qemu/hw/ppc/spapr_pci.c
<<
>>
Prefs
   1/*
   2 * QEMU sPAPR PCI host originated from Uninorth PCI host
   3 *
   4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
   5 * Copyright (C) 2011 David Gibson, IBM Corporation.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25#include "qemu/osdep.h"
  26#include "qapi/error.h"
  27#include "qemu-common.h"
  28#include "cpu.h"
  29#include "hw/hw.h"
  30#include "hw/sysbus.h"
  31#include "hw/pci/pci.h"
  32#include "hw/pci/msi.h"
  33#include "hw/pci/msix.h"
  34#include "hw/pci/pci_host.h"
  35#include "hw/ppc/spapr.h"
  36#include "hw/pci-host/spapr.h"
  37#include "exec/address-spaces.h"
  38#include "exec/ram_addr.h"
  39#include <libfdt.h>
  40#include "trace.h"
  41#include "qemu/error-report.h"
  42#include "qapi/qmp/qerror.h"
  43#include "hw/ppc/fdt.h"
  44#include "hw/pci/pci_bridge.h"
  45#include "hw/pci/pci_bus.h"
  46#include "hw/pci/pci_ids.h"
  47#include "hw/ppc/spapr_drc.h"
  48#include "sysemu/device_tree.h"
  49#include "sysemu/kvm.h"
  50#include "sysemu/hostmem.h"
  51#include "sysemu/numa.h"
  52
  53/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
  54#define RTAS_QUERY_FN           0
  55#define RTAS_CHANGE_FN          1
  56#define RTAS_RESET_FN           2
  57#define RTAS_CHANGE_MSI_FN      3
  58#define RTAS_CHANGE_MSIX_FN     4
  59
  60/* Interrupt types to return on RTAS_CHANGE_* */
  61#define RTAS_TYPE_MSI           1
  62#define RTAS_TYPE_MSIX          2
  63
  64sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
  65{
  66    sPAPRPHBState *sphb;
  67
  68    QLIST_FOREACH(sphb, &spapr->phbs, list) {
  69        if (sphb->buid != buid) {
  70            continue;
  71        }
  72        return sphb;
  73    }
  74
  75    return NULL;
  76}
  77
  78PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
  79                              uint32_t config_addr)
  80{
  81    sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
  82    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
  83    int bus_num = (config_addr >> 16) & 0xFF;
  84    int devfn = (config_addr >> 8) & 0xFF;
  85
  86    if (!phb) {
  87        return NULL;
  88    }
  89
  90    return pci_find_device(phb->bus, bus_num, devfn);
  91}
  92
  93static uint32_t rtas_pci_cfgaddr(uint32_t arg)
  94{
  95    /* This handles the encoding of extended config space addresses */
  96    return ((arg >> 20) & 0xf00) | (arg & 0xff);
  97}
  98
  99static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 100                                   uint32_t addr, uint32_t size,
 101                                   target_ulong rets)
 102{
 103    PCIDevice *pci_dev;
 104    uint32_t val;
 105
 106    if ((size != 1) && (size != 2) && (size != 4)) {
 107        /* access must be 1, 2 or 4 bytes */
 108        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 109        return;
 110    }
 111
 112    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 113    addr = rtas_pci_cfgaddr(addr);
 114
 115    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 116        /* Access must be to a valid device, within bounds and
 117         * naturally aligned */
 118        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 119        return;
 120    }
 121
 122    val = pci_host_config_read_common(pci_dev, addr,
 123                                      pci_config_size(pci_dev), size);
 124
 125    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 126    rtas_st(rets, 1, val);
 127}
 128
 129static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 130                                     uint32_t token, uint32_t nargs,
 131                                     target_ulong args,
 132                                     uint32_t nret, target_ulong rets)
 133{
 134    uint64_t buid;
 135    uint32_t size, addr;
 136
 137    if ((nargs != 4) || (nret != 2)) {
 138        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 139        return;
 140    }
 141
 142    buid = rtas_ldq(args, 1);
 143    size = rtas_ld(args, 3);
 144    addr = rtas_ld(args, 0);
 145
 146    finish_read_pci_config(spapr, buid, addr, size, rets);
 147}
 148
 149static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 150                                 uint32_t token, uint32_t nargs,
 151                                 target_ulong args,
 152                                 uint32_t nret, target_ulong rets)
 153{
 154    uint32_t size, addr;
 155
 156    if ((nargs != 2) || (nret != 2)) {
 157        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 158        return;
 159    }
 160
 161    size = rtas_ld(args, 1);
 162    addr = rtas_ld(args, 0);
 163
 164    finish_read_pci_config(spapr, 0, addr, size, rets);
 165}
 166
 167static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 168                                    uint32_t addr, uint32_t size,
 169                                    uint32_t val, target_ulong rets)
 170{
 171    PCIDevice *pci_dev;
 172
 173    if ((size != 1) && (size != 2) && (size != 4)) {
 174        /* access must be 1, 2 or 4 bytes */
 175        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 176        return;
 177    }
 178
 179    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 180    addr = rtas_pci_cfgaddr(addr);
 181
 182    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 183        /* Access must be to a valid device, within bounds and
 184         * naturally aligned */
 185        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 186        return;
 187    }
 188
 189    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
 190                                 val, size);
 191
 192    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 193}
 194
 195static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 196                                      uint32_t token, uint32_t nargs,
 197                                      target_ulong args,
 198                                      uint32_t nret, target_ulong rets)
 199{
 200    uint64_t buid;
 201    uint32_t val, size, addr;
 202
 203    if ((nargs != 5) || (nret != 1)) {
 204        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 205        return;
 206    }
 207
 208    buid = rtas_ldq(args, 1);
 209    val = rtas_ld(args, 4);
 210    size = rtas_ld(args, 3);
 211    addr = rtas_ld(args, 0);
 212
 213    finish_write_pci_config(spapr, buid, addr, size, val, rets);
 214}
 215
 216static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 217                                  uint32_t token, uint32_t nargs,
 218                                  target_ulong args,
 219                                  uint32_t nret, target_ulong rets)
 220{
 221    uint32_t val, size, addr;
 222
 223    if ((nargs != 3) || (nret != 1)) {
 224        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 225        return;
 226    }
 227
 228
 229    val = rtas_ld(args, 2);
 230    size = rtas_ld(args, 1);
 231    addr = rtas_ld(args, 0);
 232
 233    finish_write_pci_config(spapr, 0, addr, size, val, rets);
 234}
 235
 236/*
 237 * Set MSI/MSIX message data.
 238 * This is required for msi_notify()/msix_notify() which
 239 * will write at the addresses via spapr_msi_write().
 240 *
 241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
 242 * table will be reset.
