qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19#include "qemu/queue.h"
  20
  21/* This is the size of the host kernel's sigset_t, needed where we make
  22 * direct system calls that take a sigset_t pointer and a size.
  23 */
  24#define SIGSET_T_SIZE (_NSIG / 8)
  25
  26/* This struct is used to hold certain information about the image.
  27 * Basically, it replicates in user space what would be certain
  28 * task_struct fields in the kernel
  29 */
  30struct image_info {
  31        abi_ulong       load_bias;
  32        abi_ulong       load_addr;
  33        abi_ulong       start_code;
  34        abi_ulong       end_code;
  35        abi_ulong       start_data;
  36        abi_ulong       end_data;
  37        abi_ulong       start_brk;
  38        abi_ulong       brk;
  39        abi_ulong       start_mmap;
  40        abi_ulong       start_stack;
  41        abi_ulong       stack_limit;
  42        abi_ulong       entry;
  43        abi_ulong       code_offset;
  44        abi_ulong       data_offset;
  45        abi_ulong       saved_auxv;
  46        abi_ulong       auxv_len;
  47        abi_ulong       arg_start;
  48        abi_ulong       arg_end;
  49        abi_ulong       arg_strings;
  50        abi_ulong       env_strings;
  51        abi_ulong       file_string;
  52        uint32_t        elf_flags;
  53        int             personality;
  54        abi_ulong       alignment;
  55
  56        /* The fields below are used in FDPIC mode.  */
  57        abi_ulong       loadmap_addr;
  58        uint16_t        nsegs;
  59        void           *loadsegs;
  60        abi_ulong       pt_dynamic_addr;
  61        abi_ulong       interpreter_loadmap_addr;
  62        abi_ulong       interpreter_pt_dynamic_addr;
  63        struct image_info *other_info;
  64};
  65
  66#ifdef TARGET_I386
  67/* Information about the current linux thread */
  68struct vm86_saved_state {
  69    uint32_t eax; /* return code */
  70    uint32_t ebx;
  71    uint32_t ecx;
  72    uint32_t edx;
  73    uint32_t esi;
  74    uint32_t edi;
  75    uint32_t ebp;
  76    uint32_t esp;
  77    uint32_t eflags;
  78    uint32_t eip;
  79    uint16_t cs, ss, ds, es, fs, gs;
  80};
  81#endif
  82
  83#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  84/* FPU emulator */
  85#include "nwfpe/fpa11.h"
  86#endif
  87
  88#define MAX_SIGQUEUE_SIZE 1024
  89
  90struct emulated_sigtable {
  91    int pending; /* true if signal is pending */
  92    target_siginfo_t info;
  93};
  94
  95/* NOTE: we force a big alignment so that the stack stored after is
  96   aligned too */
  97typedef struct TaskState {
  98    pid_t ts_tid;     /* tid (or pid) of this task */
  99#ifdef TARGET_ARM
 100# ifdef TARGET_ABI32
 101    /* FPA state */
 102    FPA11 fpa;
 103# endif
 104    int swi_errno;
 105#endif
 106#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 107    abi_ulong target_v86;
 108    struct vm86_saved_state vm86_saved_regs;
 109    struct target_vm86plus_struct vm86plus;
 110    uint32_t v86flags;
 111    uint32_t v86mask;
 112#endif
 113    abi_ulong child_tidptr;
 114#ifdef TARGET_M68K
 115    int sim_syscalls;
 116    abi_ulong tp_value;
 117#endif
 118#if defined(TARGET_ARM) || defined(TARGET_M68K)
 119    /* Extra fields for semihosted binaries.  */
 120    abi_ulong heap_base;
 121    abi_ulong heap_limit;
 122#endif
 123    abi_ulong stack_base;
 124    int used; /* non zero if used */
 125    struct image_info *info;
 126    struct linux_binprm *bprm;
 127
 128    struct emulated_sigtable sync_signal;
 129    struct emulated_sigtable sigtab[TARGET_NSIG];
 130    /* This thread's signal mask, as requested by the guest program.
 131     * The actual signal mask of this thread may differ:
 132     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 133     *  + sometimes we block all signals to avoid races
 134     */
 135    sigset_t signal_mask;
 136    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 137     * currently in the middle of such a syscall
 138     */
 139    sigset_t sigsuspend_mask;
 140    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 141    int in_sigsuspend;
 142
 143    /* Nonzero if process_pending_signals() needs to do something (either
 144     * handle a pending signal or unblock signals).
