
 412    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
 413    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
 414    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
 415    qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
 416    if (vms->gic_version == 3) {
 417        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 418
 419        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 420                                "arm,gic-v3");
 421
 422        qemu_fdt_setprop_cell(vms->fdt, nodename,
 423                              "#redistributor-regions", nb_redist_regions);
 424
 425        if (nb_redist_regions == 1) {
 426            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 427                                         2, vms->memmap[VIRT_GIC_DIST].base,
 428                                         2, vms->memmap[VIRT_GIC_DIST].size,
 429                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 430                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 431        } else {
 432            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 433                                         2, vms->memmap[VIRT_GIC_DIST].base,
 434                                         2, vms->memmap[VIRT_GIC_DIST].size,
 435                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 436                                         2, vms->memmap[VIRT_GIC_REDIST].size,
 437                                         2, vms->memmap[VIRT_GIC_REDIST2].base,
 438                                         2, vms->memmap[VIRT_GIC_REDIST2].size);
 439        }
 440
 441        if (vms->virt) {
 442            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 443                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
 444                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 445        }
 446    } else {
 447        /* 'cortex-a15-gic' means 'GIC v2' */
 448        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 449                                "arm,cortex-a15-gic");
 450        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 451                                      2, vms->memmap[VIRT_GIC_DIST].base,
 452                                      2, vms->memmap[VIRT_GIC_DIST].size,
 453                                      2, vms->memmap[VIRT_GIC_CPU].base,
 454                                      2, vms->memmap[VIRT_GIC_CPU].size);
 455    }
 456
 457    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
 458    g_free(nodename);
 459}
 460
 461static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 462{
 463    CPUState *cpu;
 464    ARMCPU *armcpu;
 465    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 466
 467    CPU_FOREACH(cpu) {
 468        armcpu = ARM_CPU(cpu);
 469        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 470            return;
 471        }
 472        if (kvm_enabled()) {
 473            if (kvm_irqchip_in_kernel()) {
 474                kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
 475            }
 476            kvm_arm_pmu_init(cpu);
 477        }
 478    }
 479
 480    if (vms->gic_version == 2) {
 481        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 482                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 483                             (1 << vms->smp_cpus) - 1);
 484    }
 485
 486    armcpu = ARM_CPU(qemu_get_cpu(0));
 487    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 488    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 489        const char compat[] = "arm,armv8-pmuv3";
 490        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 491                         compat, sizeof(compat));
 492        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 493                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 494    }
 495}
 496
 497static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 498{
 499    const char *itsclass = its_class_name();
 500    DeviceState *dev;
 501
 502    if (!itsclass) {
 503        /* Do nothing if not supported */
 504        return;
 505    }
 506
 507    dev = qdev_create(NULL, itsclass);
 508
 509    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 510                             &error_abort);
 511    qdev_init_nofail(dev);
 512    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 513
 514    fdt_add_its_gic_node(vms);
 515}
 516
 517static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 518{
 519    int i;
 520    int irq = vms->irqmap[VIRT_GIC_V2M];
 521    DeviceState *dev;
 522
 523    dev = qdev_create(NULL, "arm-gicv2m");
 524    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 525    qdev_prop_set_uint32(dev, "base-spi", irq);
 526    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 527    qdev_init_nofail(dev);
 528
 529    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 530        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 531    }
 532
 533    fdt_add_v2m_gic_node(vms);
 534}
 535
 536static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 537{
 538    /* We create a standalone GIC */
 539    DeviceState *gicdev;
 540    SysBusDevice *gicbusdev;
 541    const char *gictype;
 542    int type = vms->gic_version, i;
 543    uint32_t nb_redist_regions = 0;
 544
 545    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 546
 547    gicdev = qdev_create(NULL, gictype);
 548    qdev_prop_set_uint32(gicdev, "revision", type);
 549    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 550    /* Note that the num-irq property counts both internal and external
 551     * interrupts; there are always 32 of the former (mandated by GIC spec).
 552     */
 553    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 554    if (!kvm_irqchip_in_kernel()) {
 555        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 556    }
 557
 558    if (type == 3) {
 559        uint32_t redist0_capacity =
 560                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 561        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 562
 563        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 564
 565        qdev_prop_set_uint32(gicdev, "len-redist-region-count",
 566                             nb_redist_regions);
 567        qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
 568
 569        if (nb_redist_regions == 2) {
 570            uint32_t redist1_capacity =
 571                        vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 572
 573            qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
 574                MIN(smp_cpus - redist0_count, redist1_capacity));
 575        }
 576    }
 577    qdev_init_nofail(gicdev);
 578    gicbusdev = SYS_BUS_DEVICE(gicdev);
 579    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 580    if (type == 3) {
 581        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 582        if (nb_redist_regions == 2) {
 583            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
 584        }
 585    } else {
 586        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 587    }
 588
 589    /* Wire the outputs from each CPU's generic timer and the GICv3
 590     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 591     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 592     */
 593    for (i = 0; i < smp_cpus; i++) {
 594        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 595        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 596        int irq;
 597        /* Mapping from the output timer irq lines from the CPU to the
 598         * GIC PPI inputs we use for the virt board.
