qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "sysemu/sysemu.h"
  31#include "sysemu/numa.h"
  32#include "hw/hw.h"
  33#include "qemu/log.h"
  34#include "hw/fw-path-provider.h"
  35#include "elf.h"
  36#include "net/net.h"
  37#include "sysemu/device_tree.h"
  38#include "sysemu/cpus.h"
  39#include "sysemu/hw_accel.h"
  40#include "kvm_ppc.h"
  41#include "migration/misc.h"
  42#include "migration/global_state.h"
  43#include "migration/register.h"
  44#include "mmu-hash64.h"
  45#include "mmu-book3s-v3.h"
  46#include "cpu-models.h"
  47#include "qom/cpu.h"
  48
  49#include "hw/boards.h"
  50#include "hw/ppc/ppc.h"
  51#include "hw/loader.h"
  52
  53#include "hw/ppc/fdt.h"
  54#include "hw/ppc/spapr.h"
  55#include "hw/ppc/spapr_vio.h"
  56#include "hw/pci-host/spapr.h"
  57#include "hw/ppc/xics.h"
  58#include "hw/pci/msi.h"
  59
  60#include "hw/pci/pci.h"
  61#include "hw/scsi/scsi.h"
  62#include "hw/virtio/virtio-scsi.h"
  63#include "hw/virtio/vhost-scsi-common.h"
  64
  65#include "exec/address-spaces.h"
  66#include "exec/ram_addr.h"
  67#include "hw/usb.h"
  68#include "qemu/config-file.h"
  69#include "qemu/error-report.h"
  70#include "trace.h"
  71#include "hw/nmi.h"
  72#include "hw/intc/intc.h"
  73
  74#include "hw/compat.h"
  75#include "qemu/cutils.h"
  76#include "hw/ppc/spapr_cpu_core.h"
  77#include "hw/mem/memory-device.h"
  78
  79#include <libfdt.h>
  80
  81/* SLOF memory layout:
  82 *
  83 * SLOF raw image loaded at 0, copies its romfs right below the flat
  84 * device-tree, then position SLOF itself 31M below that
  85 *
  86 * So we set FW_OVERHEAD to 40MB which should account for all of that
  87 * and more
  88 *
  89 * We load our kernel at 4M, leaving space for SLOF initial image
  90 */
  91#define FDT_MAX_SIZE            0x100000
  92#define RTAS_MAX_SIZE           0x10000
  93#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  94#define FW_MAX_SIZE             0x400000
  95#define FW_FILE_NAME            "slof.bin"
  96#define FW_OVERHEAD             0x2800000
  97#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  98
  99#define MIN_RMA_SLOF            128UL
 100
 101#define PHANDLE_XICP            0x00001111
 102
 103/* These two functions implement the VCPU id numbering: one to compute them
 104 * all and one to identify thread 0 of a VCORE. Any change to the first one
 105 * is likely to have an impact on the second one, so let's keep them close.
 106 */
 107static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
 108{
 109    assert(spapr->vsmt);
 110    return
 111        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 112}
 113static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
 114                                      PowerPCCPU *cpu)
 115{
 116    assert(spapr->vsmt);
 117    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 118}
 119
 120static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
 121                                  const char *type_ics,
 122                                  int nr_irqs, Error **errp)
 123{
 124    Error *local_err = NULL;
 125    Object *obj;
 126
 127    obj = object_new(type_ics);
 128    object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
 129    object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
 130                                   &error_abort);
 131    object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
 132    if (local_err) {
 133        goto error;
 134    }
 135    object_property_set_bool(obj, true, "realized", &local_err);
 136    if (local_err) {
 137        goto error;
 138    }
 139
 140    return ICS_BASE(obj);
 141
 142error:
 143    error_propagate(errp, local_err);
 144    return NULL;
 145}
 146
 147static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 148{
 149    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 150     * and newer QEMUs don't even have them. In both cases, we don't want
 151     * to send anything on the wire.
 152     */
 153    return false;
 154}
 155
 156static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 157    .name = "icp/server",
 158    .version_id = 1,
 159    .minimum_version_id = 1,
 160    .needed = pre_2_10_vmstate_dummy_icp_needed,
 161    .fields = (VMStateField[]) {
 162        VMSTATE_UNUSED(4), /* uint32_t xirr */
 163        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 164        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 165        VMSTATE_END_OF_LIST()
 166    },
 167};
 168
 169static void pre_2_10_vmstate_register_dummy_icp(int i)
 170{
 171    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 172                     (void *)(uintptr_t) i);
 173}
 174
 175static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 176{
 177    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 178                       (void *)(uintptr_t) i);
 179}
 180
 181static int xics_max_server_number(sPAPRMachineState *spapr)
 182{
 183    assert(spapr->vsmt);
 184    return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
 185}
 186
 187static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
 188{
 189    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
 190    Error *local_err = NULL;
 191
 192    if (kvm_enabled()) {
 193        if (machine_kernel_irqchip_allowed(machine) &&
 194            !xics_kvm_init(spapr, &local_err)) {
 195            spapr->icp_type = TYPE_KVM_ICP;
 196            spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs,
 197                                          &local_err);
 198        }
 199        if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
 200            error_prepend(&local_err,
 201                          "kernel_irqchip requested but unavailable: ");
 202            goto error;
 203        }
 204        error_free(local_err);
 205        local_err = NULL;
 206    }
 207
 208    if (!spapr->ics) {
 209        xics_spapr_init(spapr);
 210        spapr->icp_type = TYPE_ICP;
 211        spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs,
 212                                      &local_err);
 213    }
 214
 215error:
 216    error_propagate(errp, local_err);
 217}
 218
 219static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 220                                  int smt_threads)
 221{
 222    int i, ret = 0;
 223    uint32_t servers_prop[smt_threads];
 224    uint32_t gservers_prop[smt_threads * 2];
 225    int index = spapr_get_vcpu_id(cpu);
 226
 227    if (cpu->compat_pvr) {
 228        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 229        if (ret < 0) {
 230            return ret;
 231        }
 232    }
 233
 234    /* Build interrupt servers and gservers properties */
 235    for (i = 0; i < smt_threads; i++) {
 236        servers_prop[i] = cpu_to_be32(index + i);
 237        /* Hack, direct the group queues back to cpu 0 */
 238        gservers_prop[i*2] = cpu_to_be32(index + i);
 239        gservers_prop[i*2 + 1] = 0;
 240    }
 241    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 242                      servers_prop, sizeof(servers_prop));
 243    if (ret < 0) {
 244        return ret;
 245    }
 246    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 247                      gservers_prop, sizeof(gservers_prop));
 248
 249    return ret;
 250}
 251
 252static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 253{
 254    int index = spapr_get_vcpu_id(cpu);
 255    uint32_t associativity[] = {cpu_to_be32(0x5),
 256                                cpu_to_be32(0x0),
 257                                cpu_to_be32(0x0),
 258                                cpu_to_be32(0x0),
 259                                cpu_to_be32(cpu->node_id),
 260                                cpu_to_be32(index)};
 261
 262    /* Advertise NUMA via ibm,associativity */
 263    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 264                          sizeof(associativity));
 265}
 266
 267/* Populate the "ibm,pa-features" property */
 268static void spapr_populate_pa_features(sPAPRMachineState *spapr,
 269                                       PowerPCCPU *cpu,
 270                                       void *fdt, int offset,
 271                                       bool legacy_guest)
 272{
 273    uint8_t pa_features_206[] = { 6, 0,
 274        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 275    uint8_t pa_features_207[] = { 24, 0,
 276        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 277        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 278        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 279        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 280    uint8_t pa_features_300[] = { 66, 0,
 281        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 282        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 283        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 284        /* 6: DS207 */
 285        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 286        /* 16: Vector */
 287        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 288        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 289        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 290        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 291        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 292        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 293        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 294        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 295        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 296        /* 42: PM, 44: PC RA, 46: SC vec'd */
 297        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 298        /* 48: SIMD, 50: QP BFP, 52: String */
 299        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 300        /* 54: DecFP, 56: DecI, 58: SHA */
 301        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 302        /* 60: NM atomic, 62: RNG */
 303        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 304    };
 305    uint8_t *pa_features = NULL;
 306    size_t pa_size;
 307
 308    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 309        pa_features = pa_features_206;
 310        pa_size = sizeof(pa_features_206);
 311    }
 312    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 313        pa_features = pa_features_207;
 314        pa_size = sizeof(pa_features_207);
 315    }
 316    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 317        pa_features = pa_features_300;
 318        pa_size = sizeof(pa_features_300);
 319    }
 320    if (!pa_features) {
 321        return;
 322    }
 323
 324    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 325        /*
 326         * Note: we keep CI large pages off by default because a 64K capable
 327         * guest provisioned with large pages might otherwise try to map a qemu
 328         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 329         * even if that qemu runs on a 4k host.
 330         * We dd this bit back here if we are confident this is not an issue
 331         */
 332        pa_features[3] |= 0x20;
 333    }
 334    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 335        pa_features[24] |= 0x80;    /* Transactional memory support */
 336    }
 337    if (legacy_guest && pa_size > 40) {
 338        /* Workaround for broken kernels that attempt (guest) radix
 339         * mode when they can't handle it, if they see the radix bit set
 340         * in pa-features. So hide it from them. */
 341        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 342    }
 343
 344    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 345}
 346
 347static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 348{
 349    int ret = 0, offset, cpus_offset;
 350    CPUState *cs;
 351    char cpu_model[32];
 352    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 353
 354    CPU_FOREACH(cs) {
 355        PowerPCCPU *cpu = POWERPC_CPU(cs);
 356        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 357        int index = spapr_get_vcpu_id(cpu);
 358        int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 359
 360        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 361            continue;
 362        }
 363
 364        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 365
 366        cpus_offset = fdt_path_offset(fdt, "/cpus");
 367        if (cpus_offset < 0) {
 368            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 369            if (cpus_offset < 0) {
 370                return cpus_offset;
 371            }
 372        }
 373        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 374        if (offset < 0) {
 375            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 376            if (offset < 0) {
 377                return offset;
 378            }
 379        }
 380
 381        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 382                          pft_size_prop, sizeof(pft_size_prop));
 383        if (ret < 0) {
 384            return ret;
 385        }
 386
 387        if (nb_numa_nodes > 1) {
 388            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 389            if (ret < 0) {
 390                return ret;
 391            }
 392        }
 393
 394        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 395        if (ret < 0) {
 396            return ret;
 397        }
 398
 399        spapr_populate_pa_features(spapr, cpu, fdt, offset,
 400                                   spapr->cas_legacy_guest_workaround);
 401    }
 402    return ret;
 403}
 404
 405static hwaddr spapr_node0_size(MachineState *machine)
 406{
 407    if (nb_numa_nodes) {
 408        int i;
 409        for (i = 0; i < nb_numa_nodes; ++i) {
 410            if (numa_info[i].node_mem) {
 411                return MIN(pow2floor(numa_info[i].node_mem),
 412                           machine->ram_size);
 413            }
 414        }
 415    }
 416    return machine->ram_size;
 417}
 418
 419static void add_str(GString *s, const gchar *s1)
 420{
 421    g_string_append_len(s, s1, strlen(s1) + 1);
 422}
 423
 424static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 425                                       hwaddr size)
 426{
 427    uint32_t associativity[] = {
 428        cpu_to_be32(0x4), /* length */
 429        cpu_to_be32(0x0), cpu_to_be32(0x0),
 430        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 431    };
 432    char mem_name[32];
 433    uint64_t mem_reg_property[2];
 434    int off;
 435
 436    mem_reg_property[0] = cpu_to_be64(start);
 437    mem_reg_property[1] = cpu_to_be64(size);
 438
 439    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 440    off = fdt_add_subnode(fdt, 0, mem_name);
 441    _FDT(off);
 442    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 443    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 444                      sizeof(mem_reg_property))));
 445    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 446                      sizeof(associativity))));
 447    return off;
 448}
 449
 450static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 451{
 452    MachineState *machine = MACHINE(spapr);
 453    hwaddr mem_start, node_size;
 454    int i, nb_nodes = nb_numa_nodes;
 455    NodeInfo *nodes = numa_info;
 456    NodeInfo ramnode;
 457
 458    /* No NUMA nodes, assume there is just one node with whole RAM */
 459    if (!nb_numa_nodes) {
 460        nb_nodes = 1;
 461        ramnode.node_mem = machine->ram_size;
 462        nodes = &ramnode;
 463    }
 464
 465    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 466        if (!nodes[i].node_mem) {
 467            continue;
 468        }
 469        if (mem_start >= machine->ram_size) {
 470            node_size = 0;
 471        } else {
 472            node_size = nodes[i].node_mem;
 473            if (node_size > machine->ram_size - mem_start) {
 474                node_size = machine->ram_size - mem_start;
 475            }
 476        }
 477        if (!mem_start) {
 478            /* spapr_machine_init() checks for rma_size <= node0_size
 479             * already */
 480            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 481            mem_start += spapr->rma_size;
 482            node_size -= spapr->rma_size;
 483        }
 484        for ( ; node_size; ) {
 485            hwaddr sizetmp = pow2floor(node_size);
 486
 487            /* mem_start != 0 here */
 488            if (ctzl(mem_start) < ctzl(sizetmp)) {
 489                sizetmp = 1ULL << ctzl(mem_start);
 490            }
 491
 492            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 493            node_size -= sizetmp;
 494            mem_start += sizetmp;
 495        }
 496    }
 497
 498    return 0;
 499}
 500
 501static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 502                                  sPAPRMachineState *spapr)
 503{
 504    PowerPCCPU *cpu = POWERPC_CPU(cs);
 505    CPUPPCState *env = &cpu->env;
 506    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 507    int index = spapr_get_vcpu_id(cpu);
 508    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 509                       0xffffffff, 0xffffffff};
 510    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 511        : SPAPR_TIMEBASE_FREQ;
 512    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 513    uint32_t page_sizes_prop[64];
 514    size_t page_sizes_prop_size;
 515    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 516    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 517    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 518    sPAPRDRConnector *drc;
 519    int drc_index;
 520    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 521    int i;
 522
 523    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 524    if (drc) {
 525        drc_index = spapr_drc_index(drc);
 526        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 527    }
 528
 529    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 530    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 531
 532    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 533    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 534                           env->dcache_line_size)));
 535    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 536                           env->dcache_line_size)));
 537    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 538                           env->icache_line_size)));
 539    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 540                           env->icache_line_size)));
 541
 542    if (pcc->l1_dcache_size) {
 543        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 544                               pcc->l1_dcache_size)));
 545    } else {
 546        warn_report("Unknown L1 dcache size for cpu");
 547    }
 548    if (pcc->l1_icache_size) {
 549        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 550                               pcc->l1_icache_size)));
 551    } else {
 552        warn_report("Unknown L1 icache size for cpu");
 553    }
 554
 555    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 556    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 557    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 558    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 559    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 560    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 561
 562    if (env->spr_cb[SPR_PURR].oea_read) {
 563        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 564    }
 565
 566    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 567        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 568                          segs, sizeof(segs))));
 569    }
 570
 571    /* Advertise VSX (vector extensions) if available
 572     *   1               == VMX / Altivec available
 573     *   2               == VSX available
 574     *
 575     * Only CPUs for which we create core types in spapr_cpu_core.c
 576     * are possible, and all of those have VMX */
 577    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 578        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 579    } else {
 580        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 581    }
 582
 583    /* Advertise DFP (Decimal Floating Point) if available
 584     *   0 / no property == no DFP
 585     *   1               == DFP available */
 586    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 587        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 588    }
 589
 590    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 591                                                      sizeof(page_sizes_prop));
 592    if (page_sizes_prop_size) {
 593        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 594                          page_sizes_prop, page_sizes_prop_size)));
 595    }
 596
 597    spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
 598
 599    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 600                           cs->cpu_index / vcpus_per_socket)));
 601
 602    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 603                      pft_size_prop, sizeof(pft_size_prop))));
 604
 605    if (nb_numa_nodes > 1) {
 606        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 607    }
 608
 609    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 610
 611    if (pcc->radix_page_info) {
 612        for (i = 0; i < pcc->radix_page_info->count; i++) {
 613            radix_AP_encodings[i] =
 614                cpu_to_be32(pcc->radix_page_info->entries[i]);
 615        }
 616        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 617                          radix_AP_encodings,
 618                          pcc->radix_page_info->count *
 619                          sizeof(radix_AP_encodings[0]))));
 620    }
 621}
 622
 623static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 624{
 625    CPUState *cs;
 626    int cpus_offset;
 627    char *nodename;
 628
 629    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 630    _FDT(cpus_offset);
 631    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 632    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 633
 634    /*
 635     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 636     * created by fdt_add_subnode() end up in the right order in FDT
 637     * for the guest kernel the enumerate the CPUs correctly.