 243 */
 244static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
 245                             unsigned first_irq, unsigned req_num)
 246{
 247    unsigned i;
 248    MSIMessage msg = { .address = addr, .data = first_irq };
 249
 250    if (!msix) {
 251        msi_set_message(pdev, msg);
 252        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
 253        return;
 254    }
 255
 256    for (i = 0; i < req_num; ++i) {
 257        msix_set_message(pdev, i, msg);
 258        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
 259        if (addr) {
 260            ++msg.data;
 261        }
 262    }
 263}
 264
 265static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 266                                uint32_t token, uint32_t nargs,
 267                                target_ulong args, uint32_t nret,
 268                                target_ulong rets)
 269{
 270    uint32_t config_addr = rtas_ld(args, 0);
 271    uint64_t buid = rtas_ldq(args, 1);
 272    unsigned int func = rtas_ld(args, 3);
 273    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
 274    unsigned int seq_num = rtas_ld(args, 5);
 275    unsigned int ret_intr_type;
 276    unsigned int irq, max_irqs = 0;
 277    sPAPRPHBState *phb = NULL;
 278    PCIDevice *pdev = NULL;
 279    spapr_pci_msi *msi;
 280    int *config_addr_key;
 281    Error *err = NULL;
 282    int i;
 283
 284    /* Fins sPAPRPHBState */
 285    phb = spapr_pci_find_phb(spapr, buid);
 286    if (phb) {
 287        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 288    }
 289    if (!phb || !pdev) {
 290        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 291        return;
 292    }
 293
 294    switch (func) {
 295    case RTAS_CHANGE_FN:
 296        if (msi_present(pdev)) {
 297            ret_intr_type = RTAS_TYPE_MSI;
 298        } else if (msix_present(pdev)) {
 299            ret_intr_type = RTAS_TYPE_MSIX;
 300        } else {
 301            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 302            return;
 303        }
 304        break;
 305    case RTAS_CHANGE_MSI_FN:
 306        if (msi_present(pdev)) {
 307            ret_intr_type = RTAS_TYPE_MSI;
 308        } else {
 309            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 310            return;
 311        }
 312        break;
 313    case RTAS_CHANGE_MSIX_FN:
 314        if (msix_present(pdev)) {
 315            ret_intr_type = RTAS_TYPE_MSIX;
 316        } else {
 317            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 318            return;
 319        }
 320        break;
 321    default:
 322        error_report("rtas_ibm_change_msi(%u) is not implemented", func);
 323        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 324        return;
 325    }
 326
 327    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 328
 329    /* Releasing MSIs */
 330    if (!req_num) {
 331        if (!msi) {
 332            trace_spapr_pci_msi("Releasing wrong config", config_addr);
 333            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 334            return;
 335        }
 336
 337        spapr_irq_free(spapr, msi->first_irq, msi->num);
 338        if (msi_present(pdev)) {
 339            spapr_msi_setmsg(pdev, 0, false, 0, 0);
 340        }
 341        if (msix_present(pdev)) {
 342            spapr_msi_setmsg(pdev, 0, true, 0, 0);
 343        }
 344        g_hash_table_remove(phb->msi, &config_addr);
 345
 346        trace_spapr_pci_msi("Released MSIs", config_addr);
 347        rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 348        rtas_st(rets, 1, 0);
 349        return;
 350    }
 351
 352    /* Enabling MSI */
 353
 354    /* Check if the device supports as many IRQs as requested */
 355    if (ret_intr_type == RTAS_TYPE_MSI) {
 356        max_irqs = msi_nr_vectors_allocated(pdev);
 357    } else if (ret_intr_type == RTAS_TYPE_MSIX) {
 358        max_irqs = pdev->msix_entries_nr;
 359    }
 360    if (!max_irqs) {
 361        error_report("Requested interrupt type %d is not enabled for device %x",
 362                     ret_intr_type, config_addr);
 363        rtas_st(rets, 0, -1); /* Hardware error */
 364        return;
 365    }
 366    /* Correct the number if the guest asked for too many */
 367    if (req_num > max_irqs) {
 368        trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
 369        req_num = max_irqs;
 370        irq = 0; /* to avoid misleading trace */
 371        goto out;
 372    }
 373
 374    /* Allocate MSIs */
 375    irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, &err);
 376    if (err) {
 377        error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 378                          config_addr);
 379        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 380        return;
 381    }
 382
 383    for (i = 0; i < req_num; i++) {
 384        spapr_irq_claim(spapr, irq + i, false, &err);
 385        if (err) {
 386            error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 387                              config_addr);
 388            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 389            return;
 390        }
 391    }
 392
 393    /* Release previous MSIs */
 394    if (msi) {
 395        spapr_irq_free(spapr, msi->first_irq, msi->num);
 396        g_hash_table_remove(phb->msi, &config_addr);
 397    }
 398
 399    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
 400    spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
 401                     irq, req_num);
 402
 403    /* Add MSI device to cache */
 404    msi = g_new(spapr_pci_msi, 1);
 405    msi->first_irq = irq;
 406    msi->num = req_num;
 407    config_addr_key = g_new(int, 1);
 408    *config_addr_key = config_addr;
 409    g_hash_table_insert(phb->msi, config_addr_key, msi);
 410
 411out:
 412    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 413    rtas_st(rets, 1, req_num);
 414    rtas_st(rets, 2, ++seq_num);
 415    if (nret > 3) {
 416        rtas_st(rets, 3, ret_intr_type);
 417    }
 418
 419    trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
 420}
 421
 422static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
 423                                                   sPAPRMachineState *spapr,
 424                                                   uint32_t token,
 425                                                   uint32_t nargs,
 426                                                   target_ulong args,
 427                                                   uint32_t nret,
 428                                                   target_ulong rets)
 429{
 430    uint32_t config_addr = rtas_ld(args, 0);
 431    uint64_t buid = rtas_ldq(args, 1);
 432    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
 433    sPAPRPHBState *phb = NULL;
 434    PCIDevice *pdev = NULL;
 435    spapr_pci_msi *msi;
 436
 437    /* Find sPAPRPHBState */
 438    phb = spapr_pci_find_phb(spapr, buid);
 439    if (phb) {
 440        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 441    }
 442    if (!phb || !pdev) {
 443        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 444        return;
 445    }
 446
 447    /* Find device descriptor and start IRQ */
 448    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 449    if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
 450        trace_spapr_pci_msi("Failed to return vector", config_addr);
 451        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 452        return;
 453    }
 454    intr_src_num = msi->first_irq + ioa_intr_num;
 455    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
 456                                                           intr_src_num);
 457
 458    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 459    rtas_st(rets, 1, intr_src_num);
 460    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
 461}
 462
 463static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
 464                                    sPAPRMachineState *spapr,
 465                                    uint32_t token, uint32_t nargs,
 466                                    target_ulong args, uint32_t nret,
 467                                    target_ulong rets)
 468{
 469    sPAPRPHBState *sphb;
 470    uint32_t addr, option;
 471    uint64_t buid;
 472    int ret;
 473
 474    if ((nargs != 4) || (nret != 1)) {
 475        goto param_error_exit;
 476    }
 477
 478    buid = rtas_ldq(args, 1);
 479    addr = rtas_ld(args, 0);
 480    option = rtas_ld(args, 3);
 481
 482    sphb = spapr_pci_find_phb(spapr, buid);
 483    if (!sphb) {
 484        goto param_error_exit;
 485    }
 486
 487    if (!spapr_phb_eeh_available(sphb)) {
 488        goto param_error_exit;
 489    }
 490
 491    ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
 492    rtas_st(rets, 0, ret);
 493    return;
 494
 495param_error_exit:
 496    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 497}
 498
 499static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
 500                                           sPAPRMachineState *spapr,
 501                                           uint32_t token, uint32_t nargs,
 502                                           target_ulong args, uint32_t nret,
 503                                           target_ulong rets)
 504{
 505    sPAPRPHBState *sphb;
 506    PCIDevice *pdev;
 507    uint32_t addr, option;
 508    uint64_t buid;
 509
 510    if ((nargs != 4) || (nret != 2)) {
 511        goto param_error_exit;
 512    }
 513
 514    buid = rtas_ldq(args, 1);
 515    sphb = spapr_pci_find_phb(spapr, buid);
 516    if (!sphb) {
 517        goto param_error_exit;
 518    }
 519
 520    if (!spapr_phb_eeh_available(sphb)) {
 521        goto param_error_exit;
 522    }
 523
 524    /*
 525     * We always have PE address of form "00BB0001". "BB"
 526     * represents the bus number of PE's primary bus.