 599         */
 600        const int timer_irq[] = {
 601            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 602            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 603            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 604            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 605        };
 606
 607        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 608            qdev_connect_gpio_out(cpudev, irq,
 609                                  qdev_get_gpio_in(gicdev,
 610                                                   ppibase + timer_irq[irq]));
 611        }
 612
 613        qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
 614                                    qdev_get_gpio_in(gicdev, ppibase
 615                                                     + ARCH_GICV3_MAINT_IRQ));
 616        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 617                                    qdev_get_gpio_in(gicdev, ppibase
 618                                                     + VIRTUAL_PMU_IRQ));
 619
 620        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 621        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 622                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 623        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 624                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 625        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 626                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 627    }
 628
 629    for (i = 0; i < NUM_IRQS; i++) {
 630        pic[i] = qdev_get_gpio_in(gicdev, i);
 631    }
 632
 633    fdt_add_gic_node(vms);
 634
 635    if (type == 3 && vms->its) {
 636        create_its(vms, gicdev);
 637    } else if (type == 2) {
 638        create_v2m(vms, pic);
 639    }
 640}
 641
 642static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 643                        MemoryRegion *mem, Chardev *chr)
 644{
 645    char *nodename;
 646    hwaddr base = vms->memmap[uart].base;
 647    hwaddr size = vms->memmap[uart].size;
 648    int irq = vms->irqmap[uart];
 649    const char compat[] = "arm,pl011\0arm,primecell";
 650    const char clocknames[] = "uartclk\0apb_pclk";
 651    DeviceState *dev = qdev_create(NULL, "pl011");
 652    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 653
 654    qdev_prop_set_chr(dev, "chardev", chr);
 655    qdev_init_nofail(dev);
 656    memory_region_add_subregion(mem, base,
 657                                sysbus_mmio_get_region(s, 0));
 658    sysbus_connect_irq(s, 0, pic[irq]);
 659
 660    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 661    qemu_fdt_add_subnode(vms->fdt, nodename);
 662    /* Note that we can't use setprop_string because of the embedded NUL */
 663    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 664                         compat, sizeof(compat));
 665    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 666                                     2, base, 2, size);
 667    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 668                               GIC_FDT_IRQ_TYPE_SPI, irq,
 669                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 670    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 671                               vms->clock_phandle, vms->clock_phandle);
 672    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 673                         clocknames, sizeof(clocknames));
 674
 675    if (uart == VIRT_UART) {
 676        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 677    } else {
 678        /* Mark as not usable by the normal world */
 679        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 680        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 681    }
 682
 683    g_free(nodename);
 684}
 685
 686static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 687{
 688    char *nodename;
 689    hwaddr base = vms->memmap[VIRT_RTC].base;
 690    hwaddr size = vms->memmap[VIRT_RTC].size;
 691    int irq = vms->irqmap[VIRT_RTC];
 692    const char compat[] = "arm,pl031\0arm,primecell";
 693
 694    sysbus_create_simple("pl031", base, pic[irq]);
 695
 696    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 697    qemu_fdt_add_subnode(vms->fdt, nodename);
 698    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 699    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 700                                 2, base, 2, size);
 701    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 702                           GIC_FDT_IRQ_TYPE_SPI, irq,
 703                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 704    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 705    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 706    g_free(nodename);
 707}
 708
 709static DeviceState *gpio_key_dev;
 710static void virt_powerdown_req(Notifier *n, void *opaque)
 711{
 712    /* use gpio Pin 3 for power button event */
 713    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 714}
 715
 716static Notifier virt_system_powerdown_notifier = {
 717    .notify = virt_powerdown_req
 718};
 719
 720static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 721{
 722    char *nodename;
 723    DeviceState *pl061_dev;
 724    hwaddr base = vms->memmap[VIRT_GPIO].base;
 725    hwaddr size = vms->memmap[VIRT_GPIO].size;
 726    int irq = vms->irqmap[VIRT_GPIO];
 727    const char compat[] = "arm,pl061\0arm,primecell";
 728
 729    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 730
 731    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 732    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 733    qemu_fdt_add_subnode(vms->fdt, nodename);
 734    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 735                                 2, base, 2, size);
 736    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 737    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 738    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 739    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 740                           GIC_FDT_IRQ_TYPE_SPI, irq,
 741                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 742    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 743    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 744    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 745
 746    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 747                                        qdev_get_gpio_in(pl061_dev, 3));
 748    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 749    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 750    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 751    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 752
 753    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 754    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 755                            "label", "GPIO Key Poweroff");
 756    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 757                          KEY_POWER);
 758    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 759                           "gpios", phandle, 3, 0);
 760
 761    /* connect powerdown request */
 762    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 763
 764    g_free(nodename);
 765}
 766
 767static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 768{
 769    int i;
 770    hwaddr size = vms->memmap[VIRT_MMIO].size;
 771
 772    /* We create the transports in forwards order. Since qbus_realize()
 773     * prepends (not appends) new child buses, the incrementing loop below will
 774     * create a list of virtio-mmio buses with decreasing base addresses.
 775     *
 776     * When a -device option is processed from the command line,
 777     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 778     * order. The upshot is that -device options in increasing command line
 779     * order are mapped to virtio-mmio buses with decreasing base addresses.
 780     *
 781     * When this code was originally written, that arrangement ensured that the
 782     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 783     * the first -device on the command line. (The end-to-end order is a
 784     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 785     * guest kernel's name-to-address assignment strategy.)
 786     *
 787     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 788     * the message, if not necessarily the code, of commit 70161ff336.
 789     * Therefore the loop now establishes the inverse of the original intent.
 790     *
 791     * Unfortunately, we can't counteract the kernel change by reversing the
 792     * loop; it would break existing command lines.
 793     *
 794     * In any case, the kernel makes no guarantee about the stability of
 795     * enumeration order of virtio devices (as demonstrated by it changing
 796     * between kernel versions). For reliable and stable identification
 797     * of disks users must use UUIDs or similar mechanisms.
 798     */
 799    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 800        int irq = vms->irqmap[VIRT_MMIO] + i;
 801        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 802
 803        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 804    }
 805
 806    /* We add dtb nodes in reverse order so that they appear in the finished
 807     * device tree lowest address first.
 808     *
 809     * Note that this mapping is independent of the loop above. The previous
 810     * loop influences virtio device to virtio transport assignment, whereas
 811     * this loop controls how virtio transports are laid out in the dtb.