 638     */
 639    CPU_FOREACH_REVERSE(cs) {
 640        PowerPCCPU *cpu = POWERPC_CPU(cs);
 641        int index = spapr_get_vcpu_id(cpu);
 642        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 643        int offset;
 644
 645        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 646            continue;
 647        }
 648
 649        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 650        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 651        g_free(nodename);
 652        _FDT(offset);
 653        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 654    }
 655
 656}
 657
 658static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 659{
 660    MemoryDeviceInfoList *info;
 661
 662    for (info = list; info; info = info->next) {
 663        MemoryDeviceInfo *value = info->value;
 664
 665        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 666            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 667
 668            if (addr >= pcdimm_info->addr &&
 669                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 670                return pcdimm_info->node;
 671            }
 672        }
 673    }
 674
 675    return -1;
 676}
 677
 678struct sPAPRDrconfCellV2 {
 679     uint32_t seq_lmbs;
 680     uint64_t base_addr;
 681     uint32_t drc_index;
 682     uint32_t aa_index;
 683     uint32_t flags;
 684} QEMU_PACKED;
 685
 686typedef struct DrconfCellQueue {
 687    struct sPAPRDrconfCellV2 cell;
 688    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 689} DrconfCellQueue;
 690
 691static DrconfCellQueue *
 692spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 693                      uint32_t drc_index, uint32_t aa_index,
 694                      uint32_t flags)
 695{
 696    DrconfCellQueue *elem;
 697
 698    elem = g_malloc0(sizeof(*elem));
 699    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 700    elem->cell.base_addr = cpu_to_be64(base_addr);
 701    elem->cell.drc_index = cpu_to_be32(drc_index);
 702    elem->cell.aa_index = cpu_to_be32(aa_index);
 703    elem->cell.flags = cpu_to_be32(flags);
 704
 705    return elem;
 706}
 707
 708/* ibm,dynamic-memory-v2 */
 709static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
 710                                   int offset, MemoryDeviceInfoList *dimms)
 711{
 712    MachineState *machine = MACHINE(spapr);
 713    uint8_t *int_buf, *cur_index, buf_len;
 714    int ret;
 715    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 716    uint64_t addr, cur_addr, size;
 717    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 718    uint64_t mem_end = machine->device_memory->base +
 719                       memory_region_size(&machine->device_memory->mr);
 720    uint32_t node, nr_entries = 0;
 721    sPAPRDRConnector *drc;
 722    DrconfCellQueue *elem, *next;
 723    MemoryDeviceInfoList *info;
 724    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 725        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 726
 727    /* Entry to cover RAM and the gap area */
 728    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 729                                 SPAPR_LMB_FLAGS_RESERVED |
 730                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 731    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 732    nr_entries++;
 733
 734    cur_addr = machine->device_memory->base;
 735    for (info = dimms; info; info = info->next) {
 736        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 737
 738        addr = di->addr;
 739        size = di->size;
 740        node = di->node;
 741
 742        /* Entry for hot-pluggable area */
 743        if (cur_addr < addr) {
 744            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 745            g_assert(drc);
 746            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 747                                         cur_addr, spapr_drc_index(drc), -1, 0);
 748            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 749            nr_entries++;
 750        }
 751
 752        /* Entry for DIMM */
 753        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 754        g_assert(drc);
 755        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 756                                     spapr_drc_index(drc), node,
 757                                     SPAPR_LMB_FLAGS_ASSIGNED);
 758        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 759        nr_entries++;
 760        cur_addr = addr + size;
 761    }
 762
 763    /* Entry for remaining hotpluggable area */
 764    if (cur_addr < mem_end) {
 765        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 766        g_assert(drc);
 767        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 768                                     cur_addr, spapr_drc_index(drc), -1, 0);
 769        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 770        nr_entries++;
 771    }
 772
 773    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 774    int_buf = cur_index = g_malloc0(buf_len);
 775    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 776    cur_index += sizeof(nr_entries);
 777
 778    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 779        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 780        cur_index += sizeof(elem->cell);
 781        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 782        g_free(elem);
 783    }
 784
 785    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 786    g_free(int_buf);
 787    if (ret < 0) {
 788        return -1;
 789    }
 790    return 0;
 791}
 792
 793/* ibm,dynamic-memory */
 794static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
 795                                   int offset, MemoryDeviceInfoList *dimms)
 796{
 797    MachineState *machine = MACHINE(spapr);
 798    int i, ret;
 799    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 800    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 801    uint32_t nr_lmbs = (machine->device_memory->base +
 802                       memory_region_size(&machine->device_memory->mr)) /
 803                       lmb_size;
 804    uint32_t *int_buf, *cur_index, buf_len;
 805
 806    /*
 807     * Allocate enough buffer size to fit in ibm,dynamic-memory
 808     */
 809    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 810    cur_index = int_buf = g_malloc0(buf_len);
 811    int_buf[0] = cpu_to_be32(nr_lmbs);
 812    cur_index++;
 813    for (i = 0; i < nr_lmbs; i++) {
 814        uint64_t addr = i * lmb_size;
 815        uint32_t *dynamic_memory = cur_index;
 816
 817        if (i >= device_lmb_start) {
 818            sPAPRDRConnector *drc;
 819
 820            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 821            g_assert(drc);
 822
 823            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 824            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 825            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 826            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 827            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 828            if (memory_region_present(get_system_memory(), addr)) {
 829                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 830            } else {
 831                dynamic_memory[5] = cpu_to_be32(0);
 832            }
 833        } else {
 834            /*
 835             * LMB information for RMA, boot time RAM and gap b/n RAM and
 836             * device memory region -- all these are marked as reserved
 837             * and as having no valid DRC.
 838             */
 839            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 840            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 841            dynamic_memory[2] = cpu_to_be32(0);
 842            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 843            dynamic_memory[4] = cpu_to_be32(-1);
 844            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 845                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 846        }
 847
 848        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 849    }
 850    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 851    g_free(int_buf);
 852    if (ret < 0) {
 853        return -1;
 854    }
 855    return 0;
 856}
 857
 858/*
 859 * Adds ibm,dynamic-reconfiguration-memory node.
 860 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 861 * of this device tree node.
 862 */
 863static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 864{
 865    MachineState *machine = MACHINE(spapr);
 866    int ret, i, offset;
 867    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 868    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 869    uint32_t *int_buf, *cur_index, buf_len;
 870    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 871    MemoryDeviceInfoList *dimms = NULL;
 872
 873    /*
 874     * Don't create the node if there is no device memory
 875     */
 876    if (machine->ram_size == machine->maxram_size) {
 877        return 0;
 878    }
 879
 880    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 881
 882    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 883                    sizeof(prop_lmb_size));
 884    if (ret < 0) {
 885        return ret;
 886    }
 887
 888    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 889    if (ret < 0) {
 890        return ret;
 891    }
 892
 893    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 894    if (ret < 0) {
 895        return ret;
 896    }
 897
 898    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 899    dimms = qmp_memory_device_list();
 900    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 901        ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
 902    } else {
 903        ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
 904    }
 905    qapi_free_MemoryDeviceInfoList(dimms);
 906
 907    if (ret < 0) {
 908        return ret;
 909    }
 910
 911    /* ibm,associativity-lookup-arrays */
 912    buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
 913    cur_index = int_buf = g_malloc0(buf_len);
 914
 915    cur_index = int_buf;
 916    int_buf[0] = cpu_to_be32(nr_nodes);
 917    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 918    cur_index += 2;
 919    for (i = 0; i < nr_nodes; i++) {
 920        uint32_t associativity[] = {
 921            cpu_to_be32(0x0),
 922            cpu_to_be32(0x0),
 923            cpu_to_be32(0x0),
 924            cpu_to_be32(i)
 925        };
 926        memcpy(cur_index, associativity, sizeof(associativity));
 927        cur_index += 4;
 928    }
 929    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 930            (cur_index - int_buf) * sizeof(uint32_t));
 931    g_free(int_buf);
 932
 933    return ret;
 934}
 935
 936static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 937                                sPAPROptionVector *ov5_updates)
 938{
 939    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 940    int ret = 0, offset;
 941
 942    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 943    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 944        g_assert(smc->dr_lmb_enabled);
 945        ret = spapr_populate_drconf_memory(spapr, fdt);
 946        if (ret) {
 947            goto out;
 948        }
 949    }
 950
 951    offset = fdt_path_offset(fdt, "/chosen");
 952    if (offset < 0) {
 953        offset = fdt_add_subnode(fdt, 0, "chosen");
 954        if (offset < 0) {
 955            return offset;
 956        }
 957    }
 958    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 959                                 "ibm,architecture-vec-5");
 960
 961out:
 962    return ret;
 963}
 964
 965static bool spapr_hotplugged_dev_before_cas(void)
 966{
 967    Object *drc_container, *obj;
 968    ObjectProperty *prop;
 969    ObjectPropertyIterator iter;
 970
 971    drc_container = container_get(object_get_root(), "/dr-connector");
 972    object_property_iter_init(&iter, drc_container);
 973    while ((prop = object_property_iter_next(&iter))) {
 974        if (!strstart(prop->type, "link<", NULL)) {
 975            continue;
 976        }
 977        obj = object_property_get_link(drc_container, prop->name, NULL);
 978        if (spapr_drc_needed(obj)) {
 979            return true;
 980        }
 981    }
 982    return false;
 983}
 984
 985int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 986                                 target_ulong addr, target_ulong size,
 987                                 sPAPROptionVector *ov5_updates)
 988{
 989    void *fdt, *fdt_skel;
 990    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 991
 992    if (spapr_hotplugged_dev_before_cas()) {
 993        return 1;
 994    }
 995
 996    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 997        error_report("SLOF provided an unexpected CAS buffer size "
 998                     TARGET_FMT_lu " (min: %zu, max: %u)",
 999                     size, sizeof(hdr), FW_MAX_SIZE);
1000        exit(EXIT_FAILURE);
1001    }
1002
1003    size -= sizeof(hdr);
1004
1005    /* Create skeleton */
1006    fdt_skel = g_malloc0(size);
1007    _FDT((fdt_create(fdt_skel, size)));
1008    _FDT((fdt_finish_reservemap(fdt_skel)));
1009    _FDT((fdt_begin_node(fdt_skel, "")));
1010    _FDT((fdt_end_node(fdt_skel)));
1011    _FDT((fdt_finish(fdt_skel)));
1012    fdt = g_malloc0(size);
1013    _FDT((fdt_open_into(fdt_skel, fdt, size)));
1014    g_free(fdt_skel);
1015
1016    /* Fixup cpu nodes */
1017    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1018
1019    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1020        return -1;
1021    }
1022
1023    /* Pack resulting tree */
1024    _FDT((fdt_pack(fdt)));
1025
1026    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1027        trace_spapr_cas_failed(size);
1028        return -1;
1029    }
1030
1031    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1032    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1033    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1034    g_free(fdt);
1035
1036    return 0;
1037}
1038
1039static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1040{
1041    int rtas;
1042    GString *hypertas = g_string_sized_new(256);
1043    GString *qemu_hypertas = g_string_sized_new(256);
1044    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1045    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1046        memory_region_size(&MACHINE(spapr)->device_memory->mr);
1047    uint32_t lrdr_capacity[] = {
1048        cpu_to_be32(max_device_addr >> 32),
1049        cpu_to_be32(max_device_addr & 0xffffffff),
1050        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1051        cpu_to_be32(max_cpus / smp_threads),
1052    };
1053    uint32_t maxdomains[] = {
1054        cpu_to_be32(4),
1055        cpu_to_be32(0),
1056        cpu_to_be32(0),
1057        cpu_to_be32(0),
1058        cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1059    };
1060
1061    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1062
1063    /* hypertas */
1064    add_str(hypertas, "hcall-pft");
1065    add_str(hypertas, "hcall-term");
1066    add_str(hypertas, "hcall-dabr");
1067    add_str(hypertas, "hcall-interrupt");
1068    add_str(hypertas, "hcall-tce");
1069    add_str(hypertas, "hcall-vio");
1070    add_str(hypertas, "hcall-splpar");
1071    add_str(hypertas, "hcall-bulk");
1072    add_str(hypertas, "hcall-set-mode");
1073    add_str(hypertas, "hcall-sprg0");
1074    add_str(hypertas, "hcall-copy");
1075    add_str(hypertas, "hcall-debug");
1076    add_str(qemu_hypertas, "hcall-memop1");
1077
1078    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1079        add_str(hypertas, "hcall-multi-tce");
1080    }
1081
1082    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1083        add_str(hypertas, "hcall-hpt-resize");
1084    }
1085
1086    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1087                     hypertas->str, hypertas->len));
1088    g_string_free(hypertas, TRUE);
1089    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1090                     qemu_hypertas->str, qemu_hypertas->len));
1091    g_string_free(qemu_hypertas, TRUE);
1092
1093    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1094                     refpoints, sizeof(refpoints)));
1095
1096    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1097                     maxdomains, sizeof(maxdomains)));
1098
1099    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1100                          RTAS_ERROR_LOG_MAX));
1101    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1102                          RTAS_EVENT_SCAN_RATE));
1103
1104    g_assert(msi_nonbroken);
1105    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1106
1107    /*
1108     * According to PAPR, rtas ibm,os-term does not guarantee a return
1109     * back to the guest cpu.
1110     *
1111     * While an additional ibm,extended-os-term property indicates
1112     * that rtas call return will always occur. Set this property.