 527     */
 528    option = rtas_ld(args, 3);
 529    switch (option) {
 530    case RTAS_GET_PE_ADDR:
 531        addr = rtas_ld(args, 0);
 532        pdev = spapr_pci_find_dev(spapr, buid, addr);
 533        if (!pdev) {
 534            goto param_error_exit;
 535        }
 536
 537        rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
 538        break;
 539    case RTAS_GET_PE_MODE:
 540        rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
 541        break;
 542    default:
 543        goto param_error_exit;
 544    }
 545
 546    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 547    return;
 548
 549param_error_exit:
 550    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 551}
 552
 553static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
 554                                            sPAPRMachineState *spapr,
 555                                            uint32_t token, uint32_t nargs,
 556                                            target_ulong args, uint32_t nret,
 557                                            target_ulong rets)
 558{
 559    sPAPRPHBState *sphb;
 560    uint64_t buid;
 561    int state, ret;
 562
 563    if ((nargs != 3) || (nret != 4 && nret != 5)) {
 564        goto param_error_exit;
 565    }
 566
 567    buid = rtas_ldq(args, 1);
 568    sphb = spapr_pci_find_phb(spapr, buid);
 569    if (!sphb) {
 570        goto param_error_exit;
 571    }
 572
 573    if (!spapr_phb_eeh_available(sphb)) {
 574        goto param_error_exit;
 575    }
 576
 577    ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
 578    rtas_st(rets, 0, ret);
 579    if (ret != RTAS_OUT_SUCCESS) {
 580        return;
 581    }
 582
 583    rtas_st(rets, 1, state);
 584    rtas_st(rets, 2, RTAS_EEH_SUPPORT);
 585    rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
 586    if (nret >= 5) {
 587        rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
 588    }
 589    return;
 590
 591param_error_exit:
 592    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 593}
 594
 595static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
 596                                    sPAPRMachineState *spapr,
 597                                    uint32_t token, uint32_t nargs,
 598                                    target_ulong args, uint32_t nret,
 599                                    target_ulong rets)
 600{
 601    sPAPRPHBState *sphb;
 602    uint32_t option;
 603    uint64_t buid;
 604    int ret;
 605
 606    if ((nargs != 4) || (nret != 1)) {
 607        goto param_error_exit;
 608    }
 609
 610    buid = rtas_ldq(args, 1);
 611    option = rtas_ld(args, 3);
 612    sphb = spapr_pci_find_phb(spapr, buid);
 613    if (!sphb) {
 614        goto param_error_exit;
 615    }
 616
 617    if (!spapr_phb_eeh_available(sphb)) {
 618        goto param_error_exit;
 619    }
 620
 621    ret = spapr_phb_vfio_eeh_reset(sphb, option);
 622    rtas_st(rets, 0, ret);
 623    return;
 624
 625param_error_exit:
 626    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 627}
 628
 629static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
 630                                  sPAPRMachineState *spapr,
 631                                  uint32_t token, uint32_t nargs,
 632                                  target_ulong args, uint32_t nret,
 633                                  target_ulong rets)
 634{
 635    sPAPRPHBState *sphb;
 636    uint64_t buid;
 637    int ret;
 638
 639    if ((nargs != 3) || (nret != 1)) {
 640        goto param_error_exit;
 641    }
 642
 643    buid = rtas_ldq(args, 1);
 644    sphb = spapr_pci_find_phb(spapr, buid);
 645    if (!sphb) {
 646        goto param_error_exit;
 647    }
 648
 649    if (!spapr_phb_eeh_available(sphb)) {
 650        goto param_error_exit;
 651    }
 652
 653    ret = spapr_phb_vfio_eeh_configure(sphb);
 654    rtas_st(rets, 0, ret);
 655    return;
 656
 657param_error_exit:
 658    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 659}
 660
 661/* To support it later */
 662static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
 663                                       sPAPRMachineState *spapr,
 664                                       uint32_t token, uint32_t nargs,
 665                                       target_ulong args, uint32_t nret,
 666                                       target_ulong rets)
 667{
 668    sPAPRPHBState *sphb;
 669    int option;
 670    uint64_t buid;
 671
 672    if ((nargs != 8) || (nret != 1)) {
 673        goto param_error_exit;
 674    }
 675
 676    buid = rtas_ldq(args, 1);
 677    sphb = spapr_pci_find_phb(spapr, buid);
 678    if (!sphb) {
 679        goto param_error_exit;
 680    }
 681
 682    if (!spapr_phb_eeh_available(sphb)) {
 683        goto param_error_exit;
 684    }
 685
 686    option = rtas_ld(args, 7);
 687    switch (option) {
 688    case RTAS_SLOT_TEMP_ERR_LOG:
 689    case RTAS_SLOT_PERM_ERR_LOG:
 690        break;
 691    default:
 692        goto param_error_exit;
 693    }
 694
 695    /* We don't have error log yet */
 696    rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
 697    return;
 698
 699param_error_exit:
 700    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 701}
 702
 703static int pci_spapr_swizzle(int slot, int pin)
 704{
 705    return (slot + pin) % PCI_NUM_PINS;
 706}
 707
 708static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
 709{
 710    /*
 711     * Here we need to convert pci_dev + irq_num to some unique value
 712     * which is less than number of IRQs on the specific bus (4).  We
 713     * use standard PCI swizzling, that is (slot number + pin number)
 714     * % 4.
 715     */
 716    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
 717}
 718
 719static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
 720{
 721    /*
 722     * Here we use the number returned by pci_spapr_map_irq to find a
 723     * corresponding qemu_irq.
 724     */
 725    sPAPRPHBState *phb = opaque;
 726
 727    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
 728    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
 729}
 730
 731static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
 732{
 733    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
 734    PCIINTxRoute route;
 735
 736    route.mode = PCI_INTX_ENABLED;
 737    route.irq = sphb->lsi_table[pin].irq;
 738
 739    return route;
 740}
 741
 742/*
 743 * MSI/MSIX memory region implementation.
 744 * The handler handles both MSI and MSIX.
 745 * The vector number is encoded in least bits in data.
 746 */
 747static void spapr_msi_write(void *opaque, hwaddr addr,
 748                            uint64_t data, unsigned size)
 749{
 750    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 751    uint32_t irq = data;
 752
 753    trace_spapr_pci_msi_write(addr, data, irq);
 754
 755    qemu_irq_pulse(spapr_qirq(spapr, irq));
 756}
 757
 758static const MemoryRegionOps spapr_msi_ops = {
 759    /* There is no .read as the read result is undefined by PCI spec */
 760    .read = NULL,
 761    .write = spapr_msi_write,
 762    .endianness = DEVICE_LITTLE_ENDIAN
 763};
 764
 765/*
 766 * PHB PCI device
 767 */
 768static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
 769{
 770    sPAPRPHBState *phb = opaque;
 771
 772    return &phb->iommu_as;
 773}
 774
 775static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
 776{
 777    char *path = NULL, *buf = NULL, *host = NULL;
 778
 779    /* Get the PCI VFIO host id */
 780    host = object_property_get_str(OBJECT(pdev), "host", NULL);
 781    if (!host) {
 782        goto err_out;
 783    }
 784
 785    /* Construct the path of the file that will give us the DT location */
 786    path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
 787    g_free(host);
 788    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 789        goto err_out;
 790    }
 791    g_free(path);
 792
 793    /* Construct and read from host device tree the loc-code */
 794    path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
 795    g_free(buf);
 796    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 797        goto err_out;
 798    }
 799    return buf;
 800
 801err_out:
 802    g_free(path);
 803    return NULL;
 804}
 805
 806static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
 807{
 808    char *buf;
 809    const char *devtype = "qemu";
 810    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
 811
 812    if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
 813        buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
 814        if (buf) {
 815            return buf;
 816        }
 817        devtype = "vfio";
 818    }
 819    /*
 820     * For emulated devices and VFIO-failure case, make up
 821     * the loc-code.
 822     */
 823    buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
 824                          devtype, pdev->name, sphb->index, busnr,
 825                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 826    return buf;
 827}
 828
 829/* Macros to operate with address in OF binding to PCI */
 830#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
 831#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
 832#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
 833#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
 834#define b_ss(x)         b_x((x), 24, 2) /* the space code */
 835#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
 836#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
 837#define b_fff(x)        b_x((x), 8, 3)  /* function number */
 838#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
 839
 840/* for 'reg'/'assigned-addresses' OF properties */
 841#define RESOURCE_CELLS_SIZE 2
 842#define RESOURCE_CELLS_ADDRESS 3
 843
 844typedef struct ResourceFields {
 845    uint32_t phys_hi;
 846    uint32_t phys_mid;
 847    uint32_t phys_lo;
 848    uint32_t size_hi;
 849    uint32_t size_lo;
 850} QEMU_PACKED ResourceFields;
 851
 852typedef struct ResourceProps {
 853    ResourceFields reg[8];
 854    ResourceFields assigned[7];
 855    uint32_t reg_len;
 856    uint32_t assigned_len;
 857} ResourceProps;
 858
 859/* fill in the 'reg'/'assigned-resources' OF properties for
 860 * a PCI device. 'reg' describes resource requirements for a
 861 * device's IO/MEM regions, 'assigned-addresses' describes the
 862 * actual resource assignments.