 812     */
 813    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 814        char *nodename;
 815        int irq = vms->irqmap[VIRT_MMIO] + i;
 816        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 817
 818        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 819        qemu_fdt_add_subnode(vms->fdt, nodename);
 820        qemu_fdt_setprop_string(vms->fdt, nodename,
 821                                "compatible", "virtio,mmio");
 822        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 823                                     2, base, 2, size);
 824        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 825                               GIC_FDT_IRQ_TYPE_SPI, irq,
 826                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 827        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 828        g_free(nodename);
 829    }
 830}
 831
 832static void create_one_flash(const char *name, hwaddr flashbase,
 833                             hwaddr flashsize, const char *file,
 834                             MemoryRegion *sysmem)
 835{
 836    /* Create and map a single flash device. We use the same
 837     * parameters as the flash devices on the Versatile Express board.
 838     */
 839    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 840    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 841    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 842    const uint64_t sectorlength = 256 * 1024;
 843
 844    if (dinfo) {
 845        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 846                            &error_abort);
 847    }
 848
 849    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 850    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 851    qdev_prop_set_uint8(dev, "width", 4);
 852    qdev_prop_set_uint8(dev, "device-width", 2);
 853    qdev_prop_set_bit(dev, "big-endian", false);
 854    qdev_prop_set_uint16(dev, "id0", 0x89);
 855    qdev_prop_set_uint16(dev, "id1", 0x18);
 856    qdev_prop_set_uint16(dev, "id2", 0x00);
 857    qdev_prop_set_uint16(dev, "id3", 0x00);
 858    qdev_prop_set_string(dev, "name", name);
 859    qdev_init_nofail(dev);
 860
 861    memory_region_add_subregion(sysmem, flashbase,
 862                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 863
 864    if (file) {
 865        char *fn;
 866        int image_size;
 867
 868        if (drive_get(IF_PFLASH, 0, 0)) {
 869            error_report("The contents of the first flash device may be "
 870                         "specified with -bios or with -drive if=pflash... "
 871                         "but you cannot use both options at once");
 872            exit(1);
 873        }
 874        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 875        if (!fn) {
 876            error_report("Could not find ROM image '%s'", file);
 877            exit(1);
 878        }
 879        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 880        g_free(fn);
 881        if (image_size < 0) {
 882            error_report("Could not load ROM image '%s'", file);
 883            exit(1);
 884        }
 885    }
 886}
 887
 888static void create_flash(const VirtMachineState *vms,
 889                         MemoryRegion *sysmem,
 890                         MemoryRegion *secure_sysmem)
 891{
 892    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 893     * Any file passed via -bios goes in the first of these.
 894     * sysmem is the system memory space. secure_sysmem is the secure view
 895     * of the system, and the first flash device should be made visible only
 896     * there. The second flash device is visible to both secure and nonsecure.
 897     * If sysmem == secure_sysmem this means there is no separate Secure
 898     * address space and both flash devices are generally visible.
 899     */
 900    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 901    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 902    char *nodename;
 903
 904    create_one_flash("virt.flash0", flashbase, flashsize,
 905                     bios_name, secure_sysmem);
 906    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 907                     NULL, sysmem);
 908
 909    if (sysmem == secure_sysmem) {
 910        /* Report both flash devices as a single node in the DT */
 911        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 912        qemu_fdt_add_subnode(vms->fdt, nodename);
 913        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 914        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 915                                     2, flashbase, 2, flashsize,
 916                                     2, flashbase + flashsize, 2, flashsize);
 917        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 918        g_free(nodename);
 919    } else {
 920        /* Report the devices as separate nodes so we can mark one as
 921         * only visible to the secure world.
 922         */
 923        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 924        qemu_fdt_add_subnode(vms->fdt, nodename);
 925        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 926        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 927                                     2, flashbase, 2, flashsize);
 928        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 929        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 930        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 931        g_free(nodename);
 932
 933        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 934        qemu_fdt_add_subnode(vms->fdt, nodename);
 935        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 936        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 937                                     2, flashbase + flashsize, 2, flashsize);
 938        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 939        g_free(nodename);
 940    }
 941}
 942
 943static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 944{
 945    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 946    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 947    FWCfgState *fw_cfg;
 948    char *nodename;
 949
 950    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 951    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 952
 953    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 954    qemu_fdt_add_subnode(vms->fdt, nodename);
 955    qemu_fdt_setprop_string(vms->fdt, nodename,
 956                            "compatible", "qemu,fw-cfg-mmio");
 957    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 958                                 2, base, 2, size);
 959    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 960    g_free(nodename);
 961    return fw_cfg;
 962}
 963
 964static void create_pcie_irq_map(const VirtMachineState *vms,
 965                                uint32_t gic_phandle,
 966                                int first_irq, const char *nodename)
 967{
 968    int devfn, pin;
 969    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 970    uint32_t *irq_map = full_irq_map;
 971
 972    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 973        for (pin = 0; pin < 4; pin++) {
 974            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 975            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 976            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 977            int i;
 978
 979            uint32_t map[] = {
 980                devfn << 8, 0, 0,                           /* devfn */
 981                pin + 1,                                    /* PCI pin */
 982                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 983
 984            /* Convert map to big endian */
 985            for (i = 0; i < 10; i++) {
 986                irq_map[i] = cpu_to_be32(map[i]);
 987            }
 988            irq_map += 10;
 989        }
 990    }
 991
 992    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
 993                     full_irq_map, sizeof(full_irq_map));
 994
 995    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
 996                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 997                           0x7           /* PCI irq */);
 998}
 999
1000static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1001                        PCIBus *bus)
1002{
1003    char *node;
1004    const char compat[] = "arm,smmu-v3";
1005    int irq =  vms->irqmap[VIRT_SMMU];
1006    int i;
1007    hwaddr base = vms->memmap[VIRT_SMMU].base;
1008    hwaddr size = vms->memmap[VIRT_SMMU].size;
1009    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1010    DeviceState *dev;
1011
1012    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1013        return;
1014    }
1015
1016    dev = qdev_create(NULL, "arm-smmuv3");
1017
1018    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1019                             &error_abort);
1020    qdev_init_nofail(dev);
1021    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1022    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1023        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1024    }
1025
1026    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1027    qemu_fdt_add_subnode(vms->fdt, node);
1028    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1029    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1030
1031    qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1032            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1033            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1034            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1035            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1036