1113     */
1114    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1115
1116    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1117                     lrdr_capacity, sizeof(lrdr_capacity)));
1118
1119    spapr_dt_rtas_tokens(fdt, rtas);
1120}
1121
1122/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1123 * that the guest may request and thus the valid values for bytes 24..26 of
1124 * option vector 5: */
1125static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1126{
1127    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1128
1129    char val[2 * 4] = {
1130        23, 0x00, /* Xive mode, filled in below. */
1131        24, 0x00, /* Hash/Radix, filled in below. */
1132        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1133        26, 0x40, /* Radix options: GTSE == yes. */
1134    };
1135
1136    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1137                          first_ppc_cpu->compat_pvr)) {
1138        /* If we're in a pre POWER9 compat mode then the guest should do hash */
1139        val[3] = 0x00; /* Hash */
1140    } else if (kvm_enabled()) {
1141        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1142            val[3] = 0x80; /* OV5_MMU_BOTH */
1143        } else if (kvmppc_has_cap_mmu_radix()) {
1144            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1145        } else {
1146            val[3] = 0x00; /* Hash */
1147        }
1148    } else {
1149        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1150        val[3] = 0xC0;
1151    }
1152    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1153                     val, sizeof(val)));
1154}
1155
1156static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1157{
1158    MachineState *machine = MACHINE(spapr);
1159    int chosen;
1160    const char *boot_device = machine->boot_order;
1161    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1162    size_t cb = 0;
1163    char *bootlist = get_boot_devices_list(&cb, true);
1164
1165    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1166
1167    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1168    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1169                          spapr->initrd_base));
1170    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1171                          spapr->initrd_base + spapr->initrd_size));
1172
1173    if (spapr->kernel_size) {
1174        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1175                              cpu_to_be64(spapr->kernel_size) };
1176
1177        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1178                         &kprop, sizeof(kprop)));
1179        if (spapr->kernel_le) {
1180            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1181        }
1182    }
1183    if (boot_menu) {
1184        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1185    }
1186    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1187    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1188    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1189
1190    if (cb && bootlist) {
1191        int i;
1192
1193        for (i = 0; i < cb; i++) {
1194            if (bootlist[i] == '\n') {
1195                bootlist[i] = ' ';
1196            }
1197        }
1198        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1199    }
1200
1201    if (boot_device && strlen(boot_device)) {
1202        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1203    }
1204
1205    if (!spapr->has_graphics && stdout_path) {
1206        /*
1207         * "linux,stdout-path" and "stdout" properties are deprecated by linux
1208         * kernel. New platforms should only use the "stdout-path" property. Set
1209         * the new property and continue using older property to remain
1210         * compatible with the existing firmware.
1211         */
1212        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1213        _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1214    }
1215
1216    spapr_dt_ov5_platform_support(fdt, chosen);
1217
1218    g_free(stdout_path);
1219    g_free(bootlist);
1220}
1221
1222static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1223{
1224    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1225     * KVM to work under pHyp with some guest co-operation */
1226    int hypervisor;
1227    uint8_t hypercall[16];
1228
1229    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1230    /* indicate KVM hypercall interface */
1231    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1232    if (kvmppc_has_cap_fixup_hcalls()) {
1233        /*
1234         * Older KVM versions with older guest kernels were broken
1235         * with the magic page, don't allow the guest to map it.
1236         */
1237        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1238                                  sizeof(hypercall))) {
1239            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1240                             hypercall, sizeof(hypercall)));
1241        }
1242    }
1243}
1244
1245static void *spapr_build_fdt(sPAPRMachineState *spapr,
1246                             hwaddr rtas_addr,
1247                             hwaddr rtas_size)
1248{
1249    MachineState *machine = MACHINE(spapr);
1250    MachineClass *mc = MACHINE_GET_CLASS(machine);
1251    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1252    int ret;
1253    void *fdt;
1254    sPAPRPHBState *phb;
1255    char *buf;
1256
1257    fdt = g_malloc0(FDT_MAX_SIZE);
1258    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1259
1260    /* Root node */
1261    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1262    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1263    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1264
1265    /*
1266     * Add info to guest to indentify which host is it being run on
1267     * and what is the uuid of the guest
1268     */
1269    if (kvmppc_get_host_model(&buf)) {
1270        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1271        g_free(buf);
1272    }
1273    if (kvmppc_get_host_serial(&buf)) {
1274        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1275        g_free(buf);
1276    }
1277
1278    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1279
1280    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1281    if (qemu_uuid_set) {
1282        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1283    }
1284    g_free(buf);
1285
1286    if (qemu_get_vm_name()) {
1287        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1288                                qemu_get_vm_name()));
1289    }
1290
1291    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1292    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1293
1294    /* /interrupt controller */
1295    spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1296
1297    ret = spapr_populate_memory(spapr, fdt);
1298    if (ret < 0) {
1299        error_report("couldn't setup memory nodes in fdt");
1300        exit(1);
1301    }
1302
1303    /* /vdevice */
1304    spapr_dt_vdevice(spapr->vio_bus, fdt);
1305
1306    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1307        ret = spapr_rng_populate_dt(fdt);
1308        if (ret < 0) {
1309            error_report("could not set up rng device in the fdt");
1310            exit(1);
1311        }
1312    }
1313
1314    QLIST_FOREACH(phb, &spapr->phbs, list) {
1315        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1316        if (ret < 0) {
1317            error_report("couldn't setup PCI devices in fdt");
1318            exit(1);
1319        }
1320    }
1321
1322    /* cpus */
1323    spapr_populate_cpus_dt_node(fdt, spapr);
1324
1325    if (smc->dr_lmb_enabled) {
1326        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327    }
1328
1329    if (mc->has_hotpluggable_cpus) {
1330        int offset = fdt_path_offset(fdt, "/cpus");
1331        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1332                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1333        if (ret < 0) {
1334            error_report("Couldn't set up CPU DR device tree properties");
1335            exit(1);
1336        }
1337    }
1338
1339    /* /event-sources */
1340    spapr_dt_events(spapr, fdt);
1341
1342    /* /rtas */
1343    spapr_dt_rtas(spapr, fdt);
1344
1345    /* /chosen */
1346    spapr_dt_chosen(spapr, fdt);
1347
1348    /* /hypervisor */
1349    if (kvm_enabled()) {
1350        spapr_dt_hypervisor(spapr, fdt);
1351    }
1352
1353    /* Build memory reserve map */
1354    if (spapr->kernel_size) {
1355        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1356    }
1357    if (spapr->initrd_size) {
1358        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1359    }
1360
1361    /* ibm,client-architecture-support updates */
1362    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1363    if (ret < 0) {
1364        error_report("couldn't setup CAS properties fdt");
1365        exit(1);
1366    }
1367
1368    return fdt;
1369}
1370
1371static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1372{
1373    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1374}
1375
1376static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1377                                    PowerPCCPU *cpu)
1378{
1379    CPUPPCState *env = &cpu->env;
1380
1381    /* The TCG path should also be holding the BQL at this point */
1382    g_assert(qemu_mutex_iothread_locked());
1383
1384    if (msr_pr) {
1385        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386        env->gpr[3] = H_PRIVILEGE;
1387    } else {
1388        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1389    }
1390}
1391
1392static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1393{
1394    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1395
1396    return spapr->patb_entry;
1397}
1398
1399#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1400#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1401#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1402#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1403#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1404
1405/*
1406 * Get the fd to access the kernel htab, re-opening it if necessary
1407 */
1408static int get_htab_fd(sPAPRMachineState *spapr)
1409{
1410    Error *local_err = NULL;
1411
1412    if (spapr->htab_fd >= 0) {
1413        return spapr->htab_fd;
1414    }
1415
1416    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1417    if (spapr->htab_fd < 0) {
1418        error_report_err(local_err);
1419    }
1420
1421    return spapr->htab_fd;
1422}
1423
1424void close_htab_fd(sPAPRMachineState *spapr)
1425{
1426    if (spapr->htab_fd >= 0) {
1427        close(spapr->htab_fd);
1428    }
1429    spapr->htab_fd = -1;
1430}
1431
1432static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1433{
1434    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1435
1436    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1437}
1438
1439static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1440{
1441    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1442
1443    assert(kvm_enabled());
1444
1445    if (!spapr->htab) {
1446        return 0;
1447    }
1448
1449    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1450}
1451
1452static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1453                                                hwaddr ptex, int n)
1454{
1455    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1456    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1457
1458    if (!spapr->htab) {
1459        /*
1460         * HTAB is controlled by KVM. Fetch into temporary buffer
1461         */
1462        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1463        kvmppc_read_hptes(hptes, ptex, n);
1464        return hptes;
1465    }
1466
1467    /*
1468     * HTAB is controlled by QEMU. Just point to the internally
1469     * accessible PTEG.
1470     */
1471    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1472}
1473
1474static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1475                              const ppc_hash_pte64_t *hptes,
1476                              hwaddr ptex, int n)
1477{
1478    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1479
1480    if (!spapr->htab) {
1481        g_free((void *)hptes);
1482    }
1483
1484    /* Nothing to do for qemu managed HPT */
1485}
1486
1487static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1488                             uint64_t pte0, uint64_t pte1)
1489{
1490    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1491    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1492
1493    if (!spapr->htab) {
1494        kvmppc_write_hpte(ptex, pte0, pte1);
1495    } else {
1496        stq_p(spapr->htab + offset, pte0);
1497        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1498    }
1499}
1500
1501int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1502{
1503    int shift;
1504
1505    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1506     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1507     * that's much more than is needed for Linux guests */
1508    shift = ctz64(pow2ceil(ramsize)) - 7;
1509    shift = MAX(shift, 18); /* Minimum architected size */
1510    shift = MIN(shift, 46); /* Maximum architected size */
1511    return shift;
1512}
1513
1514void spapr_free_hpt(sPAPRMachineState *spapr)
1515{
1516    g_free(spapr->htab);
1517    spapr->htab = NULL;
1518    spapr->htab_shift = 0;
1519    close_htab_fd(spapr);
1520}
1521
1522void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1523                          Error **errp)
1524{
1525    long rc;
1526
1527    /* Clean up any HPT info from a previous boot */
1528    spapr_free_hpt(spapr);
1529
1530    rc = kvmppc_reset_htab(shift);
1531    if (rc < 0) {
1532        /* kernel-side HPT needed, but couldn't allocate one */
1533        error_setg_errno(errp, errno,
1534                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1535                         shift);
1536        /* This is almost certainly fatal, but if the caller really
1537         * wants to carry on with shift == 0, it's welcome to try */
1538    } else if (rc > 0) {
1539        /* kernel-side HPT allocated */
1540        if (rc != shift) {
1541            error_setg(errp,
1542                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1543                       shift, rc);
1544        }
1545
1546        spapr->htab_shift = shift;
1547        spapr->htab = NULL;
1548    } else {
1549        /* kernel-side HPT not needed, allocate in userspace instead */
1550        size_t size = 1ULL << shift;
1551        int i;
1552
1553        spapr->htab = qemu_memalign(size, size);
1554        if (!spapr->htab) {
1555            error_setg_errno(errp, errno,
1556                             "Could not allocate HPT of order %d", shift);
1557            return;
1558        }
1559
1560        memset(spapr->htab, 0, size);
1561        spapr->htab_shift = shift;
1562
1563        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1564            DIRTY_HPTE(HPTE(spapr->htab, i));
1565        }
1566    }
1567    /* We're setting up a hash table, so that means we're not radix */
1568    spapr->patb_entry = 0;
1569}
1570
1571void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1572{
1573    int hpt_shift;
1574
1575    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1576        || (spapr->cas_reboot
1577            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1578        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1579    } else {
1580        uint64_t current_ram_size;
1581
1582        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1583        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1584    }
1585    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1586
1587    if (spapr->vrma_adjust) {
1588        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1589                                          spapr->htab_shift);
1590    }
1591}
1592
1593static int spapr_reset_drcs(Object *child, void *opaque)
1594{
1595    sPAPRDRConnector *drc =
1596        (sPAPRDRConnector *) object_dynamic_cast(child,
1597                                                 TYPE_SPAPR_DR_CONNECTOR);
1598
1599    if (drc) {
1600        spapr_drc_reset(drc);
1601    }
1602
1603    return 0;
1604}
1605
1606static void spapr_machine_reset(void)
1607{
1608    MachineState *machine = MACHINE(qdev_get_machine());
1609    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1610    PowerPCCPU *first_ppc_cpu;
1611    uint32_t rtas_limit;
1612    hwaddr rtas_addr, fdt_addr;
1613    void *fdt;
1614    int rc;
1615
1616    spapr_caps_apply(spapr);
1617
1618    first_ppc_cpu = POWERPC_CPU(first_cpu);
1619    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1620        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1621                              spapr->max_compat_pvr)) {
1622        /* If using KVM with radix mode available, VCPUs can be started
1623         * without a HPT because KVM will start them in radix mode.
1624         * Set the GR bit in PATB so that we know there is no HPT. */
1625        spapr->patb_entry = PATBE1_GR;
1626    } else {
1627        spapr_setup_hpt_and_vrma(spapr);
1628    }
1629
1630    /* if this reset wasn't generated by CAS, we should reset our
1631     * negotiated options and start from scratch */
1632    if (!spapr->cas_reboot) {
1633        spapr_ovec_cleanup(spapr->ov5_cas);
1634        spapr->ov5_cas = spapr_ovec_new();
1635
1636        ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1637    }
1638
1639    qemu_devices_reset();
1640
1641    /* DRC reset may cause a device to be unplugged. This will cause troubles
1642     * if this device is used by another device (eg, a running vhost backend
1643     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1644     * situations, we reset DRCs after all devices have been reset.