 863 *
 864 * the properties are arrays of ('phys-addr', 'size') pairs describing
 865 * the addressable regions of the PCI device, where 'phys-addr' is a
 866 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
 867 * (phys.hi, phys.mid, phys.lo), and 'size' is a
 868 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
 869 *
 870 * phys.hi = 0xYYXXXXZZ, where:
 871 *   0xYY = npt000ss
 872 *          |||   |
 873 *          |||   +-- space code
 874 *          |||               |
 875 *          |||               +  00 if configuration space
 876 *          |||               +  01 if IO region,
 877 *          |||               +  10 if 32-bit MEM region
 878 *          |||               +  11 if 64-bit MEM region
 879 *          |||
 880 *          ||+------ for non-relocatable IO: 1 if aliased
 881 *          ||        for relocatable IO: 1 if below 64KB
 882 *          ||        for MEM: 1 if below 1MB
 883 *          |+------- 1 if region is prefetchable
 884 *          +-------- 1 if region is non-relocatable
 885 *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
 886 *            bits respectively
 887 *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
 888 *          to the region
 889 *
 890 * phys.mid and phys.lo correspond respectively to the hi/lo portions
 891 * of the actual address of the region.
 892 *
 893 * how the phys-addr/size values are used differ slightly between
 894 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
 895 * an additional description for the config space region of the
 896 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
 897 * to describe the region as relocatable, with an address-mapping
 898 * that corresponds directly to the PHB's address space for the
 899 * resource. 'assigned-addresses' always has n=1 set with an absolute
 900 * address assigned for the resource. in general, 'assigned-addresses'
 901 * won't be populated, since addresses for PCI devices are generally
 902 * unmapped initially and left to the guest to assign.
 903 *
 904 * note also that addresses defined in these properties are, at least
 905 * for PAPR guests, relative to the PHBs IO/MEM windows, and
 906 * correspond directly to the addresses in the BARs.
 907 *
 908 * in accordance with PCI Bus Binding to Open Firmware,
 909 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
 910 * Appendix C.
 911 */
 912static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
 913{
 914    int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
 915    uint32_t dev_id = (b_bbbbbbbb(bus_num) |
 916                       b_ddddd(PCI_SLOT(d->devfn)) |
 917                       b_fff(PCI_FUNC(d->devfn)));
 918    ResourceFields *reg, *assigned;
 919    int i, reg_idx = 0, assigned_idx = 0;
 920
 921    /* config space region */
 922    reg = &rp->reg[reg_idx++];
 923    reg->phys_hi = cpu_to_be32(dev_id);
 924    reg->phys_mid = 0;
 925    reg->phys_lo = 0;
 926    reg->size_hi = 0;
 927    reg->size_lo = 0;
 928
 929    for (i = 0; i < PCI_NUM_REGIONS; i++) {
 930        if (!d->io_regions[i].size) {
 931            continue;
 932        }
 933
 934        reg = &rp->reg[reg_idx++];
 935
 936        reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
 937        if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
 938            reg->phys_hi |= cpu_to_be32(b_ss(1));
 939        } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
 940            reg->phys_hi |= cpu_to_be32(b_ss(3));
 941        } else {
 942            reg->phys_hi |= cpu_to_be32(b_ss(2));
 943        }
 944        reg->phys_mid = 0;
 945        reg->phys_lo = 0;
 946        reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
 947        reg->size_lo = cpu_to_be32(d->io_regions[i].size);
 948
 949        if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
 950            continue;
 951        }
 952
 953        assigned = &rp->assigned[assigned_idx++];
 954        assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
 955        assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
 956        assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
 957        assigned->size_hi = reg->size_hi;
 958        assigned->size_lo = reg->size_lo;
 959    }
 960
 961    rp->reg_len = reg_idx * sizeof(ResourceFields);
 962    rp->assigned_len = assigned_idx * sizeof(ResourceFields);
 963}
 964
 965typedef struct PCIClass PCIClass;
 966typedef struct PCISubClass PCISubClass;
 967typedef struct PCIIFace PCIIFace;
 968
 969struct PCIIFace {
 970    int iface;
 971    const char *name;
 972};
 973
 974struct PCISubClass {
 975    int subclass;
 976    const char *name;
 977    const PCIIFace *iface;
 978};
 979
 980struct PCIClass {
 981    const char *name;
 982    const PCISubClass *subc;
 983};
 984
 985static const PCISubClass undef_subclass[] = {
 986    { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
 987    { 0xFF, NULL, NULL },
 988};
 989
 990static const PCISubClass mass_subclass[] = {
 991    { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
 992    { PCI_CLASS_STORAGE_IDE, "ide", NULL },
 993    { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
 994    { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
 995    { PCI_CLASS_STORAGE_RAID, "raid", NULL },
 996    { PCI_CLASS_STORAGE_ATA, "ata", NULL },
 997    { PCI_CLASS_STORAGE_SATA, "sata", NULL },
 998    { PCI_CLASS_STORAGE_SAS, "sas", NULL },
 999    { 0xFF, NULL, NULL },
1000};
1001
1002static const PCISubClass net_subclass[] = {
1003    { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1004    { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1005    { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1006    { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1007    { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1008    { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1009    { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1010    { 0xFF, NULL, NULL },
1011};
1012
1013static const PCISubClass displ_subclass[] = {
1014    { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1015    { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1016    { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1017    { 0xFF, NULL, NULL },
1018};
1019
1020static const PCISubClass media_subclass[] = {
1021    { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1022    { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1023    { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1024    { 0xFF, NULL, NULL },
1025};
1026
1027static const PCISubClass mem_subclass[] = {
1028    { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1029    { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1030    { 0xFF, NULL, NULL },
1031};
1032
1033static const PCISubClass bridg_subclass[] = {
1034    { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1035    { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1036    { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1037    { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1038    { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1039    { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1040    { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1041    { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1042    { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1043    { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1044    { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1045    { 0xFF, NULL, NULL },
1046};
1047
1048static const PCISubClass comm_subclass[] = {
1049    { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1050    { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1051    { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1052    { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1053    { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1054    { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1055    { 0xFF, NULL, NULL, },
1056};
1057
1058static const PCIIFace pic_iface[] = {
1059    { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1060    { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1061    { 0xFF, NULL },
1062};
1063
1064static const PCISubClass sys_subclass[] = {
1065    { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1066    { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1067    { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1068    { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1069    { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1070    { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1071    { 0xFF, NULL, NULL },
1072};
1073
1074static const PCISubClass inp_subclass[] = {
1075    { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1076    { PCI_CLASS_INPUT_PEN, "pen", NULL },
1077    { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1078    { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1079    { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1080    { 0xFF, NULL, NULL },
1081};
1082
1083static const PCISubClass dock_subclass[] = {
1084    { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1085    { 0xFF, NULL, NULL },
1086};
1087
1088static const PCISubClass cpu_subclass[] = {
1089    { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1090    { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1091    { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1092    { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1093    { 0xFF, NULL, NULL },
1094};
1095
1096static const PCIIFace usb_iface[] = {
1097    { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1098    { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1099    { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1100    { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1101    { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1102    { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1103    { 0xFF, NULL },
1104};
1105
1106static const PCISubClass ser_subclass[] = {
1107    { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1108    { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1109    { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1110    { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1111    { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1112    { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1113    { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1114    { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1115    { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1116    { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1117    { 0xFF, NULL, NULL },
1118};
1119
1120static const PCISubClass wrl_subclass[] = {
1121    { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1122    { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1123    { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1124    { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1125    { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1126    { 0xFF, NULL, NULL },
1127};
1128
1129static const PCISubClass sat_subclass[] = {
1130    { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1131    { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1132    { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1133    { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1134    { 0xFF, NULL, NULL },
1135};
1136
1137static const PCISubClass crypt_subclass[] = {
1138    { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1139    { PCI_CLASS_CRYPT_ENTERTAINMENT,
1140      "entertainment-encryption", NULL },