1037    qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1038                     sizeof(irq_names));
1039
1040    qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1041    qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1042    qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1043
1044    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1045
1046    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1047    g_free(node);
1048}
1049
1050static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1051{
1052    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1053    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1054    hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1055    hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1056    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1057    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1058    hwaddr base_ecam, size_ecam;
1059    hwaddr base = base_mmio;
1060    int nr_pcie_buses;
1061    int irq = vms->irqmap[VIRT_PCIE];
1062    MemoryRegion *mmio_alias;
1063    MemoryRegion *mmio_reg;
1064    MemoryRegion *ecam_alias;
1065    MemoryRegion *ecam_reg;
1066    DeviceState *dev;
1067    char *nodename;
1068    int i, ecam_id;
1069    PCIHostState *pci;
1070
1071    dev = qdev_create(NULL, TYPE_GPEX_HOST);
1072    qdev_init_nofail(dev);
1073
1074    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1075    base_ecam = vms->memmap[ecam_id].base;
1076    size_ecam = vms->memmap[ecam_id].size;
1077    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1078    /* Map only the first size_ecam bytes of ECAM space */
1079    ecam_alias = g_new0(MemoryRegion, 1);
1080    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1081    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1082                             ecam_reg, 0, size_ecam);
1083    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1084
1085    /* Map the MMIO window into system address space so as to expose
1086     * the section of PCI MMIO space which starts at the same base address
1087     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1088     * the window).
1089     */
1090    mmio_alias = g_new0(MemoryRegion, 1);
1091    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1092    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1093                             mmio_reg, base_mmio, size_mmio);
1094    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1095
1096    if (vms->highmem) {
1097        /* Map high MMIO space */
1098        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1099
1100        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1101                                 mmio_reg, base_mmio_high, size_mmio_high);
1102        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1103                                    high_mmio_alias);
1104    }
1105
1106    /* Map IO port space */
1107    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1108
1109    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1110        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1111        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1112    }
1113
1114    pci = PCI_HOST_BRIDGE(dev);
1115    if (pci->bus) {
1116        for (i = 0; i < nb_nics; i++) {
1117            NICInfo *nd = &nd_table[i];
1118
1119            if (!nd->model) {
1120                nd->model = g_strdup("virtio");
1121            }
1122
1123            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1124        }
1125    }
1126
1127    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1128    qemu_fdt_add_subnode(vms->fdt, nodename);
1129    qemu_fdt_setprop_string(vms->fdt, nodename,
1130                            "compatible", "pci-host-ecam-generic");
1131    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1132    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1133    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1134    qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1135    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1136                           nr_pcie_buses - 1);
1137    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1138
1139    if (vms->msi_phandle) {
1140        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1141                               vms->msi_phandle);
1142    }
1143
1144    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1145                                 2, base_ecam, 2, size_ecam);
1146
1147    if (vms->highmem) {
1148        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1149                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1150                                     2, base_pio, 2, size_pio,
1151                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1152                                     2, base_mmio, 2, size_mmio,
1153                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1154                                     2, base_mmio_high,
1155                                     2, base_mmio_high, 2, size_mmio_high);
1156    } else {
1157        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1158                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1159                                     2, base_pio, 2, size_pio,
1160                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1161                                     2, base_mmio, 2, size_mmio);
1162    }
1163
1164    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1165    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1166
1167    if (vms->iommu) {
1168        vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1169
1170        create_smmu(vms, pic, pci->bus);
1171
1172        qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1173                               0x0, vms->iommu_phandle, 0x0, 0x10000);
1174    }
1175
1176    g_free(nodename);
1177}
1178
1179static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1180{
1181    DeviceState *dev;
1182    SysBusDevice *s;
1183    int i;
1184    MemoryRegion *sysmem = get_system_memory();
1185
1186    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1187    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1188    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1189    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1190    qdev_init_nofail(dev);
1191    vms->platform_bus_dev = dev;
1192
1193    s = SYS_BUS_DEVICE(dev);
1194    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1195        int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1196        sysbus_connect_irq(s, i, pic[irqn]);
1197    }
1198
1199    memory_region_add_subregion(sysmem,
1200                                vms->memmap[VIRT_PLATFORM_BUS].base,
1201                                sysbus_mmio_get_region(s, 0));
1202}
1203
1204static void create_secure_ram(VirtMachineState *vms,
1205                              MemoryRegion *secure_sysmem)
1206{
1207    MemoryRegion *secram = g_new(MemoryRegion, 1);
1208    char *nodename;
1209    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1210    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1211
1212    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1213                           &error_fatal);
1214    memory_region_add_subregion(secure_sysmem, base, secram);
1215
1216    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1217    qemu_fdt_add_subnode(vms->fdt, nodename);
1218    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1219    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1220    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1221    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1222
1223    g_free(nodename);
1224}
1225
1226static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1227{
1228    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1229                                                 bootinfo);
1230
1231    *fdt_size = board->fdt_size;
1232    return board->fdt;
1233}
1234
1235static void virt_build_smbios(VirtMachineState *vms)
1236{
1237    MachineClass *mc = MACHINE_GET_CLASS(vms);
1238    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1239    uint8_t *smbios_tables, *smbios_anchor;
1240    size_t smbios_tables_len, smbios_anchor_len;
1241    const char *product = "QEMU Virtual Machine";
1242
1243    if (!vms->fw_cfg) {
1244        return;
1245    }
1246
1247    if (kvm_enabled()) {
1248        product = "KVM Virtual Machine";
1249    }
1250
1251    smbios_set_defaults("QEMU", product,
1252                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1253                        true, SMBIOS_ENTRY_POINT_30);
1254
1255    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1256                      &smbios_anchor, &smbios_anchor_len);
1257
1258    if (smbios_anchor) {
1259        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1260                        smbios_tables, smbios_tables_len);
1261        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1262                        smbios_anchor, smbios_anchor_len);
1263    }
1264}
1265
1266static
1267void virt_machine_done(Notifier *notifier, void *data)
1268{
1269    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1270                                         machine_done);
1271    ARMCPU *cpu = ARM_CPU(first_cpu);
1272    struct arm_boot_info *info = &vms->bootinfo;
1273    AddressSpace *as = arm_boot_address_space(cpu, info);
1274
1275    /*
1276     * If the user provided a dtb, we assume the dynamic sysbus nodes
1277     * already are integrated there. This corresponds to a use case where
1278     * the dynamic sysbus nodes are complex and their generation is not yet
1279     * supported. In that case the user can take charge of the guest dt
1280     * while qemu takes charge of the qom stuff.