1645     */
1646    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1647
1648    spapr_clear_pending_events(spapr);
1649
1650    /*
1651     * We place the device tree and RTAS just below either the top of the RMA,
1652     * or just below 2GB, whichever is lowere, so that it can be
1653     * processed with 32-bit real mode code if necessary
1654     */
1655    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1656    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1657    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1658
1659    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1660
1661    spapr_load_rtas(spapr, fdt, rtas_addr);
1662
1663    rc = fdt_pack(fdt);
1664
1665    /* Should only fail if we've built a corrupted tree */
1666    assert(rc == 0);
1667
1668    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1669        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1670                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1671        exit(1);
1672    }
1673
1674    /* Load the fdt */
1675    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1676    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1677    g_free(fdt);
1678
1679    /* Set up the entry state */
1680    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1681    first_ppc_cpu->env.gpr[5] = 0;
1682
1683    spapr->cas_reboot = false;
1684}
1685
1686static void spapr_create_nvram(sPAPRMachineState *spapr)
1687{
1688    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1689    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1690
1691    if (dinfo) {
1692        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1693                            &error_fatal);
1694    }
1695
1696    qdev_init_nofail(dev);
1697
1698    spapr->nvram = (struct sPAPRNVRAM *)dev;
1699}
1700
1701static void spapr_rtc_create(sPAPRMachineState *spapr)
1702{
1703    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1704    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1705                              &error_fatal);
1706    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1707                              &error_fatal);
1708    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1709                              "date", &error_fatal);
1710}
1711
1712/* Returns whether we want to use VGA or not */
1713static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1714{
1715    switch (vga_interface_type) {
1716    case VGA_NONE:
1717        return false;
1718    case VGA_DEVICE:
1719        return true;
1720    case VGA_STD:
1721    case VGA_VIRTIO:
1722        return pci_vga_init(pci_bus) != NULL;
1723    default:
1724        error_setg(errp,
1725                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1726        return false;
1727    }
1728}
1729
1730static int spapr_pre_load(void *opaque)
1731{
1732    int rc;
1733
1734    rc = spapr_caps_pre_load(opaque);
1735    if (rc) {
1736        return rc;
1737    }
1738
1739    return 0;
1740}
1741
1742static int spapr_post_load(void *opaque, int version_id)
1743{
1744    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1745    int err = 0;
1746
1747    err = spapr_caps_post_migration(spapr);
1748    if (err) {
1749        return err;
1750    }
1751
1752    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1753        CPUState *cs;
1754        CPU_FOREACH(cs) {
1755            PowerPCCPU *cpu = POWERPC_CPU(cs);
1756            icp_resend(ICP(cpu->intc));
1757        }
1758    }
1759
1760    /* In earlier versions, there was no separate qdev for the PAPR
1761     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1762     * So when migrating from those versions, poke the incoming offset
1763     * value into the RTC device */
1764    if (version_id < 3) {
1765        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1766    }
1767
1768    if (kvm_enabled() && spapr->patb_entry) {
1769        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1770        bool radix = !!(spapr->patb_entry & PATBE1_GR);
1771        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1772
1773        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1774        if (err) {
1775            error_report("Process table config unsupported by the host");
1776            return -EINVAL;
1777        }
1778    }
1779
1780    return err;
1781}
1782
1783static int spapr_pre_save(void *opaque)
1784{
1785    int rc;
1786
1787    rc = spapr_caps_pre_save(opaque);
1788    if (rc) {
1789        return rc;
1790    }
1791
1792    return 0;
1793}
1794
1795static bool version_before_3(void *opaque, int version_id)
1796{
1797    return version_id < 3;
1798}
1799
1800static bool spapr_pending_events_needed(void *opaque)
1801{
1802    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1803    return !QTAILQ_EMPTY(&spapr->pending_events);
1804}
1805
1806static const VMStateDescription vmstate_spapr_event_entry = {
1807    .name = "spapr_event_log_entry",
1808    .version_id = 1,
1809    .minimum_version_id = 1,
1810    .fields = (VMStateField[]) {
1811        VMSTATE_UINT32(summary, sPAPREventLogEntry),
1812        VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1813        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1814                                     NULL, extended_length),
1815        VMSTATE_END_OF_LIST()
1816    },
1817};
1818
1819static const VMStateDescription vmstate_spapr_pending_events = {
1820    .name = "spapr_pending_events",
1821    .version_id = 1,
1822    .minimum_version_id = 1,
1823    .needed = spapr_pending_events_needed,
1824    .fields = (VMStateField[]) {
1825        VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1826                         vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1827        VMSTATE_END_OF_LIST()
1828    },
1829};
1830
1831static bool spapr_ov5_cas_needed(void *opaque)
1832{
1833    sPAPRMachineState *spapr = opaque;
1834    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1835    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1836    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1837    bool cas_needed;
1838
1839    /* Prior to the introduction of sPAPROptionVector, we had two option
1840     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1841     * Both of these options encode machine topology into the device-tree
1842     * in such a way that the now-booted OS should still be able to interact
1843     * appropriately with QEMU regardless of what options were actually
1844     * negotiatied on the source side.
1845     *
1846     * As such, we can avoid migrating the CAS-negotiated options if these
1847     * are the only options available on the current machine/platform.
1848     * Since these are the only options available for pseries-2.7 and
1849     * earlier, this allows us to maintain old->new/new->old migration
1850     * compatibility.
1851     *
1852     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1853     * via default pseries-2.8 machines and explicit command-line parameters.
1854     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1855     * of the actual CAS-negotiated values to continue working properly. For
1856     * example, availability of memory unplug depends on knowing whether
1857     * OV5_HP_EVT was negotiated via CAS.
1858     *
1859     * Thus, for any cases where the set of available CAS-negotiatable
1860     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1861     * include the CAS-negotiated options in the migration stream, unless
1862     * if they affect boot time behaviour only.
1863     */
1864    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1865    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1866    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1867
1868    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1869     * the mask itself since in the future it's possible "legacy" bits may be
1870     * removed via machine options, which could generate a false positive
1871     * that breaks migration.
1872     */
1873    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1874    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1875
1876    spapr_ovec_cleanup(ov5_mask);
1877    spapr_ovec_cleanup(ov5_legacy);
1878    spapr_ovec_cleanup(ov5_removed);
1879
1880    return cas_needed;
1881}
1882
1883static const VMStateDescription vmstate_spapr_ov5_cas = {
1884    .name = "spapr_option_vector_ov5_cas",
1885    .version_id = 1,
1886    .minimum_version_id = 1,
1887    .needed = spapr_ov5_cas_needed,
1888    .fields = (VMStateField[]) {
1889        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1890                                 vmstate_spapr_ovec, sPAPROptionVector),
1891        VMSTATE_END_OF_LIST()
1892    },
1893};
1894
1895static bool spapr_patb_entry_needed(void *opaque)
1896{
1897    sPAPRMachineState *spapr = opaque;
1898
1899    return !!spapr->patb_entry;
1900}
1901
1902static const VMStateDescription vmstate_spapr_patb_entry = {
1903    .name = "spapr_patb_entry",
1904    .version_id = 1,
1905    .minimum_version_id = 1,
1906    .needed = spapr_patb_entry_needed,
1907    .fields = (VMStateField[]) {
1908        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1909        VMSTATE_END_OF_LIST()
1910    },
1911};
1912
1913static const VMStateDescription vmstate_spapr = {
1914    .name = "spapr",
1915    .version_id = 3,
1916    .minimum_version_id = 1,
1917    .pre_load = spapr_pre_load,
1918    .post_load = spapr_post_load,
1919    .pre_save = spapr_pre_save,
1920    .fields = (VMStateField[]) {
1921        /* used to be @next_irq */
1922        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1923
1924        /* RTC offset */
1925        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1926
1927        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1928        VMSTATE_END_OF_LIST()
1929    },
1930    .subsections = (const VMStateDescription*[]) {
1931        &vmstate_spapr_ov5_cas,
1932        &vmstate_spapr_patb_entry,
1933        &vmstate_spapr_pending_events,
1934        &vmstate_spapr_cap_htm,
1935        &vmstate_spapr_cap_vsx,
1936        &vmstate_spapr_cap_dfp,
1937        &vmstate_spapr_cap_cfpc,
1938        &vmstate_spapr_cap_sbbc,
1939        &vmstate_spapr_cap_ibs,
1940        NULL
1941    }
1942};
1943
1944static int htab_save_setup(QEMUFile *f, void *opaque)
1945{
1946    sPAPRMachineState *spapr = opaque;
1947
1948    /* "Iteration" header */
1949    if (!spapr->htab_shift) {
1950        qemu_put_be32(f, -1);
1951    } else {
1952        qemu_put_be32(f, spapr->htab_shift);
1953    }
1954
1955    if (spapr->htab) {
1956        spapr->htab_save_index = 0;
1957        spapr->htab_first_pass = true;
1958    } else {
1959        if (spapr->htab_shift) {
1960            assert(kvm_enabled());
1961        }
1962    }
1963
1964
1965    return 0;
1966}
1967
1968static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1969                            int chunkstart, int n_valid, int n_invalid)
1970{
1971    qemu_put_be32(f, chunkstart);
1972    qemu_put_be16(f, n_valid);
1973    qemu_put_be16(f, n_invalid);
1974    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1975                    HASH_PTE_SIZE_64 * n_valid);
1976}
1977
1978static void htab_save_end_marker(QEMUFile *f)
1979{
1980    qemu_put_be32(f, 0);
1981    qemu_put_be16(f, 0);
1982    qemu_put_be16(f, 0);
1983}
1984
1985static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1986                                 int64_t max_ns)
1987{
1988    bool has_timeout = max_ns != -1;
1989    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1990    int index = spapr->htab_save_index;
1991    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1992
1993    assert(spapr->htab_first_pass);
1994
1995    do {
1996        int chunkstart;
1997
1998        /* Consume invalid HPTEs */
1999        while ((index < htabslots)
2000               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2001            CLEAN_HPTE(HPTE(spapr->htab, index));
2002            index++;
2003        }
2004
2005        /* Consume valid HPTEs */
2006        chunkstart = index;
2007        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2008               && HPTE_VALID(HPTE(spapr->htab, index))) {
2009            CLEAN_HPTE(HPTE(spapr->htab, index));
2010            index++;
2011        }
2012
2013        if (index > chunkstart) {
2014            int n_valid = index - chunkstart;
2015
2016            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2017
2018            if (has_timeout &&
2019                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2020                break;
2021            }
2022        }
2023    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2024
2025    if (index >= htabslots) {
2026        assert(index == htabslots);
2027        index = 0;
2028        spapr->htab_first_pass = false;
2029    }
2030    spapr->htab_save_index = index;
2031}
2032
2033static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2034                                int64_t max_ns)
2035{
2036    bool final = max_ns < 0;
2037    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2038    int examined = 0, sent = 0;
2039    int index = spapr->htab_save_index;
2040    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2041
2042    assert(!spapr->htab_first_pass);
2043
2044    do {
2045        int chunkstart, invalidstart;
2046
2047        /* Consume non-dirty HPTEs */
2048        while ((index < htabslots)
2049               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2050            index++;
2051            examined++;
2052        }
2053
2054        chunkstart = index;
2055        /* Consume valid dirty HPTEs */
2056        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2057               && HPTE_DIRTY(HPTE(spapr->htab, index))
2058               && HPTE_VALID(HPTE(spapr->htab, index))) {
2059            CLEAN_HPTE(HPTE(spapr->htab, index));
2060            index++;
2061            examined++;
2062        }
2063
2064        invalidstart = index;
2065        /* Consume invalid dirty HPTEs */
2066        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2067               && HPTE_DIRTY(HPTE(spapr->htab, index))
2068               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2069            CLEAN_HPTE(HPTE(spapr->htab, index));
2070            index++;
2071            examined++;
2072        }
2073
2074        if (index > chunkstart) {
2075            int n_valid = invalidstart - chunkstart;
2076            int n_invalid = index - invalidstart;
2077
2078            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2079            sent += index - chunkstart;
2080
2081            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2082                break;
2083            }
2084        }
2085
2086        if (examined >= htabslots) {
2087            break;
2088        }
2089
2090        if (index >= htabslots) {
2091            assert(index == htabslots);
2092            index = 0;
2093        }
2094    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2095
2096    if (index >= htabslots) {
2097        assert(index == htabslots);
2098        index = 0;
2099    }
2100
2101    spapr->htab_save_index = index;
2102
2103    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2104}
2105
2106#define MAX_ITERATION_NS    5000000 /* 5 ms */
2107#define MAX_KVM_BUF_SIZE    2048
2108
2109static int htab_save_iterate(QEMUFile *f, void *opaque)
2110{
2111    sPAPRMachineState *spapr = opaque;
2112    int fd;
2113    int rc = 0;
2114
2115    /* Iteration header */
2116    if (!spapr->htab_shift) {
2117        qemu_put_be32(f, -1);
2118        return 1;
2119    } else {
2120        qemu_put_be32(f, 0);
2121    }
2122
2123    if (!spapr->htab) {
2124        assert(kvm_enabled());
2125
2126        fd = get_htab_fd(spapr);
2127        if (fd < 0) {
2128            return fd;
2129        }
2130
2131        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2132        if (rc < 0) {
2133            return rc;
2134        }
2135    } else  if (spapr->htab_first_pass) {
2136        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2137    } else {
2138        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2139    }
2140
2141    htab_save_end_marker(f);
2142
2143    return rc;
2144}
2145
2146static int htab_save_complete(QEMUFile *f, void *opaque)
2147{
2148    sPAPRMachineState *spapr = opaque;
2149    int fd;
2150
2151    /* Iteration header */
2152    if (!spapr->htab_shift) {
2153        qemu_put_be32(f, -1);
2154        return 0;
2155    } else {
2156        qemu_put_be32(f, 0);
2157    }
2158
2159    if (!spapr->htab) {
2160        int rc;
2161
2162        assert(kvm_enabled());
2163
2164        fd = get_htab_fd(spapr);
2165        if (fd < 0) {
2166            return fd;
2167        }
2168
2169        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2170        if (rc < 0) {
2171            return rc;
2172        }
2173    } else {
2174        if (spapr->htab_first_pass) {
2175            htab_save_first_pass(f, spapr, -1);
2176        }
2177        htab_save_later_pass(f, spapr, -1);
2178    }
2179
2180    /* End marker */
2181    htab_save_end_marker(f);
2182
2183    return 0;
2184}
2185
2186static int htab_load(QEMUFile *f, void *opaque, int version_id)
2187{
2188    sPAPRMachineState *spapr = opaque;
2189    uint32_t section_hdr;
2190    int fd = -1;
2191    Error *local_err = NULL;
2192
2193    if (version_id < 1 || version_id > 1) {
2194        error_report("htab_load() bad version");
2195        return -EINVAL;
2196    }
2197
2198    section_hdr = qemu_get_be32(f);
2199
2200    if (section_hdr == -1) {
2201        spapr_free_hpt(spapr);
2202        return 0;
2203    }
2204
2205    if (section_hdr) {
2206        /* First section gives the htab size */
2207        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2208        if (local_err) {
2209            error_report_err(local_err);
2210            return -EINVAL;
2211        }
2212        return 0;
2213    }
2214
2215    if (!spapr->htab) {
2216        assert(kvm_enabled());
2217
2218        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2219        if (fd < 0) {
2220            error_report_err(local_err);
2221            return fd;
2222        }
2223    }
2224
2225    while (true) {
2226        uint32_t index;
2227        uint16_t n_valid, n_invalid;
2228
2229        index = qemu_get_be32(f);
2230        n_valid = qemu_get_be16(f);
2231        n_invalid = qemu_get_be16(f);
2232
2233        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2234            /* End of Stream */
2235            break;
2236        }
2237
2238        if ((index + n_valid + n_invalid) >
2239            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2240            /* Bad index in stream */
2241            error_report(
2242                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2243                index, n_valid, n_invalid, spapr->htab_shift);
2244            return -EINVAL;
2245        }
2246
2247        if (spapr->htab) {
2248            if (n_valid) {
2249                qemu_get_buffer(f, HPTE(spapr->htab, index),
2250                                HASH_PTE_SIZE_64 * n_valid);
2251            }
2252            if (n_invalid) {
2253                memset(HPTE(spapr->htab, index + n_valid), 0,
2254                       HASH_PTE_SIZE_64 * n_invalid);
2255            }
2256        } else {
2257            int rc;
2258
2259            assert(fd >= 0);
2260
2261            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2262            if (rc < 0) {
2263                return rc;
2264            }
2265        }
2266    }
2267
2268    if (!spapr->htab) {
2269        assert(fd >= 0);
2270        close(fd);
2271    }
2272
2273    return 0;
2274}
2275
2276static void htab_save_cleanup(void *opaque)
2277{
2278    sPAPRMachineState *spapr = opaque;
2279
2280    close_htab_fd(spapr);
2281}
2282
2283static SaveVMHandlers savevm_htab_handlers = {
2284    .save_setup = htab_save_setup,
2285    .save_live_iterate = htab_save_iterate,
2286    .save_live_complete_precopy = htab_save_complete,
2287    .save_cleanup = htab_save_cleanup,
2288    .load_state = htab_load,
2289};
2290
2291static void spapr_boot_set(void *opaque, const char *boot_device,
2292                           Error **errp)
2293{
2294    MachineState *machine = MACHINE(opaque);
2295    machine->boot_order = g_strdup(boot_device);
2296}
2297
2298static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2299{
2300    MachineState *machine = MACHINE(spapr);
2301    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2302    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2303    int i;
2304
2305    for (i = 0; i < nr_lmbs; i++) {
2306        uint64_t addr;
2307
2308        addr = i * lmb_size + machine->device_memory->base;
2309        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2310                               addr / lmb_size);
2311    }
2312}
2313
2314/*
2315 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2316 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2317 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2318 */
2319static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2320{
2321    int i;
2322
2323    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2324        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2325                   " is not aligned to %" PRIu64 " MiB",
2326                   machine->ram_size,
2327                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2328        return;
2329    }
2330
2331    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2332        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2333                   " is not aligned to %" PRIu64 " MiB",
2334                   machine->ram_size,
2335                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2336        return;
2337    }
2338
2339    for (i = 0; i < nb_numa_nodes; i++) {
2340        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2341            error_setg(errp,
2342                       "Node %d memory size 0x%" PRIx64
2343                       " is not aligned to %" PRIu64 " MiB",
2344                       i, numa_info[i].node_mem,
2345                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2346            return;
2347        }
2348    }
2349}
2350
2351/* find cpu slot in machine->possible_cpus by core_id */
2352static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2353{
2354    int index = id / smp_threads;
2355
2356    if (index >= ms->possible_cpus->len) {
2357        return NULL;
2358    }
2359    if (idx) {
2360        *idx = index;
2361    }
2362    return &ms->possible_cpus->cpus[index];
2363}
2364
2365static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2366{
2367    Error *local_err = NULL;
2368    bool vsmt_user = !!spapr->vsmt;
2369    int kvm_smt = kvmppc_smt_threads();
2370    int ret;
2371
2372    if (!kvm_enabled() && (smp_threads > 1)) {
2373        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2374                     "on a pseries machine");
2375        goto out;
2376    }
2377    if (!is_power_of_2(smp_threads)) {
2378        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2379                     "machine because it must be a power of 2", smp_threads);
2380        goto out;
2381    }
2382
2383    /* Detemine the VSMT mode to use: */
2384    if (vsmt_user) {
2385        if (spapr->vsmt < smp_threads) {
2386            error_setg(&local_err, "Cannot support VSMT mode %d"
2387                         " because it must be >= threads/core (%d)",
2388                         spapr->vsmt, smp_threads);
2389            goto out;
2390        }
2391        /* In this case, spapr->vsmt has been set by the command line */
2392    } else {
2393        /*
2394         * Default VSMT value is tricky, because we need it to be as
2395         * consistent as possible (for migration), but this requires
2396         * changing it for at least some existing cases.  We pick 8 as
2397         * the value that we'd get with KVM on POWER8, the
2398         * overwhelmingly common case in production systems.