 145     * This flag is written from a signal handler so should be accessed via
 146     * the atomic_read() and atomic_write() functions. (It is not accessed
 147     * from multiple threads.)
 148     */
 149    int signal_pending;
 150
 151} __attribute__((aligned(16))) TaskState;
 152
 153extern char *exec_path;
 154void init_task_state(TaskState *ts);
 155void task_settid(TaskState *);
 156void stop_all_tasks(void);
 157extern const char *qemu_uname_release;
 158extern unsigned long mmap_min_addr;
 159
 160/* ??? See if we can avoid exposing so much of the loader internals.  */
 161
 162/* Read a good amount of data initially, to hopefully get all the
 163   program headers loaded.  */
 164#define BPRM_BUF_SIZE  1024
 165
 166/*
 167 * This structure is used to hold the arguments that are
 168 * used when loading binaries.
 169 */
 170struct linux_binprm {
 171        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 172        abi_ulong p;
 173        int fd;
 174        int e_uid, e_gid;
 175        int argc, envc;
 176        char **argv;
 177        char **envp;
 178        char * filename;        /* Name of binary */
 179        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 180};
 181
 182void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 183abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 184                              abi_ulong stringp, int push_ptr);
 185int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 186             struct target_pt_regs * regs, struct image_info *infop,
 187             struct linux_binprm *);
 188
 189/* Returns true if the image uses the FDPIC ABI. If this is the case,
 190 * we have to provide some information (loadmap, pt_dynamic_info) such
 191 * that the program can be relocated adequately. This is also useful
 192 * when handling signals.
 193 */
 194int info_is_fdpic(struct image_info *info);
 195
 196uint32_t get_elf_eflags(int fd);
 197int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 198int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 199
 200abi_long memcpy_to_target(abi_ulong dest, const void *src,
 201                          unsigned long len);
 202void target_set_brk(abi_ulong new_brk);
 203abi_long do_brk(abi_ulong new_brk);
 204void syscall_init(void);
 205abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 206                    abi_long arg2, abi_long arg3, abi_long arg4,
 207                    abi_long arg5, abi_long arg6, abi_long arg7,
 208                    abi_long arg8);
 209void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 210extern __thread CPUState *thread_cpu;
 211void cpu_loop(CPUArchState *env);
 212const char *target_strerror(int err);
 213int get_osversion(void);
 214void init_qemu_uname_release(void);
 215void fork_start(void);
 216void fork_end(int child);
 217
 218/* Creates the initial guest address space in the host memory space using
 219 * the given host start address hint and size.  The guest_start parameter
 220 * specifies the start address of the guest space.  guest_base will be the
 221 * difference between the host start address computed by this function and
 222 * guest_start.  If fixed is specified, then the mapped address space must
 223 * start at host_start.  The real start address of the mapped memory space is
 224 * returned or -1 if there was an error.
 225 */
 226unsigned long init_guest_space(unsigned long host_start,
 227                               unsigned long host_size,
 228                               unsigned long guest_start,
 229                               bool fixed);
 230
 231#include "qemu/log.h"
 232
 233/* safe_syscall.S */
 234
 235/**
 236 * safe_syscall:
 237 * @int number: number of system call to make
 238 * ...: arguments to the system call
 239 *
 240 * Call a system call if guest signal not pending.
 241 * This has the same API as the libc syscall() function, except that it
 242 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 243 *
 244 * Returns: the system call result, or -1 with an error code in errno
 245 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 246 * with any of the host errno values.)
 247 */
 248
 249/* A guide to using safe_syscall() to handle interactions between guest
 250 * syscalls and guest signals:
 251 *
 252 * Guest syscalls come in two flavours:
 253 *
 254 * (1) Non-interruptible syscalls
 255 *
 256 * These are guest syscalls that never get interrupted by signals and
 257 * so never return EINTR. They can be implemented straightforwardly in
 258 * QEMU: just make sure that if the implementation code has to make any
 259 * blocking calls that those calls are retried if they return EINTR.
 260 * It's also OK to implement these with safe_syscall, though it will be
 261 * a little less efficient if a signal is delivered at the 'wrong' moment.