1281     */
1282    if (info->dtb_filename == NULL) {
1283        platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1284                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1285                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1286                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1287    }
1288    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1289        exit(1);
1290    }
1291
1292    virt_acpi_setup(vms);
1293    virt_build_smbios(vms);
1294}
1295
1296static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1297{
1298    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1299    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1300
1301    if (!vmc->disallow_affinity_adjustment) {
1302        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1303         * GIC's target-list limitations. 32-bit KVM hosts currently
1304         * always create clusters of 4 CPUs, but that is expected to
1305         * change when they gain support for gicv3. When KVM is enabled
1306         * it will override the changes we make here, therefore our
1307         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1308         * and to improve SGI efficiency.
1309         */
1310        if (vms->gic_version == 3) {
1311            clustersz = GICV3_TARGETLIST_BITS;
1312        } else {
1313            clustersz = GIC_TARGETLIST_BITS;
1314        }
1315    }
1316    return arm_cpu_mp_affinity(idx, clustersz);
1317}
1318
1319static void machvirt_init(MachineState *machine)
1320{
1321    VirtMachineState *vms = VIRT_MACHINE(machine);
1322    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1323    MachineClass *mc = MACHINE_GET_CLASS(machine);
1324    const CPUArchIdList *possible_cpus;
1325    qemu_irq pic[NUM_IRQS];
1326    MemoryRegion *sysmem = get_system_memory();
1327    MemoryRegion *secure_sysmem = NULL;
1328    int n, virt_max_cpus;
1329    MemoryRegion *ram = g_new(MemoryRegion, 1);
1330    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1331    bool aarch64 = true;
1332
1333    /* We can probe only here because during property set
1334     * KVM is not available yet
1335     */
1336    if (vms->gic_version <= 0) {
1337        /* "host" or "max" */
1338        if (!kvm_enabled()) {
1339            if (vms->gic_version == 0) {
1340                error_report("gic-version=host requires KVM");
1341                exit(1);
1342            } else {
1343                /* "max": currently means 3 for TCG */
1344                vms->gic_version = 3;
1345            }
1346        } else {
1347            vms->gic_version = kvm_arm_vgic_probe();
1348            if (!vms->gic_version) {
1349                error_report(
1350                    "Unable to determine GIC version supported by host");
1351                exit(1);
1352            }
1353        }
1354    }
1355
1356    if (!cpu_type_valid(machine->cpu_type)) {
1357        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1358        exit(1);
1359    }
1360
1361    /* If we have an EL3 boot ROM then the assumption is that it will
1362     * implement PSCI itself, so disable QEMU's internal implementation
1363     * so it doesn't get in the way. Instead of starting secondary
1364     * CPUs in PSCI powerdown state we will start them all running and
1365     * let the boot ROM sort them out.
1366     * The usual case is that we do use QEMU's PSCI implementation;
1367     * if the guest has EL2 then we will use SMC as the conduit,
1368     * and otherwise we will use HVC (for backwards compatibility and
1369     * because if we're using KVM then we must use HVC).
1370     */
1371    if (vms->secure && firmware_loaded) {
1372        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1373    } else if (vms->virt) {
1374        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1375    } else {
1376        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1377    }
1378
1379    /* The maximum number of CPUs depends on the GIC version, or on how
1380     * many redistributors we can fit into the memory map.
1381     */
1382    if (vms->gic_version == 3) {
1383        virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1384        virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1385    } else {
1386        virt_max_cpus = GIC_NCPU;
1387    }
1388
1389    if (max_cpus > virt_max_cpus) {
1390        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1391                     "supported by machine 'mach-virt' (%d)",
1392                     max_cpus, virt_max_cpus);
1393        exit(1);
1394    }
1395
1396    vms->smp_cpus = smp_cpus;
1397
1398    if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1399        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1400        exit(1);
1401    }
1402
1403    if (vms->virt && kvm_enabled()) {
1404        error_report("mach-virt: KVM does not support providing "
1405                     "Virtualization extensions to the guest CPU");
1406        exit(1);
1407    }
1408
1409    if (vms->secure) {
1410        if (kvm_enabled()) {
1411            error_report("mach-virt: KVM does not support Security extensions");
1412            exit(1);
1413        }
1414
1415        /* The Secure view of the world is the same as the NonSecure,
1416         * but with a few extra devices. Create it as a container region
1417         * containing the system memory at low priority; any secure-only
1418         * devices go in at higher priority and take precedence.