2399         */
2400        spapr->vsmt = MAX(8, smp_threads);
2401    }
2402
2403    /* KVM: If necessary, set the SMT mode: */
2404    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2405        ret = kvmppc_set_smt_threads(spapr->vsmt);
2406        if (ret) {
2407            /* Looks like KVM isn't able to change VSMT mode */
2408            error_setg(&local_err,
2409                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2410                       spapr->vsmt, ret);
2411            /* We can live with that if the default one is big enough
2412             * for the number of threads, and a submultiple of the one
2413             * we want.  In this case we'll waste some vcpu ids, but
2414             * behaviour will be correct */
2415            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2416                warn_report_err(local_err);
2417                local_err = NULL;
2418                goto out;
2419            } else {
2420                if (!vsmt_user) {
2421                    error_append_hint(&local_err,
2422                                      "On PPC, a VM with %d threads/core"
2423                                      " on a host with %d threads/core"
2424                                      " requires the use of VSMT mode %d.\n",
2425                                      smp_threads, kvm_smt, spapr->vsmt);
2426                }
2427                kvmppc_hint_smt_possible(&local_err);
2428                goto out;
2429            }
2430        }
2431    }
2432    /* else TCG: nothing to do currently */
2433out:
2434    error_propagate(errp, local_err);
2435}
2436
2437static void spapr_init_cpus(sPAPRMachineState *spapr)
2438{
2439    MachineState *machine = MACHINE(spapr);
2440    MachineClass *mc = MACHINE_GET_CLASS(machine);
2441    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2442    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2443    const CPUArchIdList *possible_cpus;
2444    int boot_cores_nr = smp_cpus / smp_threads;
2445    int i;
2446
2447    possible_cpus = mc->possible_cpu_arch_ids(machine);
2448    if (mc->has_hotpluggable_cpus) {
2449        if (smp_cpus % smp_threads) {
2450            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2451                         smp_cpus, smp_threads);
2452            exit(1);
2453        }
2454        if (max_cpus % smp_threads) {
2455            error_report("max_cpus (%u) must be multiple of threads (%u)",
2456                         max_cpus, smp_threads);
2457            exit(1);
2458        }
2459    } else {
2460        if (max_cpus != smp_cpus) {
2461            error_report("This machine version does not support CPU hotplug");
2462            exit(1);
2463        }
2464        boot_cores_nr = possible_cpus->len;
2465    }
2466
2467    /* VSMT must be set in order to be able to compute VCPU ids, ie to
2468     * call xics_max_server_number() or spapr_vcpu_id().
2469     */
2470    spapr_set_vsmt_mode(spapr, &error_fatal);
2471
2472    if (smc->pre_2_10_has_unused_icps) {
2473        int i;
2474
2475        for (i = 0; i < xics_max_server_number(spapr); i++) {
2476            /* Dummy entries get deregistered when real ICPState objects
2477             * are registered during CPU core hotplug.
2478             */
2479            pre_2_10_vmstate_register_dummy_icp(i);
2480        }
2481    }
2482
2483    for (i = 0; i < possible_cpus->len; i++) {
2484        int core_id = i * smp_threads;
2485
2486        if (mc->has_hotpluggable_cpus) {
2487            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2488                                   spapr_vcpu_id(spapr, core_id));
2489        }
2490
2491        if (i < boot_cores_nr) {
2492            Object *core  = object_new(type);
2493            int nr_threads = smp_threads;
2494
2495            /* Handle the partially filled core for older machine types */
2496            if ((i + 1) * smp_threads >= smp_cpus) {
2497                nr_threads = smp_cpus - i * smp_threads;
2498            }
2499
2500            object_property_set_int(core, nr_threads, "nr-threads",
2501                                    &error_fatal);
2502            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2503                                    &error_fatal);
2504            object_property_set_bool(core, true, "realized", &error_fatal);
2505        }
2506    }
2507}
2508
2509/* pSeries LPAR / sPAPR hardware init */
2510static void spapr_machine_init(MachineState *machine)
2511{
2512    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2513    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2514    const char *kernel_filename = machine->kernel_filename;
2515    const char *initrd_filename = machine->initrd_filename;
2516    PCIHostState *phb;
2517    int i;
2518    MemoryRegion *sysmem = get_system_memory();
2519    MemoryRegion *ram = g_new(MemoryRegion, 1);
2520    hwaddr node0_size = spapr_node0_size(machine);
2521    long load_limit, fw_size;
2522    char *filename;
2523    Error *resize_hpt_err = NULL;
2524
2525    msi_nonbroken = true;
2526
2527    QLIST_INIT(&spapr->phbs);
2528    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2529
2530    /* Determine capabilities to run with */
2531    spapr_caps_init(spapr);
2532
2533    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2534    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2535        /*
2536         * If the user explicitly requested a mode we should either
2537         * supply it, or fail completely (which we do below).  But if
2538         * it's not set explicitly, we reset our mode to something
2539         * that works
2540         */
2541        if (resize_hpt_err) {
2542            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2543            error_free(resize_hpt_err);
2544            resize_hpt_err = NULL;
2545        } else {
2546            spapr->resize_hpt = smc->resize_hpt_default;
2547        }
2548    }
2549
2550    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2551
2552    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2553        /*
2554         * User requested HPT resize, but this host can't supply it.  Bail out
2555         */
2556        error_report_err(resize_hpt_err);
2557        exit(1);
2558    }
2559
2560    spapr->rma_size = node0_size;
2561
2562    /* With KVM, we don't actually know whether KVM supports an
2563     * unbounded RMA (PR KVM) or is limited by the hash table size
2564     * (HV KVM using VRMA), so we always assume the latter
2565     *
2566     * In that case, we also limit the initial allocations for RTAS
2567     * etc... to 256M since we have no way to know what the VRMA size
2568     * is going to be as it depends on the size of the hash table
2569     * which isn't determined yet.
2570     */
2571    if (kvm_enabled()) {
2572        spapr->vrma_adjust = 1;
2573        spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2574    }
2575
2576    /* Actually we don't support unbounded RMA anymore since we added
2577     * proper emulation of HV mode. The max we can get is 16G which
2578     * also happens to be what we configure for PAPR mode so make sure
2579     * we don't do anything bigger than that
2580     */
2581    spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2582
2583    if (spapr->rma_size > node0_size) {
2584        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2585                     spapr->rma_size);
2586        exit(1);
2587    }
2588
2589    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2590    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2591
2592    /* Set up Interrupt Controller before we create the VCPUs */
2593    xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2594
2595    /* Set up containers for ibm,client-architecture-support negotiated options
2596     */
2597    spapr->ov5 = spapr_ovec_new();
2598    spapr->ov5_cas = spapr_ovec_new();
2599
2600    if (smc->dr_lmb_enabled) {
2601        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2602        spapr_validate_node_memory(machine, &error_fatal);
2603    }
2604
2605    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2606
2607    /* advertise support for dedicated HP event source to guests */
2608    if (spapr->use_hotplug_event_source) {
2609        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2610    }
2611
2612    /* advertise support for HPT resizing */
2613    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2614        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2615    }
2616
2617    /* advertise support for ibm,dyamic-memory-v2 */
2618    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2619
2620    /* init CPUs */
2621    spapr_init_cpus(spapr);
2622
2623    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2624        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2625                              spapr->max_compat_pvr)) {
2626        /* KVM and TCG always allow GTSE with radix... */
2627        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2628    }
2629    /* ... but not with hash (currently). */
2630
2631    if (kvm_enabled()) {
2632        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2633        kvmppc_enable_logical_ci_hcalls();
2634        kvmppc_enable_set_mode_hcall();
2635
2636        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2637        kvmppc_enable_clear_ref_mod_hcalls();
2638    }
2639
2640    /* allocate RAM */
2641    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2642                                         machine->ram_size);
2643    memory_region_add_subregion(sysmem, 0, ram);
2644
2645    /* always allocate the device memory information */
2646    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2647
2648    /* initialize hotplug memory address space */
2649    if (machine->ram_size < machine->maxram_size) {
2650        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2651        /*
2652         * Limit the number of hotpluggable memory slots to half the number
2653         * slots that KVM supports, leaving the other half for PCI and other
2654         * devices. However ensure that number of slots doesn't drop below 32.
2655         */
2656        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2657                           SPAPR_MAX_RAM_SLOTS;
2658
2659        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2660            max_memslots = SPAPR_MAX_RAM_SLOTS;
2661        }
2662        if (machine->ram_slots > max_memslots) {
2663            error_report("Specified number of memory slots %"
2664                         PRIu64" exceeds max supported %d",
2665                         machine->ram_slots, max_memslots);
2666            exit(1);
2667        }
2668
2669        machine->device_memory->base = ROUND_UP(machine->ram_size,
2670                                                SPAPR_DEVICE_MEM_ALIGN);
2671        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2672                           "device-memory", device_mem_size);
2673        memory_region_add_subregion(sysmem, machine->device_memory->base,
2674                                    &machine->device_memory->mr);
2675    }
2676
2677    if (smc->dr_lmb_enabled) {
2678        spapr_create_lmb_dr_connectors(spapr);
2679    }
2680
2681    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2682    if (!filename) {
2683        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2684        exit(1);
2685    }
2686    spapr->rtas_size = get_image_size(filename);
2687    if (spapr->rtas_size < 0) {
2688        error_report("Could not get size of LPAR rtas '%s'", filename);
2689        exit(1);
2690    }
2691    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2692    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2693        error_report("Could not load LPAR rtas '%s'", filename);
2694        exit(1);
2695    }
2696    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2697        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2698                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2699        exit(1);
2700    }
2701    g_free(filename);
2702
2703    /* Set up RTAS event infrastructure */
2704    spapr_events_init(spapr);
2705
2706    /* Set up the RTC RTAS interfaces */
2707    spapr_rtc_create(spapr);
2708
2709    /* Set up VIO bus */
2710    spapr->vio_bus = spapr_vio_bus_init();
2711
2712    for (i = 0; i < serial_max_hds(); i++) {
2713        if (serial_hd(i)) {
2714            spapr_vty_create(spapr->vio_bus, serial_hd(i));
2715        }
2716    }
2717
2718    /* We always have at least the nvram device on VIO */
2719    spapr_create_nvram(spapr);
2720
2721    /* Set up PCI */
2722    spapr_pci_rtas_init();
2723
2724    phb = spapr_create_phb(spapr, 0);
2725
2726    for (i = 0; i < nb_nics; i++) {
2727        NICInfo *nd = &nd_table[i];
2728
2729        if (!nd->model) {
2730            nd->model = g_strdup("spapr-vlan");
2731        }
2732
2733        if (g_str_equal(nd->model, "spapr-vlan") ||
2734            g_str_equal(nd->model, "ibmveth")) {
2735            spapr_vlan_create(spapr->vio_bus, nd);
2736        } else {
2737            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2738        }
2739    }
2740
2741    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2742        spapr_vscsi_create(spapr->vio_bus);
2743    }
2744
2745    /* Graphics */
2746    if (spapr_vga_init(phb->bus, &error_fatal)) {
2747        spapr->has_graphics = true;
2748        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2749    }
2750
2751    if (machine->usb) {
2752        if (smc->use_ohci_by_default) {
2753            pci_create_simple(phb->bus, -1, "pci-ohci");
2754        } else {
2755            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2756        }
2757
2758        if (spapr->has_graphics) {
2759            USBBus *usb_bus = usb_bus_find(-1);
2760
2761            usb_create_simple(usb_bus, "usb-kbd");
2762            usb_create_simple(usb_bus, "usb-mouse");
2763        }
2764    }
2765
2766    if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2767        error_report(
2768            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2769            MIN_RMA_SLOF);
2770        exit(1);
2771    }
2772
2773    if (kernel_filename) {
2774        uint64_t lowaddr = 0;
2775
2776        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2777                                      NULL, NULL, &lowaddr, NULL, 1,
2778                                      PPC_ELF_MACHINE, 0, 0);
2779        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2780            spapr->kernel_size = load_elf(kernel_filename,
2781                                          translate_kernel_address, NULL, NULL,
2782                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2783                                          0, 0);
2784            spapr->kernel_le = spapr->kernel_size > 0;
2785        }
2786        if (spapr->kernel_size < 0) {
2787            error_report("error loading %s: %s", kernel_filename,
2788                         load_elf_strerror(spapr->kernel_size));
2789            exit(1);
2790        }
2791
2792        /* load initrd */
2793        if (initrd_filename) {
2794            /* Try to locate the initrd in the gap between the kernel
2795             * and the firmware. Add a bit of space just in case
2796             */
2797            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2798                                  + 0x1ffff) & ~0xffff;
2799            spapr->initrd_size = load_image_targphys(initrd_filename,
2800                                                     spapr->initrd_base,
2801                                                     load_limit
2802                                                     - spapr->initrd_base);
2803            if (spapr->initrd_size < 0) {
2804                error_report("could not load initial ram disk '%s'",
2805                             initrd_filename);
2806                exit(1);
2807            }
2808        }
2809    }
2810
2811    if (bios_name == NULL) {
2812        bios_name = FW_FILE_NAME;
2813    }
2814    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2815    if (!filename) {
2816        error_report("Could not find LPAR firmware '%s'", bios_name);
2817        exit(1);
2818    }
2819    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2820    if (fw_size <= 0) {
2821        error_report("Could not load LPAR firmware '%s'", filename);
2822        exit(1);
2823    }
2824    g_free(filename);
2825
2826    /* FIXME: Should register things through the MachineState's qdev
2827     * interface, this is a legacy from the sPAPREnvironment structure
2828     * which predated MachineState but had a similar function */
2829    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2830    register_savevm_live(NULL, "spapr/htab", -1, 1,
2831                         &savevm_htab_handlers, spapr);
2832
2833    qemu_register_boot_set(spapr_boot_set, spapr);
2834
2835    if (kvm_enabled()) {
2836        /* to stop and start vmclock */
2837        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2838                                         &spapr->tb);
2839
2840        kvmppc_spapr_enable_inkernel_multitce();
2841    }
2842}
2843
2844static int spapr_kvm_type(const char *vm_type)
2845{
2846    if (!vm_type) {
2847        return 0;
2848    }
2849
2850    if (!strcmp(vm_type, "HV")) {
2851        return 1;
2852    }
2853
2854    if (!strcmp(vm_type, "PR")) {
2855        return 2;
2856    }
2857
2858    error_report("Unknown kvm-type specified '%s'", vm_type);
2859    exit(1);
2860}
2861
2862/*
2863 * Implementation of an interface to adjust firmware path
2864 * for the bootindex property handling.