1141    { 0xFF, NULL, NULL },
1142};
1143
1144static const PCISubClass spc_subclass[] = {
1145    { PCI_CLASS_SP_DPIO, "dpio", NULL },
1146    { PCI_CLASS_SP_PERF, "counter", NULL },
1147    { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1148    { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1149    { 0xFF, NULL, NULL },
1150};
1151
1152static const PCIClass pci_classes[] = {
1153    { "legacy-device", undef_subclass },
1154    { "mass-storage",  mass_subclass },
1155    { "network", net_subclass },
1156    { "display", displ_subclass, },
1157    { "multimedia-device", media_subclass },
1158    { "memory-controller", mem_subclass },
1159    { "unknown-bridge", bridg_subclass },
1160    { "communication-controller", comm_subclass},
1161    { "system-peripheral", sys_subclass },
1162    { "input-controller", inp_subclass },
1163    { "docking-station", dock_subclass },
1164    { "cpu", cpu_subclass },
1165    { "serial-bus", ser_subclass },
1166    { "wireless-controller", wrl_subclass },
1167    { "intelligent-io", NULL },
1168    { "satellite-device", sat_subclass },
1169    { "encryption", crypt_subclass },
1170    { "data-processing-controller", spc_subclass },
1171};
1172
1173static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1174                                        uint8_t iface)
1175{
1176    const PCIClass *pclass;
1177    const PCISubClass *psubclass;
1178    const PCIIFace *piface;
1179    const char *name;
1180
1181    if (class >= ARRAY_SIZE(pci_classes)) {
1182        return "pci";
1183    }
1184
1185    pclass = pci_classes + class;
1186    name = pclass->name;
1187
1188    if (pclass->subc == NULL) {
1189        return name;
1190    }
1191
1192    psubclass = pclass->subc;
1193    while ((psubclass->subclass & 0xff) != 0xff) {
1194        if ((psubclass->subclass & 0xff) == subclass) {
1195            name = psubclass->name;
1196            break;
1197        }
1198        psubclass++;
1199    }
1200
1201    piface = psubclass->iface;
1202    if (piface == NULL) {
1203        return name;
1204    }
1205    while ((piface->iface & 0xff) != 0xff) {
1206        if ((piface->iface & 0xff) == iface) {
1207            name = piface->name;
1208            break;
1209        }
1210        piface++;
1211    }
1212
1213    return name;
1214}
1215
1216static gchar *pci_get_node_name(PCIDevice *dev)
1217{
1218    int slot = PCI_SLOT(dev->devfn);
1219    int func = PCI_FUNC(dev->devfn);
1220    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1221    const char *name;
1222
1223    name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1224                                ccode & 0xff);
1225
1226    if (func != 0) {
1227        return g_strdup_printf("%s@%x,%x", name, slot, func);
1228    } else {
1229        return g_strdup_printf("%s@%x", name, slot);
1230    }
1231}
1232
1233static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1234                                            PCIDevice *pdev);
1235
1236static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1237                                       sPAPRPHBState *sphb)
1238{
1239    ResourceProps rp;
1240    bool is_bridge = false;
1241    int pci_status;
1242    char *buf = NULL;
1243    uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1244    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1245    uint32_t max_msi, max_msix;
1246
1247    if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1248        PCI_HEADER_TYPE_BRIDGE) {
1249        is_bridge = true;
1250    }
1251
1252    /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1253    _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1254                          pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1255    _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1256                          pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1257    _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1258                          pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1259    _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1260    if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1261        _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1262                 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1263    }
1264
1265    if (!is_bridge) {
1266        _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1267            pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1268        _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1269            pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1270    }
1271
1272    if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1273        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1274                 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1275    }
1276
1277    if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1278        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1279                 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1280    }
1281
1282    _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1283        pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1284
1285    /* the following fdt cells are masked off the pci status register */
1286    pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1287    _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1288                          PCI_STATUS_DEVSEL_MASK & pci_status));
1289
1290    if (pci_status & PCI_STATUS_FAST_BACK) {
1291        _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1292    }
1293    if (pci_status & PCI_STATUS_66MHZ) {
1294        _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1295    }
1296    if (pci_status & PCI_STATUS_UDF) {
1297        _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1298    }
1299
1300    _FDT(fdt_setprop_string(fdt, offset, "name",
1301                            pci_find_device_name((ccode >> 16) & 0xff,
1302                                                 (ccode >> 8) & 0xff,
1303                                                 ccode & 0xff)));
1304
1305    buf = spapr_phb_get_loc_code(sphb, dev);
1306    _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1307    g_free(buf);
1308
1309    if (drc_index) {
1310        _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1311    }
1312
1313    _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1314                          RESOURCE_CELLS_ADDRESS));
1315    _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1316                          RESOURCE_CELLS_SIZE));
1317
1318    if (msi_present(dev)) {
1319        max_msi = msi_nr_vectors_allocated(dev);
1320        if (max_msi) {
1321            _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1322        }
1323    }
1324    if (msix_present(dev)) {
1325        max_msix = dev->msix_entries_nr;
1326        if (max_msix) {
1327            _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1328        }
1329    }
1330
1331    populate_resource_props(dev, &rp);
1332    _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1333    _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1334                     (uint8_t *)rp.assigned, rp.assigned_len));
1335
1336    if (sphb->pcie_ecs && pci_is_express(dev)) {
1337        _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1338    }
1339}
1340
1341/* create OF node for pci device and required OF DT properties */
1342static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1343                                     void *fdt, int node_offset)
1344{
1345    int offset;
1346    gchar *nodename;
1347
1348    nodename = pci_get_node_name(dev);
1349    _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1350    g_free(nodename);
1351
1352    spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1353
1354    return offset;
1355}
1356
1357/* Callback to be called during DRC release. */
1358void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1359{
1360    /* some version guests do not wait for completion of a device
1361     * cleanup (generally done asynchronously by the kernel) before
1362     * signaling to QEMU that the device is safe, but instead sleep
1363     * for some 'safe' period of time. unfortunately on a busy host
1364     * this sleep isn't guaranteed to be long enough, resulting in
1365     * bad things like IRQ lines being left asserted during final
1366     * device removal. to deal with this we call reset just prior
1367     * to finalizing the device, which will put the device back into
1368     * an 'idle' state, as the device cleanup code expects.
1369     */
1370    pci_device_reset(PCI_DEVICE(dev));
1371    object_unparent(OBJECT(dev));
1372}
1373
1374static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1375                                                    uint32_t busnr,
1376                                                    int32_t devfn)
1377{
1378    return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1379                           (phb->index << 16) | (busnr << 8) | devfn);
1380}
1381
1382static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1383                                               PCIDevice *pdev)
1384{
1385    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1386    return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1387}
1388
1389static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1390                                            PCIDevice *pdev)
1391{
1392    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1393
1394    if (!drc) {
1395        return 0;
1396    }
1397
1398    return spapr_drc_index(drc);
1399}
1400
1401static void spapr_pci_plug(HotplugHandler *plug_handler,
1402                           DeviceState *plugged_dev, Error **errp)
1403{
1404    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1405    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1406    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1407    Error *local_err = NULL;
1408    PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1409    uint32_t slotnr = PCI_SLOT(pdev->devfn);
1410    void *fdt = NULL;
1411    int fdt_start_offset, fdt_size;
1412
1413    /* if DR is disabled we don't need to do anything in the case of
1414     * hotplug or coldplug callbacks
1415     */
1416    if (!phb->dr_enabled) {
1417        /* if this is a hotplug operation initiated by the user
1418         * we need to let them know it's not enabled
1419         */
1420        if (plugged_dev->hotplugged) {
1421            error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1422                       object_get_typename(OBJECT(phb)));
1423        }
1424        goto out;
1425    }
1426
1427    g_assert(drc);
1428
1429    /* Following the QEMU convention used for PCIe multifunction
1430     * hotplug, we do not allow functions to be hotplugged to a
1431     * slot that already has function 0 present
1432     */
1433    if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1434        PCI_FUNC(pdev->devfn) != 0) {
1435        error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1436                   " additional functions can no longer be exposed to guest.",
1437                   slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1438        goto out;
1439    }
1440
1441    fdt = create_device_tree(&fdt_size);
1442    fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1443
1444    spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1445    if (local_err) {
1446        goto out;
1447    }
1448
1449    /* If this is function 0, signal hotplug for all the device functions.