 262 *
 263 * Some non-interruptible syscalls need to be handled using block_signals()
 264 * to block signals for the duration of the syscall. This mainly applies
 265 * to code which needs to modify the data structures used by the
 266 * host_signal_handler() function and the functions it calls, including
 267 * all syscalls which change the thread's signal mask.
 268 *
 269 * (2) Interruptible syscalls
 270 *
 271 * These are guest syscalls that can be interrupted by signals and
 272 * for which we need to either return EINTR or arrange for the guest
 273 * syscall to be restarted. This category includes both syscalls which
 274 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 275 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 276 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 277 * if the handler was registered with SA_RESTART (kernel returns
 278 * -ERESTARTSYS). System calls which are only interruptible in some
 279 * situations (like 'open') also need to be handled this way.
 280 *
 281 * Here it is important that the host syscall is made
 282 * via this safe_syscall() function, and *not* via the host libc.
 283 * If the host libc is used then the implementation will appear to work
 284 * most of the time, but there will be a race condition where a
 285 * signal could arrive just before we make the host syscall inside libc,
 286 * and then then guest syscall will not correctly be interrupted.
 287 * Instead the implementation of the guest syscall can use the safe_syscall
 288 * function but otherwise just return the result or errno in the usual
 289 * way; the main loop code will take care of restarting the syscall
 290 * if appropriate.
 291 *
 292 * (If the implementation needs to make multiple host syscalls this is
 293 * OK; any which might really block must be via safe_syscall(); for those
 294 * which are only technically blocking (ie which we know in practice won't
 295 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 296 * You must be able to cope with backing out correctly if some safe_syscall
 297 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 298 * EINTR though.)
 299 *
 300 * block_signals() cannot be used for interruptible syscalls.
 301 *
 302 *
 303 * How and why the safe_syscall implementation works:
 304 *
 305 * The basic setup is that we make the host syscall via a known
 306 * section of host native assembly. If a signal occurs, our signal
 307 * handler checks the interrupted host PC against the addresse of that
 308 * known section. If the PC is before or at the address of the syscall
 309 * instruction then we change the PC to point at a "return
 310 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 311 * (causing the safe_syscall() call to immediately return that value).
 312 * Then in the main.c loop if we see this magic return value we adjust
 313 * the guest PC to wind it back to before the system call, and invoke
 314 * the guest signal handler as usual.
 315 *
 316 * This winding-back will happen in two cases:
 317 * (1) signal came in just before we took the host syscall (a race);
 318 *   in this case we'll take the guest signal and have another go
 319 *   at the syscall afterwards, and this is indistinguishable for the
 320 *   guest from the timing having been different such that the guest
 321 *   signal really did win the race
 322 * (2) signal came in while the host syscall was blocking, and the
 323 *   host kernel decided the syscall should be restarted;
 324 *   in this case we want to restart the guest syscall also, and so
 325 *   rewinding is the right thing. (Note that "restart" semantics mean
 326 *   "first call the signal handler, then reattempt the syscall".)
 327 * The other situation to consider is when a signal came in while the
 328 * host syscall was blocking, and the host kernel decided that the syscall
 329 * should not be restarted; in this case QEMU's host signal handler will
 330 * be invoked with the PC pointing just after the syscall instruction,
 331 * with registers indicating an EINTR return; the special code in the
 332 * handler will not kick in, and we will return EINTR to the guest as
 333 * we should.
 334 *
 335 * Notice that we can leave the host kernel to make the decision for
 336 * us about whether to do a restart of the syscall or not; we do not
 337 * need to check SA_RESTART flags in QEMU or distinguish the various
 338 * kinds of restartability.
 339 */
 340#ifdef HAVE_SAFE_SYSCALL
 341/* The core part of this function is implemented in assembly */
 342extern long safe_syscall_base(int *pending, long number, ...);
 343
 344#define safe_syscall(...)                                               \
 345    ({                                                                  \
 346        long ret_;                                                      \
 347        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 348        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 349        if (is_error(ret_)) {                                           \
 350            errno = -ret_;                                              \
 351            ret_ = -1;                                                  \
 352        }                                                               \
 353        ret_;                                                           \
 354    })
 355
 356#else
 357
 358/* Fallback for architectures which don't yet provide a safe-syscall assembly
 359 * fragment; note that this is racy!
 360 * This should go away when all host architectures have been updated.