2865 */
2866static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2867                                   DeviceState *dev)
2868{
2869#define CAST(type, obj, name) \
2870    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2871    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2872    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2873    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2874
2875    if (d) {
2876        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2877        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2878        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2879
2880        if (spapr) {
2881            /*
2882             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2883             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2884             * in the top 16 bits of the 64-bit LUN
2885             */
2886            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2887            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2888                                   (uint64_t)id << 48);
2889        } else if (virtio) {
2890            /*
2891             * We use SRP luns of the form 01000000 | (target << 8) | lun
2892             * in the top 32 bits of the 64-bit LUN
2893             * Note: the quote above is from SLOF and it is wrong,
2894             * the actual binding is:
2895             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2896             */
2897            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2898            if (d->lun >= 256) {
2899                /* Use the LUN "flat space addressing method" */
2900                id |= 0x4000;
2901            }
2902            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2903                                   (uint64_t)id << 32);
2904        } else if (usb) {
2905            /*
2906             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2907             * in the top 32 bits of the 64-bit LUN
2908             */
2909            unsigned usb_port = atoi(usb->port->path);
2910            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2911            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2912                                   (uint64_t)id << 32);
2913        }
2914    }
2915
2916    /*
2917     * SLOF probes the USB devices, and if it recognizes that the device is a
2918     * storage device, it changes its name to "storage" instead of "usb-host",
2919     * and additionally adds a child node for the SCSI LUN, so the correct
2920     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2921     */
2922    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2923        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2924        if (usb_host_dev_is_scsi_storage(usbdev)) {
2925            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2926        }
2927    }
2928
2929    if (phb) {
2930        /* Replace "pci" with "pci@800000020000000" */
2931        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2932    }
2933
2934    if (vsc) {
2935        /* Same logic as virtio above */
2936        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2937        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2938    }
2939
2940    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2941        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2942        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2943        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2944    }
2945
2946    return NULL;
2947}
2948
2949static char *spapr_get_kvm_type(Object *obj, Error **errp)
2950{
2951    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2952
2953    return g_strdup(spapr->kvm_type);
2954}
2955
2956static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2957{
2958    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2959
2960    g_free(spapr->kvm_type);
2961    spapr->kvm_type = g_strdup(value);
2962}
2963
2964static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2965{
2966    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2967
2968    return spapr->use_hotplug_event_source;
2969}
2970
2971static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2972                                            Error **errp)
2973{
2974    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2975
2976    spapr->use_hotplug_event_source = value;
2977}
2978
2979static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2980{
2981    return true;
2982}
2983
2984static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2985{
2986    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2987
2988    switch (spapr->resize_hpt) {
2989    case SPAPR_RESIZE_HPT_DEFAULT:
2990        return g_strdup("default");
2991    case SPAPR_RESIZE_HPT_DISABLED:
2992        return g_strdup("disabled");
2993    case SPAPR_RESIZE_HPT_ENABLED:
2994        return g_strdup("enabled");
2995    case SPAPR_RESIZE_HPT_REQUIRED:
2996        return g_strdup("required");
2997    }
2998    g_assert_not_reached();
2999}
3000
3001static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3002{
3003    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3004
3005    if (strcmp(value, "default") == 0) {
3006        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3007    } else if (strcmp(value, "disabled") == 0) {
3008        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3009    } else if (strcmp(value, "enabled") == 0) {
3010        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3011    } else if (strcmp(value, "required") == 0) {
3012        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3013    } else {
3014        error_setg(errp, "Bad value for \"resize-hpt\" property");
3015    }
3016}
3017
3018static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3019                                   void *opaque, Error **errp)
3020{
3021    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3022}
3023
3024static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3025                                   void *opaque, Error **errp)
3026{
3027    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3028}
3029
3030static void spapr_instance_init(Object *obj)
3031{
3032    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3033
3034    spapr->htab_fd = -1;
3035    spapr->use_hotplug_event_source = true;
3036    object_property_add_str(obj, "kvm-type",
3037                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3038    object_property_set_description(obj, "kvm-type",
3039                                    "Specifies the KVM virtualization mode (HV, PR)",
3040                                    NULL);
3041    object_property_add_bool(obj, "modern-hotplug-events",
3042                            spapr_get_modern_hotplug_events,
3043                            spapr_set_modern_hotplug_events,
3044                            NULL);
3045    object_property_set_description(obj, "modern-hotplug-events",
3046                                    "Use dedicated hotplug event mechanism in"
3047                                    " place of standard EPOW events when possible"
3048                                    " (required for memory hot-unplug support)",
3049                                    NULL);
3050    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3051                            "Maximum permitted CPU compatibility mode",
3052                            &error_fatal);
3053
3054    object_property_add_str(obj, "resize-hpt",
3055                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3056    object_property_set_description(obj, "resize-hpt",
3057                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
3058                                    NULL);
3059    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3060                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3061    object_property_set_description(obj, "vsmt",
3062                                    "Virtual SMT: KVM behaves as if this were"
3063                                    " the host's SMT mode", &error_abort);
3064    object_property_add_bool(obj, "vfio-no-msix-emulation",
3065                             spapr_get_msix_emulation, NULL, NULL);
3066}
3067
3068static void spapr_machine_finalizefn(Object *obj)
3069{
3070    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3071
3072    g_free(spapr->kvm_type);
3073}
3074
3075void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3076{
3077    cpu_synchronize_state(cs);
3078    ppc_cpu_do_system_reset(cs);
3079}
3080
3081static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3082{
3083    CPUState *cs;
3084
3085    CPU_FOREACH(cs) {
3086        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3087    }
3088}
3089
3090static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3091                           uint32_t node, bool dedicated_hp_event_source,
3092                           Error **errp)
3093{
3094    sPAPRDRConnector *drc;
3095    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3096    int i, fdt_offset, fdt_size;
3097    void *fdt;
3098    uint64_t addr = addr_start;
3099    bool hotplugged = spapr_drc_hotplugged(dev);
3100    Error *local_err = NULL;
3101
3102    for (i = 0; i < nr_lmbs; i++) {
3103        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3104                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3105        g_assert(drc);
3106
3107        fdt = create_device_tree(&fdt_size);
3108        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3109                                                SPAPR_MEMORY_BLOCK_SIZE);
3110
3111        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3112        if (local_err) {
3113            while (addr > addr_start) {
3114                addr -= SPAPR_MEMORY_BLOCK_SIZE;
3115                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3116                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
3117                spapr_drc_detach(drc);
3118            }
3119            g_free(fdt);
3120            error_propagate(errp, local_err);
3121            return;
3122        }
3123        if (!hotplugged) {
3124            spapr_drc_reset(drc);
3125        }
3126        addr += SPAPR_MEMORY_BLOCK_SIZE;
3127    }
3128    /* send hotplug notification to the
3129     * guest only in case of hotplugged memory
3130     */
3131    if (hotplugged) {
3132        if (dedicated_hp_event_source) {
3133            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3134                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3135            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3136                                                   nr_lmbs,
3137                                                   spapr_drc_index(drc));
3138        } else {
3139            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3140                                           nr_lmbs);
3141        }
3142    }
3143}
3144
3145static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3146                              Error **errp)
3147{
3148    Error *local_err = NULL;
3149    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3150    PCDIMMDevice *dimm = PC_DIMM(dev);
3151    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3152    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3153    uint64_t align, size, addr;
3154    uint32_t node;
3155
3156    align = memory_region_get_alignment(mr);
3157    size = memory_region_size(mr);
3158
3159    pc_dimm_plug(dev, MACHINE(ms), align, &local_err);
3160    if (local_err) {
3161        goto out;
3162    }
3163
3164    addr = object_property_get_uint(OBJECT(dimm),
3165                                    PC_DIMM_ADDR_PROP, &local_err);
3166    if (local_err) {
3167        goto out_unplug;
3168    }
3169
3170    node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3171                                    &error_abort);
3172    spapr_add_lmbs(dev, addr, size, node,
3173                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3174                   &local_err);
3175    if (local_err) {
3176        goto out_unplug;
3177    }
3178
3179    return;
3180
3181out_unplug:
3182    pc_dimm_unplug(dev, MACHINE(ms));
3183out:
3184    error_propagate(errp, local_err);
3185}
3186
3187static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3188                                  Error **errp)
3189{
3190    const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3191    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3192    PCDIMMDevice *dimm = PC_DIMM(dev);
3193    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3194    MemoryRegion *mr;
3195    uint64_t size;
3196    Object *memdev;
3197    hwaddr pagesize;
3198
3199    if (!smc->dr_lmb_enabled) {
3200        error_setg(errp, "Memory hotplug not supported for this machine");
3201        return;
3202    }
3203
3204    mr = ddc->get_memory_region(dimm, errp);
3205    if (!mr) {
3206        return;
3207    }
3208    size = memory_region_size(mr);
3209
3210    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3211        error_setg(errp, "Hotplugged memory size must be a multiple of "
3212                      "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3213        return;
3214    }
3215
3216    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3217                                      &error_abort);
3218    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3219    spapr_check_pagesize(spapr, pagesize, errp);
3220}
3221
3222struct sPAPRDIMMState {
3223    PCDIMMDevice *dimm;
3224    uint32_t nr_lmbs;
3225    QTAILQ_ENTRY(sPAPRDIMMState) next;
3226};
3227
3228static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3229                                                       PCDIMMDevice *dimm)
3230{
3231    sPAPRDIMMState *dimm_state = NULL;
3232
3233    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3234        if (dimm_state->dimm == dimm) {
3235            break;
3236        }
3237    }
3238    return dimm_state;
3239}
3240
3241static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3242                                                      uint32_t nr_lmbs,
3243                                                      PCDIMMDevice *dimm)
3244{
3245    sPAPRDIMMState *ds = NULL;
3246
3247    /*
3248     * If this request is for a DIMM whose removal had failed earlier
3249     * (due to guest's refusal to remove the LMBs), we would have this
3250     * dimm already in the pending_dimm_unplugs list. In that
3251     * case don't add again.
3252     */
3253    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3254    if (!ds) {
3255        ds = g_malloc0(sizeof(sPAPRDIMMState));
3256        ds->nr_lmbs = nr_lmbs;
3257        ds->dimm = dimm;
3258        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3259    }
3260    return ds;
3261}
3262
3263static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3264                                              sPAPRDIMMState *dimm_state)
3265{
3266    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3267    g_free(dimm_state);
3268}
3269
3270static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3271                                                        PCDIMMDevice *dimm)
3272{
3273    sPAPRDRConnector *drc;
3274    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3275    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3276    uint64_t size = memory_region_size(mr);
3277    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3278    uint32_t avail_lmbs = 0;
3279    uint64_t addr_start, addr;
3280    int i;
3281
3282    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3283                                         &error_abort);
3284
3285    addr = addr_start;
3286    for (i = 0; i < nr_lmbs; i++) {
3287        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3288                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3289        g_assert(drc);
3290        if (drc->dev) {
3291            avail_lmbs++;
3292        }
3293        addr += SPAPR_MEMORY_BLOCK_SIZE;
3294    }
3295
3296    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3297}
3298
3299/* Callback to be called during DRC release. */
3300void spapr_lmb_release(DeviceState *dev)
3301{
3302    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3303    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3304    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3305
3306    /* This information will get lost if a migration occurs
3307     * during the unplug process. In this case recover it. */
3308    if (ds == NULL) {
3309        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3310        g_assert(ds);
3311        /* The DRC being examined by the caller at least must be counted */
3312        g_assert(ds->nr_lmbs);
3313    }
3314
3315    if (--ds->nr_lmbs) {
3316        return;
3317    }
3318
3319    /*
3320     * Now that all the LMBs have been removed by the guest, call the
3321     * unplug handler chain. This can never fail.
3322     */
3323    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3324}
3325
3326static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3327{
3328    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3329    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3330
3331    pc_dimm_unplug(dev, MACHINE(hotplug_dev));
3332    object_unparent(OBJECT(dev));
3333    spapr_pending_dimm_unplugs_remove(spapr, ds);
3334}
3335
3336static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3337                                        DeviceState *dev, Error **errp)
3338{
3339    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3340    Error *local_err = NULL;
3341    PCDIMMDevice *dimm = PC_DIMM(dev);
3342    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3343    MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3344    uint32_t nr_lmbs;
3345    uint64_t size, addr_start, addr;
3346    int i;
3347    sPAPRDRConnector *drc;
3348
3349    size = memory_region_size(mr);
3350    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3351
3352    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3353                                         &local_err);
3354    if (local_err) {
3355        goto out;
3356    }
3357
3358    /*
3359     * An existing pending dimm state for this DIMM means that there is an
3360     * unplug operation in progress, waiting for the spapr_lmb_release
3361     * callback to complete the job (BQL can't cover that far). In this case,
3362     * bail out to avoid detaching DRCs that were already released.