1450     * Otherwise defer sending the hotplug event.
1451     */
1452    if (!spapr_drc_hotplugged(plugged_dev)) {
1453        spapr_drc_reset(drc);
1454    } else if (PCI_FUNC(pdev->devfn) == 0) {
1455        int i;
1456
1457        for (i = 0; i < 8; i++) {
1458            sPAPRDRConnector *func_drc;
1459            sPAPRDRConnectorClass *func_drck;
1460            sPAPRDREntitySense state;
1461
1462            func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1463                                                  PCI_DEVFN(slotnr, i));
1464            func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1465            state = func_drck->dr_entity_sense(func_drc);
1466
1467            if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1468                spapr_hotplug_req_add_by_index(func_drc);
1469            }
1470        }
1471    }
1472
1473out:
1474    if (local_err) {
1475        error_propagate(errp, local_err);
1476        g_free(fdt);
1477    }
1478}
1479
1480static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1481                                     DeviceState *plugged_dev, Error **errp)
1482{
1483    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1484    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1485    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1486
1487    if (!phb->dr_enabled) {
1488        error_setg(errp, QERR_BUS_NO_HOTPLUG,
1489                   object_get_typename(OBJECT(phb)));
1490        return;
1491    }
1492
1493    g_assert(drc);
1494    g_assert(drc->dev == plugged_dev);
1495
1496    if (!spapr_drc_unplug_requested(drc)) {
1497        PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1498        uint32_t slotnr = PCI_SLOT(pdev->devfn);
1499        sPAPRDRConnector *func_drc;
1500        sPAPRDRConnectorClass *func_drck;
1501        sPAPRDREntitySense state;
1502        int i;
1503
1504        /* ensure any other present functions are pending unplug */
1505        if (PCI_FUNC(pdev->devfn) == 0) {
1506            for (i = 1; i < 8; i++) {
1507                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1508                                                      PCI_DEVFN(slotnr, i));
1509                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1510                state = func_drck->dr_entity_sense(func_drc);
1511                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1512                    && !spapr_drc_unplug_requested(func_drc)) {
1513                    error_setg(errp,
1514                               "PCI: slot %d, function %d still present. "
1515                               "Must unplug all non-0 functions first.",
1516                               slotnr, i);
1517                    return;
1518                }
1519            }
1520        }
1521
1522        spapr_drc_detach(drc);
1523
1524        /* if this isn't func 0, defer unplug event. otherwise signal removal
1525         * for all present functions
1526         */
1527        if (PCI_FUNC(pdev->devfn) == 0) {
1528            for (i = 7; i >= 0; i--) {
1529                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1530                                                      PCI_DEVFN(slotnr, i));
1531                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1532                state = func_drck->dr_entity_sense(func_drc);
1533                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1534                    spapr_hotplug_req_remove_by_index(func_drc);
1535                }
1536            }
1537        }
1538    }
1539}
1540
1541static void spapr_phb_realize(DeviceState *dev, Error **errp)
1542{
1543    /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1544     * tries to add a sPAPR PHB to a non-pseries machine.
1545     */
1546    sPAPRMachineState *spapr =
1547        (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1548                                                  TYPE_SPAPR_MACHINE);
1549    SysBusDevice *s = SYS_BUS_DEVICE(dev);
1550    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1551    PCIHostState *phb = PCI_HOST_BRIDGE(s);
1552    char *namebuf;
1553    int i;
1554    PCIBus *bus;
1555    uint64_t msi_window_size = 4096;
1556    sPAPRTCETable *tcet;
1557    const unsigned windows_supported =
1558        sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1559
1560    if (!spapr) {
1561        error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1562        return;
1563    }
1564
1565    if (sphb->index != (uint32_t)-1) {
1566        sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1567        Error *local_err = NULL;
1568
1569        smc->phb_placement(spapr, sphb->index,
1570                           &sphb->buid, &sphb->io_win_addr,
1571                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
1572                           windows_supported, sphb->dma_liobn, &local_err);
1573        if (local_err) {
1574            error_propagate(errp, local_err);
1575            return;
1576        }
1577    } else {
1578        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1579        return;
1580    }
1581
1582    if (sphb->mem64_win_size != 0) {
1583        if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1584            error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1585                       " (max 2 GiB)", sphb->mem_win_size);
1586            return;
1587        }
1588
1589        /* 64-bit window defaults to identity mapping */
1590        sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1591    } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1592        /*
1593         * For compatibility with old configuration, if no 64-bit MMIO
1594         * window is specified, but the ordinary (32-bit) memory
1595         * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1596         * window, with a 64-bit MMIO window following on immediately
1597         * afterwards
1598         */
1599        sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1600        sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1601        sphb->mem64_win_pciaddr =
1602            SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1603        sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1604    }
1605
1606    if (spapr_pci_find_phb(spapr, sphb->buid)) {
1607        error_setg(errp, "PCI host bridges must have unique BUIDs");
1608        return;
1609    }
1610
1611    if (sphb->numa_node != -1 &&
1612        (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1613        error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1614        return;
1615    }
1616
1617    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1618
1619    /* Initialize memory regions */
1620    namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1621    memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1622    g_free(namebuf);
1623
1624    namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1625    memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1626                             namebuf, &sphb->memspace,
1627                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1628    g_free(namebuf);
1629    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1630                                &sphb->mem32window);
1631
1632    if (sphb->mem64_win_size != 0) {
1633        namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1634        memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1635                                 namebuf, &sphb->memspace,
1636                                 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1637        g_free(namebuf);
1638
1639        memory_region_add_subregion(get_system_memory(),
1640                                    sphb->mem64_win_addr,
1641                                    &sphb->mem64window);
1642    }
1643
1644    /* Initialize IO regions */
1645    namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1646    memory_region_init(&sphb->iospace, OBJECT(sphb),
1647                       namebuf, SPAPR_PCI_IO_WIN_SIZE);
1648    g_free(namebuf);
1649
1650    namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1651    memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1652                             &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1653    g_free(namebuf);
1654    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1655                                &sphb->iowindow);
1656
1657    bus = pci_register_root_bus(dev, NULL,
1658                                pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1659                                &sphb->memspace, &sphb->iospace,
1660                                PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1661    phb->bus = bus;
1662    qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1663
1664    /*
1665     * Initialize PHB address space.
1666     * By default there will be at least one subregion for default
1667     * 32bit DMA window.
1668     * Later the guest might want to create another DMA window
1669     * which will become another memory subregion.
1670     */
1671    namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1672    memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1673                       namebuf, UINT64_MAX);
1674    g_free(namebuf);
1675    address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1676                       sphb->dtbusname);
1677
1678    /*
1679     * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1680     * we need to allocate some memory to catch those writes coming
1681     * from msi_notify()/msix_notify().
1682     * As MSIMessage:addr is going to be the same and MSIMessage:data
1683     * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1684     * be used.
1685     *
1686     * For KVM we want to ensure that this memory is a full page so that
1687     * our memory slot is of page size granularity.