 361 */
 362#define safe_syscall syscall
 363
 364#endif
 365
 366/* syscall.c */
 367int host_to_target_waitstatus(int status);
 368
 369/* strace.c */
 370void print_syscall(int num,
 371                   abi_long arg1, abi_long arg2, abi_long arg3,
 372                   abi_long arg4, abi_long arg5, abi_long arg6);
 373void print_syscall_ret(int num, abi_long arg1);
 374/**
 375 * print_taken_signal:
 376 * @target_signum: target signal being taken
 377 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 378 *
 379 * Print strace output indicating that this signal is being taken by the guest,
 380 * in a format similar to:
 381 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 382 */
 383void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 384extern int do_strace;
 385
 386/* signal.c */
 387void process_pending_signals(CPUArchState *cpu_env);
 388void signal_init(void);
 389int queue_signal(CPUArchState *env, int sig, int si_type,
 390                 target_siginfo_t *info);
 391void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 392void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 393int target_to_host_signal(int sig);
 394int host_to_target_signal(int sig);
 395long do_sigreturn(CPUArchState *env);
 396long do_rt_sigreturn(CPUArchState *env);
 397abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 398int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 399abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 400                        abi_ulong unew_ctx, abi_long ctx_size);
 401/**
 402 * block_signals: block all signals while handling this guest syscall
 403 *
 404 * Block all signals, and arrange that the signal mask is returned to
 405 * its correct value for the guest before we resume execution of guest code.
 406 * If this function returns non-zero, then the caller should immediately
 407 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 408 * signal and restart execution of the syscall.
 409 * If block_signals() returns zero, then the caller can continue with
 410 * emulation of the system call knowing that no signals can be taken
 411 * (and therefore that no race conditions will result).
 412 * This should only be called once, because if it is called a second time
 413 * it will always return non-zero. (Think of it like a mutex that can't
 414 * be recursively locked.)
 415 * Signals will be unblocked again by process_pending_signals().
 416 *
 417 * Return value: non-zero if there was a pending signal, zero if not.
 418 */
 419int block_signals(void); /* Returns non zero if signal pending */
 420
 421#ifdef TARGET_I386
 422/* vm86.c */
 423void save_v86_state(CPUX86State *env);
 424void handle_vm86_trap(CPUX86State *env, int trapno);
 425void handle_vm86_fault(CPUX86State *env);
 426int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 427#elif defined(TARGET_SPARC64)
 428void sparc64_set_context(CPUSPARCState *env);
 429void sparc64_get_context(CPUSPARCState *env);
 430#endif
 431
 432/* mmap.c */
 433int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 434abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 435                     int flags, int fd, abi_ulong offset);
 436int target_munmap(abi_ulong start, abi_ulong len);
 437abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 438                       abi_ulong new_size, unsigned long flags,
 439                       abi_ulong new_addr);
 440extern unsigned long last_brk;
 441extern abi_ulong mmap_next_start;
 442abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
 443void mmap_fork_start(void);
 444void mmap_fork_end(int child);
 445
 446/* main.c */
 447extern unsigned long guest_stack_size;
 448
 449/* user access */
 450
 451#define VERIFY_READ 0
 452#define VERIFY_WRITE 1 /* implies read access */
 453
 454static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 455{
 456    return page_check_range((target_ulong)addr, size,
 457                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 458}
 459
 460/* NOTE __get_user and __put_user use host pointers and don't check access.
 461   These are usually used to access struct data members once the struct has
 462   been locked - usually with lock_user_struct.  */
 463
 464/* Tricky points:
 465   - Use __builtin_choose_expr to avoid type promotion from ?:,
 466   - Invalid sizes result in a compile time error stemming from
 467     the fact that abort has no parameters.
 468   - It's easier to use the endian-specific unaligned load/store
 469     functions than host-endian unaligned load/store plus tswapN.  */
 470
 471#define __put_user_e(x, hptr, e)                                        \
 472  (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
 473   __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
 474   __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
 475   __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
 476     ((hptr), (x)), (void)0)
 477
 478#define __get_user_e(x, hptr, e)                                        \
 479  ((x) = (typeof(*hptr))(                                               \
 480   __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
 481   __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
 482   __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
 483   __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
 484     (hptr)), (void)0)
 485
 486#ifdef TARGET_WORDS_BIGENDIAN
 487# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 488# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 489#else
 490# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 491# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 492#endif
 493
 494/* put_user()/get_user() take a guest address and check access */
 495/* These are usually used to access an atomic data type, such as an int,
 496 * that has been passed by address.  These internally perform locking
 497 * and unlocking on the data type.