3363     */
3364    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3365        error_setg(&local_err,
3366                   "Memory unplug already in progress for device %s",
3367                   dev->id);
3368        goto out;
3369    }
3370
3371    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3372
3373    addr = addr_start;
3374    for (i = 0; i < nr_lmbs; i++) {
3375        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3376                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3377        g_assert(drc);
3378
3379        spapr_drc_detach(drc);
3380        addr += SPAPR_MEMORY_BLOCK_SIZE;
3381    }
3382
3383    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3384                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3385    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3386                                              nr_lmbs, spapr_drc_index(drc));
3387out:
3388    error_propagate(errp, local_err);
3389}
3390
3391static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3392                                           sPAPRMachineState *spapr)
3393{
3394    PowerPCCPU *cpu = POWERPC_CPU(cs);
3395    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3396    int id = spapr_get_vcpu_id(cpu);
3397    void *fdt;
3398    int offset, fdt_size;
3399    char *nodename;
3400
3401    fdt = create_device_tree(&fdt_size);
3402    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3403    offset = fdt_add_subnode(fdt, 0, nodename);
3404
3405    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3406    g_free(nodename);
3407
3408    *fdt_offset = offset;
3409    return fdt;
3410}
3411
3412/* Callback to be called during DRC release. */
3413void spapr_core_release(DeviceState *dev)
3414{
3415    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3416
3417    /* Call the unplug handler chain. This can never fail. */
3418    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3419}
3420
3421static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3422{
3423    MachineState *ms = MACHINE(hotplug_dev);
3424    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3425    CPUCore *cc = CPU_CORE(dev);
3426    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3427
3428    if (smc->pre_2_10_has_unused_icps) {
3429        sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3430        int i;
3431
3432        for (i = 0; i < cc->nr_threads; i++) {
3433            CPUState *cs = CPU(sc->threads[i]);
3434
3435            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3436        }
3437    }
3438
3439    assert(core_slot);
3440    core_slot->cpu = NULL;
3441    object_unparent(OBJECT(dev));
3442}
3443
3444static
3445void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3446                               Error **errp)
3447{
3448    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3449    int index;
3450    sPAPRDRConnector *drc;
3451    CPUCore *cc = CPU_CORE(dev);
3452
3453    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3454        error_setg(errp, "Unable to find CPU core with core-id: %d",
3455                   cc->core_id);
3456        return;
3457    }
3458    if (index == 0) {
3459        error_setg(errp, "Boot CPU core may not be unplugged");
3460        return;
3461    }
3462
3463    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3464                          spapr_vcpu_id(spapr, cc->core_id));
3465    g_assert(drc);
3466
3467    spapr_drc_detach(drc);
3468
3469    spapr_hotplug_req_remove_by_index(drc);
3470}
3471
3472static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3473                            Error **errp)
3474{
3475    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3476    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3477    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3478    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3479    CPUCore *cc = CPU_CORE(dev);
3480    CPUState *cs = CPU(core->threads[0]);
3481    sPAPRDRConnector *drc;
3482    Error *local_err = NULL;
3483    CPUArchId *core_slot;
3484    int index;
3485    bool hotplugged = spapr_drc_hotplugged(dev);
3486
3487    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3488    if (!core_slot) {
3489        error_setg(errp, "Unable to find CPU core with core-id: %d",
3490                   cc->core_id);
3491        return;
3492    }
3493    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3494                          spapr_vcpu_id(spapr, cc->core_id));
3495
3496    g_assert(drc || !mc->has_hotpluggable_cpus);
3497
3498    if (drc) {
3499        void *fdt;
3500        int fdt_offset;
3501
3502        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3503
3504        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3505        if (local_err) {
3506            g_free(fdt);
3507            error_propagate(errp, local_err);
3508            return;
3509        }
3510
3511        if (hotplugged) {
3512            /*
3513             * Send hotplug notification interrupt to the guest only
3514             * in case of hotplugged CPUs.
3515             */
3516            spapr_hotplug_req_add_by_index(drc);
3517        } else {
3518            spapr_drc_reset(drc);
3519        }
3520    }
3521
3522    core_slot->cpu = OBJECT(dev);
3523
3524    if (smc->pre_2_10_has_unused_icps) {
3525        int i;
3526
3527        for (i = 0; i < cc->nr_threads; i++) {
3528            cs = CPU(core->threads[i]);
3529            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3530        }
3531    }
3532}
3533
3534static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3535                                Error **errp)
3536{
3537    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3538    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3539    Error *local_err = NULL;
3540    CPUCore *cc = CPU_CORE(dev);
3541    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3542    const char *type = object_get_typename(OBJECT(dev));
3543    CPUArchId *core_slot;
3544    int index;
3545
3546    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3547        error_setg(&local_err, "CPU hotplug not supported for this machine");
3548        goto out;
3549    }
3550
3551    if (strcmp(base_core_type, type)) {
3552        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3553        goto out;
3554    }
3555
3556    if (cc->core_id % smp_threads) {
3557        error_setg(&local_err, "invalid core id %d", cc->core_id);
3558        goto out;
3559    }
3560
3561    /*
3562     * In general we should have homogeneous threads-per-core, but old
3563     * (pre hotplug support) machine types allow the last core to have
3564     * reduced threads as a compatibility hack for when we allowed
3565     * total vcpus not a multiple of threads-per-core.
3566     */
3567    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3568        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3569                   cc->nr_threads, smp_threads);
3570        goto out;
3571    }
3572
3573    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3574    if (!core_slot) {
3575        error_setg(&local_err, "core id %d out of range", cc->core_id);
3576        goto out;
3577    }
3578
3579    if (core_slot->cpu) {
3580        error_setg(&local_err, "core %d already populated", cc->core_id);
3581        goto out;
3582    }
3583
3584    numa_cpu_pre_plug(core_slot, dev, &local_err);
3585
3586out:
3587    error_propagate(errp, local_err);
3588}
3589
3590static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3591                                      DeviceState *dev, Error **errp)
3592{
3593    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3594        spapr_memory_plug(hotplug_dev, dev, errp);
3595    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3596        spapr_core_plug(hotplug_dev, dev, errp);
3597    }
3598}
3599
3600static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3601                                        DeviceState *dev, Error **errp)
3602{
3603    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3604        spapr_memory_unplug(hotplug_dev, dev);
3605    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3606        spapr_core_unplug(hotplug_dev, dev);
3607    }
3608}
3609
3610static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3611                                                DeviceState *dev, Error **errp)
3612{
3613    sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3614    MachineClass *mc = MACHINE_GET_CLASS(sms);
3615
3616    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3617        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3618            spapr_memory_unplug_request(hotplug_dev, dev, errp);
3619        } else {
3620            /* NOTE: this means there is a window after guest reset, prior to
3621             * CAS negotiation, where unplug requests will fail due to the
3622             * capability not being detected yet. This is a bit different than
3623             * the case with PCI unplug, where the events will be queued and
3624             * eventually handled by the guest after boot
3625             */
3626            error_setg(errp, "Memory hot unplug not supported for this guest");
3627        }
3628    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3629        if (!mc->has_hotpluggable_cpus) {
3630            error_setg(errp, "CPU hot unplug not supported on this machine");
3631            return;
3632        }
3633        spapr_core_unplug_request(hotplug_dev, dev, errp);
3634    }
3635}
3636
3637static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3638                                          DeviceState *dev, Error **errp)
3639{
3640    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3641        spapr_memory_pre_plug(hotplug_dev, dev, errp);
3642    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3643        spapr_core_pre_plug(hotplug_dev, dev, errp);
3644    }
3645}
3646
3647static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3648                                                 DeviceState *dev)
3649{
3650    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3651        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3652        return HOTPLUG_HANDLER(machine);
3653    }
3654    return NULL;
3655}
3656
3657static CpuInstanceProperties
3658spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3659{
3660    CPUArchId *core_slot;
3661    MachineClass *mc = MACHINE_GET_CLASS(machine);
3662
3663    /* make sure possible_cpu are intialized */
3664    mc->possible_cpu_arch_ids(machine);
3665    /* get CPU core slot containing thread that matches cpu_index */
3666    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3667    assert(core_slot);
3668    return core_slot->props;
3669}
3670
3671static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3672{
3673    return idx / smp_cores % nb_numa_nodes;
3674}
3675
3676static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3677{
3678    int i;
3679    const char *core_type;
3680    int spapr_max_cores = max_cpus / smp_threads;
3681    MachineClass *mc = MACHINE_GET_CLASS(machine);
3682
3683    if (!mc->has_hotpluggable_cpus) {
3684        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3685    }
3686    if (machine->possible_cpus) {
3687        assert(machine->possible_cpus->len == spapr_max_cores);
3688        return machine->possible_cpus;
3689    }
3690
3691    core_type = spapr_get_cpu_core_type(machine->cpu_type);
3692    if (!core_type) {
3693        error_report("Unable to find sPAPR CPU Core definition");
3694        exit(1);
3695    }
3696
3697    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3698                             sizeof(CPUArchId) * spapr_max_cores);
3699    machine->possible_cpus->len = spapr_max_cores;
3700    for (i = 0; i < machine->possible_cpus->len; i++) {
3701        int core_id = i * smp_threads;
3702
3703        machine->possible_cpus->cpus[i].type = core_type;
3704        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3705        machine->possible_cpus->cpus[i].arch_id = core_id;
3706        machine->possible_cpus->cpus[i].props.has_core_id = true;
3707        machine->possible_cpus->cpus[i].props.core_id = core_id;
3708    }
3709    return machine->possible_cpus;
3710}
3711
3712static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3713                                uint64_t *buid, hwaddr *pio,
3714                                hwaddr *mmio32, hwaddr *mmio64,
3715                                unsigned n_dma, uint32_t *liobns, Error **errp)
3716{
3717    /*
3718     * New-style PHB window placement.
3719     *
3720     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3721     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3722     * windows.
3723     *
3724     * Some guest kernels can't work with MMIO windows above 1<<46
3725     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3726     *
3727     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3728     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3729     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3730     * 1TiB 64-bit MMIO windows for each PHB.
3731     */
3732    const uint64_t base_buid = 0x800000020000000ULL;
3733#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3734                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3735    int i;
3736
3737    /* Sanity check natural alignments */
3738    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3739    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3740    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3741    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3742    /* Sanity check bounds */
3743    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3744                      SPAPR_PCI_MEM32_WIN_SIZE);
3745    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3746                      SPAPR_PCI_MEM64_WIN_SIZE);
3747
3748    if (index >= SPAPR_MAX_PHBS) {
3749        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3750                   SPAPR_MAX_PHBS - 1);
3751        return;
3752    }
3753
3754    *buid = base_buid + index;
3755    for (i = 0; i < n_dma; ++i) {
3756        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3757    }
3758
3759    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3760    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3761    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3762}
3763
3764static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3765{
3766    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3767
3768    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3769}
3770
3771static void spapr_ics_resend(XICSFabric *dev)
3772{
3773    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3774
3775    ics_resend(spapr->ics);
3776}
3777
3778static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3779{
3780    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3781
3782    return cpu ? ICP(cpu->intc) : NULL;
3783}
3784
3785#define ICS_IRQ_FREE(ics, srcno)   \
3786    (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3787
3788static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3789{
3790    int first, i;
3791
3792    for (first = 0; first < ics->nr_irqs; first += alignnum) {
3793        if (num > (ics->nr_irqs - first)) {
3794            return -1;
3795        }
3796        for (i = first; i < first + num; ++i) {
3797            if (!ICS_IRQ_FREE(ics, i)) {
3798                break;
3799            }
3800        }
3801        if (i == (first + num)) {
3802            return first;
3803        }
3804    }
3805
3806    return -1;
3807}
3808
3809int spapr_irq_find(sPAPRMachineState *spapr, int num, bool align, Error **errp)
3810{
3811    ICSState *ics = spapr->ics;
3812    int first = -1;
3813
3814    assert(ics);
3815
3816    /*
3817     * MSIMesage::data is used for storing VIRQ so
3818     * it has to be aligned to num to support multiple
3819     * MSI vectors. MSI-X is not affected by this.
3820     * The hint is used for the first IRQ, the rest should
3821     * be allocated continuously.