1688     */
1689#ifdef CONFIG_KVM
1690    if (kvm_enabled()) {
1691        msi_window_size = getpagesize();
1692    }
1693#endif
1694
1695    memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1696                          "msi", msi_window_size);
1697    memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1698                                &sphb->msiwindow);
1699
1700    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1701
1702    pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1703
1704    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1705
1706    /* Initialize the LSI table */
1707    for (i = 0; i < PCI_NUM_PINS; i++) {
1708        uint32_t irq;
1709        Error *local_err = NULL;
1710
1711        irq = spapr_irq_findone(spapr, &local_err);
1712        if (local_err) {
1713            error_propagate(errp, local_err);
1714            error_prepend(errp, "can't allocate LSIs: ");
1715            return;
1716        }
1717
1718        spapr_irq_claim(spapr, irq, true, &local_err);
1719        if (local_err) {
1720            error_propagate(errp, local_err);
1721            error_prepend(errp, "can't allocate LSIs: ");
1722            return;
1723        }
1724
1725        sphb->lsi_table[i].irq = irq;
1726    }
1727
1728    /* allocate connectors for child PCI devices */
1729    if (sphb->dr_enabled) {
1730        for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1731            spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1732                                   (sphb->index << 16) | i);
1733        }
1734    }
1735
1736    /* DMA setup */
1737    for (i = 0; i < windows_supported; ++i) {
1738        tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1739        if (!tcet) {
1740            error_setg(errp, "Creating window#%d failed for %s",
1741                       i, sphb->dtbusname);
1742            return;
1743        }
1744        memory_region_add_subregion(&sphb->iommu_root, 0,
1745                                    spapr_tce_get_iommu(tcet));
1746    }
1747
1748    sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1749}
1750
1751static int spapr_phb_children_reset(Object *child, void *opaque)
1752{
1753    DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1754
1755    if (dev) {
1756        device_reset(dev);
1757    }
1758
1759    return 0;
1760}
1761
1762void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1763{
1764    int i;
1765    sPAPRTCETable *tcet;
1766
1767    for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1768        tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1769
1770        if (tcet && tcet->nb_table) {
1771            spapr_tce_table_disable(tcet);
1772        }
1773    }
1774
1775    /* Register default 32bit DMA window */
1776    tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1777    spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1778                           sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1779}
1780
1781static void spapr_phb_reset(DeviceState *qdev)
1782{
1783    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1784
1785    spapr_phb_dma_reset(sphb);
1786
1787    /* Reset the IOMMU state */
1788    object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1789
1790    if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1791        spapr_phb_vfio_reset(qdev);
1792    }
1793}
1794
1795static Property spapr_phb_properties[] = {
1796    DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1797    DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1798                       SPAPR_PCI_MEM32_WIN_SIZE),
1799    DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1800                       SPAPR_PCI_MEM64_WIN_SIZE),
1801    DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1802                       SPAPR_PCI_IO_WIN_SIZE),
1803    DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1804                     true),
1805    /* Default DMA window is 0..1GB */
1806    DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1807    DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1808    DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1809                       0x800000000000000ULL),
1810    DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1811    DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1812                       (1ULL << 12) | (1ULL << 16)),
1813    DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1814    DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1815                     pre_2_8_migration, false),
1816    DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1817                     pcie_ecs, true),
1818    DEFINE_PROP_END_OF_LIST(),
1819};
1820
1821static const VMStateDescription vmstate_spapr_pci_lsi = {
1822    .name = "spapr_pci/lsi",
1823    .version_id = 1,
1824    .minimum_version_id = 1,
1825    .fields = (VMStateField[]) {
1826        VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1827
1828        VMSTATE_END_OF_LIST()
1829    },
1830};
1831
1832static const VMStateDescription vmstate_spapr_pci_msi = {
1833    .name = "spapr_pci/msi",
1834    .version_id = 1,
1835    .minimum_version_id = 1,
1836    .fields = (VMStateField []) {
1837        VMSTATE_UINT32(key, spapr_pci_msi_mig),
1838        VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1839        VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1840        VMSTATE_END_OF_LIST()
1841    },
1842};
1843
1844static int spapr_pci_pre_save(void *opaque)
1845{
1846    sPAPRPHBState *sphb = opaque;
1847    GHashTableIter iter;
1848    gpointer key, value;
1849    int i;
1850
1851    if (sphb->pre_2_8_migration) {
1852        sphb->mig_liobn = sphb->dma_liobn[0];
1853        sphb->mig_mem_win_addr = sphb->mem_win_addr;
1854        sphb->mig_mem_win_size = sphb->mem_win_size;
1855        sphb->mig_io_win_addr = sphb->io_win_addr;
1856        sphb->mig_io_win_size = sphb->io_win_size;
1857
1858        if ((sphb->mem64_win_size != 0)
1859            && (sphb->mem64_win_addr
1860                == (sphb->mem_win_addr + sphb->mem_win_size))) {
1861            sphb->mig_mem_win_size += sphb->mem64_win_size;
1862        }
1863    }
1864
1865    g_free(sphb->msi_devs);
1866    sphb->msi_devs = NULL;
1867    sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1868    if (!sphb->msi_devs_num) {
1869        return 0;
1870    }
1871    sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1872
1873    g_hash_table_iter_init(&iter, sphb->msi);
1874    for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1875        sphb->msi_devs[i].key = *(uint32_t *) key;
1876        sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1877    }
1878
1879    return 0;
1880}
1881
1882static int spapr_pci_post_load(void *opaque, int version_id)
1883{
1884    sPAPRPHBState *sphb = opaque;
1885    gpointer key, value;
1886    int i;
1887
1888    for (i = 0; i < sphb->msi_devs_num; ++i) {
1889        key = g_memdup(&sphb->msi_devs[i].key,
1890                       sizeof(sphb->msi_devs[i].key));
1891        value = g_memdup(&sphb->msi_devs[i].value,
1892                         sizeof(sphb->msi_devs[i].value));
1893        g_hash_table_insert(sphb->msi, key, value);
1894    }
1895    g_free(sphb->msi_devs);
1896    sphb->msi_devs = NULL;
1897    sphb->msi_devs_num = 0;
1898
1899    return 0;
1900}
1901
1902static bool pre_2_8_migration(void *opaque, int version_id)
1903{
1904    sPAPRPHBState *sphb = opaque;
1905
1906    return sphb->pre_2_8_migration;
1907}
1908
1909static const VMStateDescription vmstate_spapr_pci = {
1910    .name = "spapr_pci",
1911    .version_id = 2,
1912    .minimum_version_id = 2,
1913    .pre_save = spapr_pci_pre_save,
1914    .post_load = spapr_pci_post_load,
1915    .fields = (VMStateField[]) {
1916        VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1917        VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1918        VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1919        VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1920        VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1921        VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1922        VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1923                             vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1924        VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1925        VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1926                                    vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1927        VMSTATE_END_OF_LIST()
1928    },
1929};
1930
1931static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1932                                           PCIBus *rootbus)
1933{
1934    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1935
1936    return sphb->dtbusname;
1937}
1938
1939static void spapr_phb_class_init(ObjectClass *klass, void *data)
1940{
1941    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1942    DeviceClass *dc = DEVICE_CLASS(klass);
1943    HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1944
1945    hc->root_bus_path = spapr_phb_root_bus_path;
1946    dc->realize = spapr_phb_realize;
1947    dc->props = spapr_phb_properties;
1948    dc->reset = spapr_phb_reset;
1949    dc->vmsd = &vmstate_spapr_pci;
1950    /* Supported by TYPE_SPAPR_MACHINE */
1951    dc->user_creatable = true;
1952    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1953    hp->plug = spapr_pci_plug;
1954    hp->unplug_request = spapr_pci_unplug_request;
1955}
1956
1957static const TypeInfo spapr_phb_info = {
1958    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1959    .parent        = TYPE_PCI_HOST_BRIDGE,
1960    .instance_size = sizeof(sPAPRPHBState),
1961    .class_init    = spapr_phb_class_init,
1962    .interfaces    = (InterfaceInfo[]) {
1963        { TYPE_HOTPLUG_HANDLER },
1964        { }
1965    }
1966};
1967
1968PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1969{
1970    DeviceState *dev;
1971
1972    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1973    qdev_prop_set_uint32(dev, "index", index);
1974    qdev_init_nofail(dev);
1975
1976    return PCI_HOST_BRIDGE(dev);
1977}
1978
1979typedef struct sPAPRFDT {
1980    void *fdt;
1981    int node_off;
1982    sPAPRPHBState *sphb;
1983} sPAPRFDT;
1984
1985static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1986                                          void *opaque)
1987{
1988    PCIBus *sec_bus;
1989    sPAPRFDT *p = opaque;
1990    int offset;
1991    sPAPRFDT s_fdt;
1992
1993    offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1994    if (!offset) {