 498 */
 499#define put_user(x, gaddr, target_type)                                 \
 500({                                                                      \
 501    abi_ulong __gaddr = (gaddr);                                        \
 502    target_type *__hptr;                                                \
 503    abi_long __ret = 0;                                                 \
 504    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 505        __put_user((x), __hptr);                                \
 506        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 507    } else                                                              \
 508        __ret = -TARGET_EFAULT;                                         \
 509    __ret;                                                              \
 510})
 511
 512#define get_user(x, gaddr, target_type)                                 \
 513({                                                                      \
 514    abi_ulong __gaddr = (gaddr);                                        \
 515    target_type *__hptr;                                                \
 516    abi_long __ret = 0;                                                 \
 517    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 518        __get_user((x), __hptr);                                \
 519        unlock_user(__hptr, __gaddr, 0);                                \
 520    } else {                                                            \
 521        /* avoid warning */                                             \
 522        (x) = 0;                                                        \
 523        __ret = -TARGET_EFAULT;                                         \
 524    }                                                                   \
 525    __ret;                                                              \
 526})
 527
 528#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 529#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 530#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 531#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 532#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 533#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 534#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 535#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 536#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 537#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 538
 539#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 540#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 541#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 542#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 543#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 544#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 545#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 546#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 547#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 548#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 549
 550/* copy_from_user() and copy_to_user() are usually used to copy data
 551 * buffers between the target and host.  These internally perform
 552 * locking/unlocking of the memory.
 553 */
 554abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 555abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 556
 557/* Functions for accessing guest memory.  The tget and tput functions
 558   read/write single values, byteswapping as necessary.  The lock_user function
 559   gets a pointer to a contiguous area of guest memory, but does not perform
 560   any byteswapping.  lock_user may return either a pointer to the guest
 561   memory, or a temporary buffer.  */
 562
 563/* Lock an area of guest memory into the host.  If copy is true then the
 564   host area will have the same contents as the guest.  */
 565static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 566{
 567    if (!access_ok(type, guest_addr, len))
 568        return NULL;
 569#ifdef DEBUG_REMAP
 570    {
 571        void *addr;
 572        addr = g_malloc(len);
 573        if (copy)
 574            memcpy(addr, g2h(guest_addr), len);
 575        else
 576            memset(addr, 0, len);
 577        return addr;
 578    }
 579#else
 580    return g2h(guest_addr);
 581#endif
 582}
 583
 584/* Unlock an area of guest memory.  The first LEN bytes must be
 585   flushed back to guest memory. host_ptr = NULL is explicitly
 586   allowed and does nothing. */
 587static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 588                               long len)
 589{
 590
 591#ifdef DEBUG_REMAP
 592    if (!host_ptr)
 593        return;
 594    if (host_ptr == g2h(guest_addr))
 595        return;
 596    if (len > 0)
 597        memcpy(g2h(guest_addr), host_ptr, len);
 598    g_free(host_ptr);
 599#endif
 600}
 601
 602/* Return the length of a string in target memory or -TARGET_EFAULT if
 603   access error. */
 604abi_long target_strlen(abi_ulong gaddr);
 605
 606/* Like lock_user but for null terminated strings.  */
 607static inline void *lock_user_string(abi_ulong guest_addr)
 608{
 609    abi_long len;
 610    len = target_strlen(guest_addr);
 611    if (len < 0)
 612        return NULL;
 613    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 614}
 615
 616/* Helper macros for locking/unlocking a target struct.  */
 617#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 618    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 619#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 620    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 621
 622#include <pthread.h>
 623
 624static inline int is_error(abi_long ret)
 625{
 626    return (abi_ulong)ret >= (abi_ulong)(-4096);
 627}
 628
 629/**
 630 * preexit_cleanup: housekeeping before the guest exits
 631 *
 632 * env: the CPU state
 633 * code: the exit code
 634 */
 635void preexit_cleanup(CPUArchState *env, int code);
 636
 637/* Include target-specific struct and function definitions;
 638 * they may need access to the target-independent structures
 639 * above, so include them last.
 640 */
 641#include "target_cpu.h"
 642#include "target_structs.h"
 643
 644#endif /* QEMU_H */
 645