3822     */
3823    if (align) {
3824        assert((num == 1) || (num == 2) || (num == 4) ||
3825               (num == 8) || (num == 16) || (num == 32));
3826        first = ics_find_free_block(ics, num, num);
3827    } else {
3828        first = ics_find_free_block(ics, num, 1);
3829    }
3830
3831    if (first < 0) {
3832        error_setg(errp, "can't find a free %d-IRQ block", num);
3833        return -1;
3834    }
3835
3836    return first + ics->offset;
3837}
3838
3839int spapr_irq_claim(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp)
3840{
3841    ICSState *ics = spapr->ics;
3842
3843    assert(ics);
3844
3845    if (!ics_valid_irq(ics, irq)) {
3846        error_setg(errp, "IRQ %d is invalid", irq);
3847        return -1;
3848    }
3849
3850    if (!ICS_IRQ_FREE(ics, irq - ics->offset)) {
3851        error_setg(errp, "IRQ %d is not free", irq);
3852        return -1;
3853    }
3854
3855    ics_set_irq_type(ics, irq - ics->offset, lsi);
3856    return 0;
3857}
3858
3859void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3860{
3861    ICSState *ics = spapr->ics;
3862    int srcno = irq - ics->offset;
3863    int i;
3864
3865    if (ics_valid_irq(ics, irq)) {
3866        trace_spapr_irq_free(0, irq, num);
3867        for (i = srcno; i < srcno + num; ++i) {
3868            if (ICS_IRQ_FREE(ics, i)) {
3869                trace_spapr_irq_free_warn(0, i + ics->offset);
3870            }
3871            memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3872        }
3873    }
3874}
3875
3876qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3877{
3878    ICSState *ics = spapr->ics;
3879
3880    if (ics_valid_irq(ics, irq)) {
3881        return ics->qirqs[irq - ics->offset];
3882    }
3883
3884    return NULL;
3885}
3886
3887static void spapr_pic_print_info(InterruptStatsProvider *obj,
3888                                 Monitor *mon)
3889{
3890    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3891    CPUState *cs;
3892
3893    CPU_FOREACH(cs) {
3894        PowerPCCPU *cpu = POWERPC_CPU(cs);
3895
3896        icp_pic_print_info(ICP(cpu->intc), mon);
3897    }
3898
3899    ics_pic_print_info(spapr->ics, mon);
3900}
3901
3902int spapr_get_vcpu_id(PowerPCCPU *cpu)
3903{
3904    return cpu->vcpu_id;
3905}
3906
3907void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3908{
3909    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3910    int vcpu_id;
3911
3912    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3913
3914    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3915        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3916        error_append_hint(errp, "Adjust the number of cpus to %d "
3917                          "or try to raise the number of threads per core\n",
3918                          vcpu_id * smp_threads / spapr->vsmt);
3919        return;
3920    }
3921
3922    cpu->vcpu_id = vcpu_id;
3923}
3924
3925PowerPCCPU *spapr_find_cpu(int vcpu_id)
3926{
3927    CPUState *cs;
3928
3929    CPU_FOREACH(cs) {
3930        PowerPCCPU *cpu = POWERPC_CPU(cs);
3931
3932        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3933            return cpu;
3934        }
3935    }
3936
3937    return NULL;
3938}
3939
3940static void spapr_machine_class_init(ObjectClass *oc, void *data)
3941{
3942    MachineClass *mc = MACHINE_CLASS(oc);
3943    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3944    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3945    NMIClass *nc = NMI_CLASS(oc);
3946    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3947    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3948    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3949    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3950
3951    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3952
3953    /*
3954     * We set up the default / latest behaviour here.  The class_init
3955     * functions for the specific versioned machine types can override
3956     * these details for backwards compatibility
3957     */
3958    mc->init = spapr_machine_init;
3959    mc->reset = spapr_machine_reset;
3960    mc->block_default_type = IF_SCSI;
3961    mc->max_cpus = 1024;
3962    mc->no_parallel = 1;
3963    mc->default_boot_order = "";
3964    mc->default_ram_size = 512 * MiB;
3965    mc->default_display = "std";
3966    mc->kvm_type = spapr_kvm_type;
3967    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3968    mc->pci_allow_0_address = true;
3969    assert(!mc->get_hotplug_handler);
3970    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3971    hc->pre_plug = spapr_machine_device_pre_plug;
3972    hc->plug = spapr_machine_device_plug;
3973    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3974    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3975    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3976    hc->unplug_request = spapr_machine_device_unplug_request;
3977    hc->unplug = spapr_machine_device_unplug;
3978
3979    smc->dr_lmb_enabled = true;
3980    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3981    mc->has_hotpluggable_cpus = true;
3982    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3983    fwc->get_dev_path = spapr_get_fw_dev_path;
3984    nc->nmi_monitor_handler = spapr_nmi;
3985    smc->phb_placement = spapr_phb_placement;
3986    vhc->hypercall = emulate_spapr_hypercall;
3987    vhc->hpt_mask = spapr_hpt_mask;
3988    vhc->map_hptes = spapr_map_hptes;
3989    vhc->unmap_hptes = spapr_unmap_hptes;
3990    vhc->store_hpte = spapr_store_hpte;
3991    vhc->get_patbe = spapr_get_patbe;
3992    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3993    xic->ics_get = spapr_ics_get;
3994    xic->ics_resend = spapr_ics_resend;
3995    xic->icp_get = spapr_icp_get;
3996    ispc->print_info = spapr_pic_print_info;
3997    /* Force NUMA node memory size to be a multiple of
3998     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3999     * in which LMBs are represented and hot-added
4000     */
4001    mc->numa_mem_align_shift = 28;
4002
4003    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4004    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4005    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4006    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4007    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4008    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4009    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4010    spapr_caps_add_properties(smc, &error_abort);
4011}
4012
4013static const TypeInfo spapr_machine_info = {
4014    .name          = TYPE_SPAPR_MACHINE,
4015    .parent        = TYPE_MACHINE,
4016    .abstract      = true,
4017    .instance_size = sizeof(sPAPRMachineState),
4018    .instance_init = spapr_instance_init,
4019    .instance_finalize = spapr_machine_finalizefn,
4020    .class_size    = sizeof(sPAPRMachineClass),
4021    .class_init    = spapr_machine_class_init,
4022    .interfaces = (InterfaceInfo[]) {
4023        { TYPE_FW_PATH_PROVIDER },
4024        { TYPE_NMI },
4025        { TYPE_HOTPLUG_HANDLER },
4026        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4027        { TYPE_XICS_FABRIC },
4028        { TYPE_INTERRUPT_STATS_PROVIDER },
4029        { }
4030    },
4031};
4032
4033#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4034    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4035                                                    void *data)      \
4036    {                                                                \
4037        MachineClass *mc = MACHINE_CLASS(oc);                        \
4038        spapr_machine_##suffix##_class_options(mc);                  \
4039        if (latest) {                                                \
4040            mc->alias = "pseries";                                   \
4041            mc->is_default = 1;                                      \
4042        }                                                            \
4043    }                                                                \
4044    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
4045    {                                                                \
4046        MachineState *machine = MACHINE(obj);                        \
4047        spapr_machine_##suffix##_instance_options(machine);          \
4048    }                                                                \
4049    static const TypeInfo spapr_machine_##suffix##_info = {          \
4050        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4051        .parent = TYPE_SPAPR_MACHINE,                                \
4052        .class_init = spapr_machine_##suffix##_class_init,           \
4053        .instance_init = spapr_machine_##suffix##_instance_init,     \
4054    };                                                               \
4055    static void spapr_machine_register_##suffix(void)                \
4056    {                                                                \
4057        type_register(&spapr_machine_##suffix##_info);               \
4058    }                                                                \
4059    type_init(spapr_machine_register_##suffix)
4060
4061/*
4062 * pseries-3.0
4063 */
4064static void spapr_machine_3_0_instance_options(MachineState *machine)
4065{
4066}
4067
4068static void spapr_machine_3_0_class_options(MachineClass *mc)
4069{
4070    /* Defaults for the latest behaviour inherited from the base class */
4071}
4072
4073DEFINE_SPAPR_MACHINE(3_0, "3.0", true);
4074
4075/*
4076 * pseries-2.12
4077 */
4078#define SPAPR_COMPAT_2_12                                              \
4079    HW_COMPAT_2_12                                                     \
4080    {                                                                  \
4081        .driver = TYPE_POWERPC_CPU,                                    \
4082        .property = "pre-3.0-migration",                               \
4083        .value    = "on",                                              \
4084    },                                                                 \
4085    {                                                                  \
4086        .driver = TYPE_SPAPR_CPU_CORE,                                 \
4087        .property = "pre-3.0-migration",                               \
4088        .value    = "on",                                              \
4089    },
4090
4091static void spapr_machine_2_12_instance_options(MachineState *machine)
4092{
4093    spapr_machine_3_0_instance_options(machine);
4094}
4095
4096static void spapr_machine_2_12_class_options(MachineClass *mc)
4097{
4098    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4099
4100    spapr_machine_3_0_class_options(mc);
4101    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4102
4103    /* We depend on kvm_enabled() to choose a default value for the
4104     * hpt-max-page-size capability. Of course we can't do it here
4105     * because this is too early and the HW accelerator isn't initialzed
4106     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4107     */
4108    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4109}
4110
4111DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4112
4113static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4114{
4115    spapr_machine_2_12_instance_options(machine);
4116}
4117
4118static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4119{
4120    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4121
4122    spapr_machine_2_12_class_options(mc);
4123    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4124    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4125    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4126}
4127
4128DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4129
4130/*
4131 * pseries-2.11
4132 */
4133#define SPAPR_COMPAT_2_11                                              \
4134    HW_COMPAT_2_11
4135
4136static void spapr_machine_2_11_instance_options(MachineState *machine)
4137{
4138    spapr_machine_2_12_instance_options(machine);
4139}
4140
4141static void spapr_machine_2_11_class_options(MachineClass *mc)
4142{
4143    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4144
4145    spapr_machine_2_12_class_options(mc);
4146    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4147    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4148}
4149
4150DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4151
4152/*
4153 * pseries-2.10
4154 */
4155#define SPAPR_COMPAT_2_10                                              \
4156    HW_COMPAT_2_10
4157
4158static void spapr_machine_2_10_instance_options(MachineState *machine)
4159{
4160    spapr_machine_2_11_instance_options(machine);
4161}
4162
4163static void spapr_machine_2_10_class_options(MachineClass *mc)
4164{
4165    spapr_machine_2_11_class_options(mc);
4166    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4167}
4168
4169DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4170
4171/*
4172 * pseries-2.9
4173 */
4174#define SPAPR_COMPAT_2_9                                               \
4175    HW_COMPAT_2_9                                                      \
4176    {                                                                  \
4177        .driver = TYPE_POWERPC_CPU,                                    \
4178        .property = "pre-2.10-migration",                              \
4179        .value    = "on",                                              \
4180    },                                                                 \
4181
4182static void spapr_machine_2_9_instance_options(MachineState *machine)
4183{
4184    spapr_machine_2_10_instance_options(machine);
4185}
4186
4187static void spapr_machine_2_9_class_options(MachineClass *mc)
4188{
4189    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4190
4191    spapr_machine_2_10_class_options(mc);
4192    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4193    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4194    smc->pre_2_10_has_unused_icps = true;
4195    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4196}
4197
4198DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4199
4200/*
4201 * pseries-2.8
4202 */
4203#define SPAPR_COMPAT_2_8                                        \
4204    HW_COMPAT_2_8                                               \
4205    {                                                           \
4206        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4207        .property = "pcie-extended-configuration-space",        \
4208        .value    = "off",                                      \
4209    },
4210
4211static void spapr_machine_2_8_instance_options(MachineState *machine)
4212{
4213    spapr_machine_2_9_instance_options(machine);
4214}
4215
4216static void spapr_machine_2_8_class_options(MachineClass *mc)
4217{
4218    spapr_machine_2_9_class_options(mc);
4219    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4220    mc->numa_mem_align_shift = 23;
4221}
4222
4223DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4224
4225/*
4226 * pseries-2.7
4227 */
4228#define SPAPR_COMPAT_2_7                            \
4229    HW_COMPAT_2_7                                   \
4230    {                                               \
4231        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4232        .property = "mem_win_size",                 \
4233        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4234    },                                              \
4235    {                                               \
4236        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4237        .property = "mem64_win_size",               \
4238        .value    = "0",                            \
4239    },                                              \
4240    {                                               \
4241        .driver = TYPE_POWERPC_CPU,                 \
4242        .property = "pre-2.8-migration",            \
4243        .value    = "on",                           \
4244    },                                              \
4245    {                                               \
4246        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4247        .property = "pre-2.8-migration",            \
4248        .value    = "on",                           \
4249    },
4250
4251static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4252                              uint64_t *buid, hwaddr *pio,
4253                              hwaddr *mmio32, hwaddr *mmio64,
4254                              unsigned n_dma, uint32_t *liobns, Error **errp)
4255{
4256    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4257    const uint64_t base_buid = 0x800000020000000ULL;
4258    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4259    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4260    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4261    const uint32_t max_index = 255;
4262    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4263
4264    uint64_t ram_top = MACHINE(spapr)->ram_size;
4265    hwaddr phb0_base, phb_base;
4266    int i;
4267
4268    /* Do we have device memory? */
4269    if (MACHINE(spapr)->maxram_size > ram_top) {
4270        /* Can't just use maxram_size, because there may be an
4271         * alignment gap between normal and device memory regions
4272         */
4273        ram_top = MACHINE(spapr)->device_memory->base +
4274            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4275    }
4276
4277    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4278
4279    if (index > max_index) {
4280        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4281                   max_index);
4282        return;
4283    }
4284
4285    *buid = base_buid + index;
4286    for (i = 0; i < n_dma; ++i) {
4287        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4288    }
4289
4290    phb_base = phb0_base + index * phb_spacing;
4291    *pio = phb_base + pio_offset;
4292    *mmio32 = phb_base + mmio_offset;
4293    /*
4294     * We don't set the 64-bit MMIO window, relying on the PHB's
4295     * fallback behaviour of automatically splitting a large "32-bit"
4296     * window into contiguous 32-bit and 64-bit windows
4297     */
4298}
4299
4300static void spapr_machine_2_7_instance_options(MachineState *machine)
4301{
4302    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4303
4304    spapr_machine_2_8_instance_options(machine);
4305    spapr->use_hotplug_event_source = false;
4306}
4307
4308static void spapr_machine_2_7_class_options(MachineClass *mc)
4309{
4310    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4311
4312    spapr_machine_2_8_class_options(mc);
4313    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4314    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4315    smc->phb_placement = phb_placement_2_7;
4316}
4317
4318DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4319
4320/*
4321 * pseries-2.6
4322 */
4323#define SPAPR_COMPAT_2_6 \
4324    HW_COMPAT_2_6 \
4325    { \
4326        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4327        .property = "ddw",\
4328        .value    = stringify(off),\
4329    },
4330
4331static void spapr_machine_2_6_instance_options(MachineState *machine)
4332{
4333    spapr_machine_2_7_instance_options(machine);
4334}
4335
4336static void spapr_machine_2_6_class_options(MachineClass *mc)
4337{
4338    spapr_machine_2_7_class_options(mc);
4339    mc->has_hotpluggable_cpus = false;
4340    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4341}
4342
4343DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4344
4345/*
4346 * pseries-2.5
4347 */
4348#define SPAPR_COMPAT_2_5 \
4349    HW_COMPAT_2_5 \
4350    { \
4351        .driver   = "spapr-vlan", \
4352        .property = "use-rx-buffer-pools", \
4353        .value    = "off", \
4354    },
4355
4356static void spapr_machine_2_5_instance_options(MachineState *machine)
4357{
4358    spapr_machine_2_6_instance_options(machine);
4359}
4360
4361static void spapr_machine_2_5_class_options(MachineClass *mc)
4362{
4363    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4364
4365    spapr_machine_2_6_class_options(mc);
4366    smc->use_ohci_by_default = true;
4367    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4368}
4369
4370DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4371
4372/*
4373 * pseries-2.4
4374 */
4375#define SPAPR_COMPAT_2_4 \
4376        HW_COMPAT_2_4
4377
4378static void spapr_machine_2_4_instance_options(MachineState *machine)
4379{
4380    spapr_machine_2_5_instance_options(machine);
4381}
4382
4383static void spapr_machine_2_4_class_options(MachineClass *mc)
4384{
4385    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4386
4387    spapr_machine_2_5_class_options(mc);
4388    smc->dr_lmb_enabled = false;
4389    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4390}
4391
4392DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4393
4394/*
4395 * pseries-2.3
4396 */
4397#define SPAPR_COMPAT_2_3 \
4398        HW_COMPAT_2_3 \
4399        {\
4400            .driver   = "spapr-pci-host-bridge",\
4401            .property = "dynamic-reconfiguration",\
4402            .value    = "off",\
4403        },
4404
4405static void spapr_machine_2_3_instance_options(MachineState *machine)
4406{
4407    spapr_machine_2_4_instance_options(machine);
4408}
4409
4410static void spapr_machine_2_3_class_options(MachineClass *mc)
4411{
4412    spapr_machine_2_4_class_options(mc);
4413    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4414}
4415DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4416
4417/*
4418 * pseries-2.2
4419 */
4420
4421#define SPAPR_COMPAT_2_2 \
4422        HW_COMPAT_2_2 \
4423        {\
4424            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4425            .property = "mem_win_size",\
4426            .value    = "0x20000000",\
4427        },
4428
4429static void spapr_machine_2_2_instance_options(MachineState *machine)
4430{
4431    spapr_machine_2_3_instance_options(machine);
4432    machine->suppress_vmdesc = true;
4433}
4434
4435static void spapr_machine_2_2_class_options(MachineClass *mc)
4436{
4437    spapr_machine_2_3_class_options(mc);
4438    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4439}
4440DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4441
4442/*
4443 * pseries-2.1
4444 */
4445#define SPAPR_COMPAT_2_1 \
4446        HW_COMPAT_2_1
4447
4448static void spapr_machine_2_1_instance_options(MachineState *machine)
4449{
4450    spapr_machine_2_2_instance_options(machine);
4451}
4452
4453static void spapr_machine_2_1_class_options(MachineClass *mc)
4454{
4455    spapr_machine_2_2_class_options(mc);
4456    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4457}
4458DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4459
4460static void spapr_machine_register_types(void)
4461{
4462    type_register_static(&spapr_machine_info);
4463}
4464
4465type_init(spapr_machine_register_types)
4466