1419         */
1420        secure_sysmem = g_new(MemoryRegion, 1);
1421        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1422                           UINT64_MAX);
1423        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1424    }
1425
1426    create_fdt(vms);
1427
1428    possible_cpus = mc->possible_cpu_arch_ids(machine);
1429    for (n = 0; n < possible_cpus->len; n++) {
1430        Object *cpuobj;
1431        CPUState *cs;
1432
1433        if (n >= smp_cpus) {
1434            break;
1435        }
1436
1437        cpuobj = object_new(possible_cpus->cpus[n].type);
1438        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1439                                "mp-affinity", NULL);
1440
1441        cs = CPU(cpuobj);
1442        cs->cpu_index = n;
1443
1444        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1445                          &error_fatal);
1446
1447        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1448
1449        if (!vms->secure) {
1450            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1451        }
1452
1453        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1454            object_property_set_bool(cpuobj, false, "has_el2", NULL);
1455        }
1456
1457        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1458            object_property_set_int(cpuobj, vms->psci_conduit,
1459                                    "psci-conduit", NULL);
1460
1461            /* Secondary CPUs start in PSCI powered-down state */
1462            if (n > 0) {
1463                object_property_set_bool(cpuobj, true,
1464                                         "start-powered-off", NULL);
1465            }
1466        }
1467
1468        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1469            object_property_set_bool(cpuobj, false, "pmu", NULL);
1470        }
1471
1472        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1473            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1474                                    "reset-cbar", &error_abort);
1475        }
1476
1477        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1478                                 &error_abort);
1479        if (vms->secure) {
1480            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1481                                     "secure-memory", &error_abort);
1482        }
1483
1484        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1485        object_unref(cpuobj);
1486    }
1487    fdt_add_timer_nodes(vms);
1488    fdt_add_cpu_nodes(vms);
1489
1490    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1491                                         machine->ram_size);
1492    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1493
1494    create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1495
1496    create_gic(vms, pic);
1497
1498    fdt_add_pmu_nodes(vms);
1499
1500    create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1501
1502    if (vms->secure) {
1503        create_secure_ram(vms, secure_sysmem);
1504        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1505    }
1506
1507    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1508
1509    create_rtc(vms, pic);
1510
1511    create_pcie(vms, pic);
1512
1513    create_gpio(vms, pic);
1514
1515    /* Create mmio transports, so the user can create virtio backends
1516     * (which will be automatically plugged in to the transports). If
1517     * no backend is created the transport will just sit harmlessly idle.
1518     */
1519    create_virtio_devices(vms, pic);
1520
1521    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1522    rom_set_fw(vms->fw_cfg);
1523
1524    create_platform_bus(vms, pic);
1525
1526    vms->bootinfo.ram_size = machine->ram_size;
1527    vms->bootinfo.kernel_filename = machine->kernel_filename;
1528    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1529    vms->bootinfo.initrd_filename = machine->initrd_filename;
1530    vms->bootinfo.nb_cpus = smp_cpus;
1531    vms->bootinfo.board_id = -1;
1532    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1533    vms->bootinfo.get_dtb = machvirt_dtb;
1534    vms->bootinfo.skip_dtb_autoload = true;
1535    vms->bootinfo.firmware_loaded = firmware_loaded;
1536    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1537
1538    vms->machine_done.notify = virt_machine_done;
1539    qemu_add_machine_init_done_notifier(&vms->machine_done);
1540}
1541
1542static bool virt_get_secure(Object *obj, Error **errp)
1543{
1544    VirtMachineState *vms = VIRT_MACHINE(obj);
1545
1546    return vms->secure;
1547}
1548
1549static void virt_set_secure(Object *obj, bool value, Error **errp)
1550{
1551    VirtMachineState *vms = VIRT_MACHINE(obj);
1552
1553    vms->secure = value;
1554}
1555
1556static bool virt_get_virt(Object *obj, Error **errp)
1557{
1558    VirtMachineState *vms = VIRT_MACHINE(obj);
1559
1560    return vms->virt;
1561}
1562
1563static void virt_set_virt(Object *obj, bool value, Error **errp)
1564{
1565    VirtMachineState *vms = VIRT_MACHINE(obj);
1566
1567    vms->virt = value;
1568}
1569
1570static bool virt_get_highmem(Object *obj, Error **errp)
1571{
1572    VirtMachineState *vms = VIRT_MACHINE(obj);
1573
1574    return vms->highmem;
1575}
1576
1577static void virt_set_highmem(Object *obj, bool value, Error **errp)
1578{
1579    VirtMachineState *vms = VIRT_MACHINE(obj);
1580
1581    vms->highmem = value;
1582}
1583
1584static bool virt_get_its(Object *obj, Error **errp)
1585{
1586    VirtMachineState *vms = VIRT_MACHINE(obj);
1587
1588    return vms->its;
1589}
1590
1591static void virt_set_its(Object *obj, bool value, Error **errp)
1592{
1593    VirtMachineState *vms = VIRT_MACHINE(obj);
1594
1595    vms->its = value;
1596}
1597
1598static char *virt_get_gic_version(Object *obj, Error **errp)
1599{
1600    VirtMachineState *vms = VIRT_MACHINE(obj);