1995        error_report("Failed to create pci child device tree node");
1996        return;
1997    }
1998
1999    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2000         PCI_HEADER_TYPE_BRIDGE)) {
2001        return;
2002    }
2003
2004    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2005    if (!sec_bus) {
2006        return;
2007    }
2008
2009    s_fdt.fdt = p->fdt;
2010    s_fdt.node_off = offset;
2011    s_fdt.sphb = p->sphb;
2012    pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2013                                spapr_populate_pci_devices_dt,
2014                                &s_fdt);
2015}
2016
2017static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2018                                           void *opaque)
2019{
2020    unsigned int *bus_no = opaque;
2021    unsigned int primary = *bus_no;
2022    unsigned int subordinate = 0xff;
2023    PCIBus *sec_bus = NULL;
2024
2025    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2026         PCI_HEADER_TYPE_BRIDGE)) {
2027        return;
2028    }
2029
2030    (*bus_no)++;
2031    pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2032    pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2033    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2034
2035    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2036    if (!sec_bus) {
2037        return;
2038    }
2039
2040    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2041    pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2042                        spapr_phb_pci_enumerate_bridge, bus_no);
2043    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2044}
2045
2046static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2047{
2048    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2049    unsigned int bus_no = 0;
2050
2051    pci_for_each_device(bus, pci_bus_num(bus),
2052                        spapr_phb_pci_enumerate_bridge,
2053                        &bus_no);
2054
2055}
2056
2057int spapr_populate_pci_dt(sPAPRPHBState *phb,
2058                          uint32_t xics_phandle,
2059                          void *fdt)
2060{
2061    int bus_off, i, j, ret;
2062    gchar *nodename;
2063    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2064    struct {
2065        uint32_t hi;
2066        uint64_t child;
2067        uint64_t parent;
2068        uint64_t size;
2069    } QEMU_PACKED ranges[] = {
2070        {
2071            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2072            cpu_to_be64(phb->io_win_addr),
2073            cpu_to_be64(memory_region_size(&phb->iospace)),
2074        },
2075        {
2076            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2077            cpu_to_be64(phb->mem_win_addr),
2078            cpu_to_be64(phb->mem_win_size),
2079        },
2080        {
2081            cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2082            cpu_to_be64(phb->mem64_win_addr),
2083            cpu_to_be64(phb->mem64_win_size),
2084        },
2085    };
2086    const unsigned sizeof_ranges =
2087        (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2088    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2089    uint32_t interrupt_map_mask[] = {
2090        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2091    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2092    uint32_t ddw_applicable[] = {
2093        cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2094        cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2095        cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2096    };
2097    uint32_t ddw_extensions[] = {
2098        cpu_to_be32(1),
2099        cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2100    };
2101    uint32_t associativity[] = {cpu_to_be32(0x4),
2102                                cpu_to_be32(0x0),
2103                                cpu_to_be32(0x0),
2104                                cpu_to_be32(0x0),
2105                                cpu_to_be32(phb->numa_node)};
2106    sPAPRTCETable *tcet;
2107    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2108    sPAPRFDT s_fdt;
2109
2110    /* Start populating the FDT */
2111    nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2112    _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2113    g_free(nodename);
2114
2115    /* Write PHB properties */
2116    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2117    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2118    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2119    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2120    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2121    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2122    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2123    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2124    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2125    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2126    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2127
2128    /* Dynamic DMA window */
2129    if (phb->ddw_enabled) {
2130        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2131                         sizeof(ddw_applicable)));
2132        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2133                         &ddw_extensions, sizeof(ddw_extensions)));
2134    }
2135
2136    /* Advertise NUMA via ibm,associativity */
2137    if (phb->numa_node != -1) {
2138        _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2139                         sizeof(associativity)));
2140    }
2141
2142    /* Build the interrupt-map, this must matches what is done
2143     * in pci_spapr_map_irq
2144     */
2145    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2146                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
2147    for (i = 0; i < PCI_SLOT_MAX; i++) {
2148        for (j = 0; j < PCI_NUM_PINS; j++) {
2149            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2150            int lsi_num = pci_spapr_swizzle(i, j);
2151
2152            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2153            irqmap[1] = 0;
2154            irqmap[2] = 0;
2155            irqmap[3] = cpu_to_be32(j+1);
2156            irqmap[4] = cpu_to_be32(xics_phandle);
2157            spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2158        }
2159    }
2160    /* Write interrupt map */
2161    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2162                     sizeof(interrupt_map)));
2163
2164    tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2165    if (!tcet) {
2166        return -1;
2167    }
2168    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2169                 tcet->liobn, tcet->bus_offset,
2170                 tcet->nb_table << tcet->page_shift);
2171
2172    /* Walk the bridges and program the bus numbers*/
2173    spapr_phb_pci_enumerate(phb);
2174    _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2175
2176    /* Populate tree nodes with PCI devices attached */
2177    s_fdt.fdt = fdt;
2178    s_fdt.node_off = bus_off;
2179    s_fdt.sphb = phb;
2180    pci_for_each_device_reverse(bus, pci_bus_num(bus),
2181                                spapr_populate_pci_devices_dt,
2182                                &s_fdt);
2183
2184    ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2185                                SPAPR_DR_CONNECTOR_TYPE_PCI);
2186    if (ret) {
2187        return ret;
2188    }
2189
2190    return 0;
2191}
2192
2193void spapr_pci_rtas_init(void)
2194{
2195    spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2196                        rtas_read_pci_config);
2197    spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2198                        rtas_write_pci_config);
2199    spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2200                        rtas_ibm_read_pci_config);
2201    spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2202                        rtas_ibm_write_pci_config);
2203    if (msi_nonbroken) {
2204        spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2205                            "ibm,query-interrupt-source-number",
2206                            rtas_ibm_query_interrupt_source_number);
2207        spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2208                            rtas_ibm_change_msi);
2209    }
2210
2211    spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2212                        "ibm,set-eeh-option",
2213                        rtas_ibm_set_eeh_option);
2214    spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2215                        "ibm,get-config-addr-info2",
2216                        rtas_ibm_get_config_addr_info2);
2217    spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2218                        "ibm,read-slot-reset-state2",
2219                        rtas_ibm_read_slot_reset_state2);
2220    spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2221                        "ibm,set-slot-reset",
2222                        rtas_ibm_set_slot_reset);
2223    spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2224                        "ibm,configure-pe",
2225                        rtas_ibm_configure_pe);
2226    spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2227                        "ibm,slot-error-detail",
2228                        rtas_ibm_slot_error_detail);
2229}
2230
2231static void spapr_pci_register_types(void)
2232{
2233    type_register_static(&spapr_phb_info);
2234}
2235
2236type_init(spapr_pci_register_types)
2237
2238static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2239{
2240    bool be = *(bool *)opaque;
2241
2242    if (object_dynamic_cast(OBJECT(dev), "VGA")
2243        || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2244        object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2245                                 &error_abort);
2246    }
2247    return 0;
2248}
2249
2250void spapr_pci_switch_vga(bool big_endian)
2251{
2252    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2253    sPAPRPHBState *sphb;
2254
2255    /*
2256     * For backward compatibility with existing guests, we switch
2257     * the endianness of the VGA controller when changing the guest
2258     * interrupt mode
2259     */
2260    QLIST_FOREACH(sphb, &spapr->phbs, list) {
2261        BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2262        qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2263                           &big_endian);
2264    }
2265}
2266