1601    const char *val = vms->gic_version == 3 ? "3" : "2";
1602
1603    return g_strdup(val);
1604}
1605
1606static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1607{
1608    VirtMachineState *vms = VIRT_MACHINE(obj);
1609
1610    if (!strcmp(value, "3")) {
1611        vms->gic_version = 3;
1612    } else if (!strcmp(value, "2")) {
1613        vms->gic_version = 2;
1614    } else if (!strcmp(value, "host")) {
1615        vms->gic_version = 0; /* Will probe later */
1616    } else if (!strcmp(value, "max")) {
1617        vms->gic_version = -1; /* Will probe later */
1618    } else {
1619        error_setg(errp, "Invalid gic-version value");
1620        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1621    }
1622}
1623
1624static char *virt_get_iommu(Object *obj, Error **errp)
1625{
1626    VirtMachineState *vms = VIRT_MACHINE(obj);
1627
1628    switch (vms->iommu) {
1629    case VIRT_IOMMU_NONE:
1630        return g_strdup("none");
1631    case VIRT_IOMMU_SMMUV3:
1632        return g_strdup("smmuv3");
1633    default:
1634        g_assert_not_reached();
1635    }
1636}
1637
1638static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1639{
1640    VirtMachineState *vms = VIRT_MACHINE(obj);
1641
1642    if (!strcmp(value, "smmuv3")) {
1643        vms->iommu = VIRT_IOMMU_SMMUV3;
1644    } else if (!strcmp(value, "none")) {
1645        vms->iommu = VIRT_IOMMU_NONE;
1646    } else {
1647        error_setg(errp, "Invalid iommu value");
1648        error_append_hint(errp, "Valid values are none, smmuv3.\n");
1649    }
1650}
1651
1652static CpuInstanceProperties
1653virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1654{
1655    MachineClass *mc = MACHINE_GET_CLASS(ms);
1656    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1657
1658    assert(cpu_index < possible_cpus->len);
1659    return possible_cpus->cpus[cpu_index].props;
1660}
1661
1662static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1663{
1664    return idx % nb_numa_nodes;
1665}
1666
1667static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1668{
1669    int n;
1670    VirtMachineState *vms = VIRT_MACHINE(ms);
1671
1672    if (ms->possible_cpus) {
1673        assert(ms->possible_cpus->len == max_cpus);
1674        return ms->possible_cpus;
1675    }
1676
1677    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1678                                  sizeof(CPUArchId) * max_cpus);
1679    ms->possible_cpus->len = max_cpus;
1680    for (n = 0; n < ms->possible_cpus->len; n++) {
1681        ms->possible_cpus->cpus[n].type = ms->cpu_type;
1682        ms->possible_cpus->cpus[n].arch_id =
1683            virt_cpu_mp_affinity(vms, n);
1684        ms->possible_cpus->cpus[n].props.has_thread_id = true;
1685        ms->possible_cpus->cpus[n].props.thread_id = n;
1686    }
1687    return ms->possible_cpus;
1688}
1689
1690static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1691                                        DeviceState *dev, Error **errp)
1692{
1693    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1694
1695    if (vms->platform_bus_dev) {
1696        if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1697            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1698                                     SYS_BUS_DEVICE(dev));
1699        }
1700    }
1701}
1702
1703static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1704                                                        DeviceState *dev)
1705{
1706    if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1707        return HOTPLUG_HANDLER(machine);
1708    }
1709
1710    return NULL;
1711}
1712
1713static void virt_machine_class_init(ObjectClass *oc, void *data)
1714{
1715    MachineClass *mc = MACHINE_CLASS(oc);
1716    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1717
1718    mc->init = machvirt_init;
1719    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1720     * The value may be reduced later when we have more information about the
1721     * configuration of the particular instance.
1722     */
1723    mc->max_cpus = 512;
1724    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1725    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1726    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1727    mc->block_default_type = IF_VIRTIO;
1728    mc->no_cdrom = 1;
1729    mc->pci_allow_0_address = true;
1730    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1731    mc->minimum_page_bits = 12;
1732    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1733    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1734    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1735    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1736    assert(!mc->get_hotplug_handler);
1737    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1738    hc->plug = virt_machine_device_plug_cb;
1739}
1740
1741static const TypeInfo virt_machine_info = {
1742    .name          = TYPE_VIRT_MACHINE,
1743    .parent        = TYPE_MACHINE,
1744    .abstract      = true,
1745    .instance_size = sizeof(VirtMachineState),
1746    .class_size    = sizeof(VirtMachineClass),
1747    .class_init    = virt_machine_class_init,
1748    .interfaces = (InterfaceInfo[]) {
1749         { TYPE_HOTPLUG_HANDLER },
1750         { }
1751    },
1752};
1753
1754static void machvirt_machine_init(void)
1755{
1756    type_register_static(&virt_machine_info);
1757}
1758type_init(machvirt_machine_init);
1759
1760#define VIRT_COMPAT_2_12 \
1761    HW_COMPAT_2_12
1762
1763static void virt_3_0_instance_init(Object *obj)
1764{
1765    VirtMachineState *vms = VIRT_MACHINE(obj);
1766    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1767
1768    /* EL3 is disabled by default on virt: this makes us consistent
1769     * between KVM and TCG for this board, and it also allows us to
1770     * boot UEFI blobs which assume no TrustZone support.
1771     */
1772    vms->secure = false;
1773    object_property_add_bool(obj, "secure", virt_get_secure,
1774                             virt_set_secure, NULL);
1775    object_property_set_description(obj, "secure",
1776                                    "Set on/off to enable/disable the ARM "
1777                                    "Security Extensions (TrustZone)",
1778                                    NULL);
1779
1780    /* EL2 is also disabled by default, for similar reasons */
1781    vms->virt = false;
1782    object_property_add_bool(obj, "virtualization", virt_get_virt,
1783                             virt_set_virt, NULL);
1784    object_property_set_description(obj, "virtualization",
1785                                    "Set on/off to enable/disable emulating a "
1786                                    "guest CPU which implements the ARM "
1787                                    "Virtualization Extensions",
1788                                    NULL);
1789
1790    /* High memory is enabled by default */
1791    vms->highmem = true;
1792    object_property_add_bool(obj, "highmem", virt_get_highmem,
1793                             virt_set_highmem, NULL);
1794    object_property_set_description(obj, "highmem",
1795                                    "Set on/off to enable/disable using "
1796                                    "physical address space above 32 bits",
1797                                    NULL);
1798    /* Default GIC type is v2 */
1799    vms->gic_version = 2;
1800    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1801                        virt_set_gic_version, NULL);
1802    object_property_set_description(obj, "gic-version",
1803                                    "Set GIC version. "
1804                                    "Valid values are 2, 3 and host", NULL);
1805
1806    vms->highmem_ecam = !vmc->no_highmem_ecam;
1807
1808    if (vmc->no_its) {
1809        vms->its = false;
1810    } else {
1811        /* Default allows ITS instantiation */
1812        vms->its = true;
1813        object_property_add_bool(obj, "its", virt_get_its,
1814                                 virt_set_its, NULL);
1815        object_property_set_description(obj, "its",
1816                                        "Set on/off to enable/disable "
1817                                        "ITS instantiation",
1818                                        NULL);
1819    }
1820
1821    /* Default disallows iommu instantiation */
1822    vms->iommu = VIRT_IOMMU_NONE;
1823    object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1824    object_property_set_description(obj, "iommu",
1825                                    "Set the IOMMU type. "
1826                                    "Valid values are none and smmuv3",
1827                                    NULL);
1828
1829    vms->memmap = a15memmap;
1830    vms->irqmap = a15irqmap;
1831}
1832
1833static void virt_machine_3_0_options(MachineClass *mc)
1834{
1835}
1836DEFINE_VIRT_MACHINE_AS_LATEST(3, 0)
1837
1838static void virt_2_12_instance_init(Object *obj)
1839{
1840    virt_3_0_instance_init(obj);
1841}
1842
1843static void virt_machine_2_12_options(MachineClass *mc)
1844{
1845    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1846
1847    virt_machine_3_0_options(mc);
1848    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1849    vmc->no_highmem_ecam = true;
1850    mc->max_cpus = 255;
1851}
1852DEFINE_VIRT_MACHINE(2, 12)
1853
1854#define VIRT_COMPAT_2_11 \
1855    HW_COMPAT_2_11
1856
1857static void virt_2_11_instance_init(Object *obj)
1858{
1859    virt_2_12_instance_init(obj);
1860}
1861
1862static void virt_machine_2_11_options(MachineClass *mc)
1863{
1864    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1865
1866    virt_machine_2_12_options(mc);
1867    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1868    vmc->smbios_old_sys_ver = true;
1869}
1870DEFINE_VIRT_MACHINE(2, 11)
1871
1872#define VIRT_COMPAT_2_10 \
1873    HW_COMPAT_2_10
1874
1875static void virt_2_10_instance_init(Object *obj)
1876{
1877    virt_2_11_instance_init(obj);
1878}
1879
1880static void virt_machine_2_10_options(MachineClass *mc)
1881{
1882    virt_machine_2_11_options(mc);
1883    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1884    /* before 2.11 we never faulted accesses to bad addresses */
1885    mc->ignore_memory_transaction_failures = true;
1886}
1887DEFINE_VIRT_MACHINE(2, 10)
1888
1889#define VIRT_COMPAT_2_9 \
1890    HW_COMPAT_2_9
1891
1892static void virt_2_9_instance_init(Object *obj)
1893{
1894    virt_2_10_instance_init(obj);
1895}
1896
1897static void virt_machine_2_9_options(MachineClass *mc)
1898{
1899    virt_machine_2_10_options(mc);
1900    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1901}
1902DEFINE_VIRT_MACHINE(2, 9)
1903
1904#define VIRT_COMPAT_2_8 \
1905    HW_COMPAT_2_8
1906
1907static void virt_2_8_instance_init(Object *obj)
1908{
1909    virt_2_9_instance_init(obj);
1910}
1911
1912static void virt_machine_2_8_options(MachineClass *mc)
1913{
1914    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1915
1916    virt_machine_2_9_options(mc);
1917    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1918    /* For 2.8 and earlier we falsely claimed in the DT that
1919     * our timers were edge-triggered, not level-triggered.
1920     */
1921    vmc->claim_edge_triggered_timers = true;
1922}
1923DEFINE_VIRT_MACHINE(2, 8)
1924
1925#define VIRT_COMPAT_2_7 \
1926    HW_COMPAT_2_7
1927
1928static void virt_2_7_instance_init(Object *obj)
1929{
1930    virt_2_8_instance_init(obj);
1931}
1932
1933static void virt_machine_2_7_options(MachineClass *mc)
1934{
1935    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1936
1937    virt_machine_2_8_options(mc);
1938    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1939    /* ITS was introduced with 2.8 */
1940    vmc->no_its = true;
1941    /* Stick with 1K pages for migration compatibility */
1942    mc->minimum_page_bits = 0;
1943}
1944DEFINE_VIRT_MACHINE(2, 7)
1945
1946#define VIRT_COMPAT_2_6 \
1947    HW_COMPAT_2_6
1948
1949static void virt_2_6_instance_init(Object *obj)
1950{
1951    virt_2_7_instance_init(obj);
1952}
1953
1954static void virt_machine_2_6_options(MachineClass *mc)
1955{
1956    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1957
1958    virt_machine_2_7_options(mc);
1959    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1960    vmc->disallow_affinity_adjustment = true;
1961    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1962    vmc->no_pmu = true;
1963}
1964DEFINE_VIRT_MACHINE(2, 6)
1965