qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "exec/target_page.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "savevm.h"
  24#include "postcopy-ram.h"
  25#include "ram.h"
  26#include "qapi/error.h"
  27#include "qemu/notify.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/balloon.h"
  30#include "qemu/error-report.h"
  31#include "trace.h"
  32
  33/* Arbitrary limit on size of each discard command,
  34 * keeps them around ~200 bytes
  35 */
  36#define MAX_DISCARDS_PER_COMMAND 12
  37
  38struct PostcopyDiscardState {
  39    const char *ramblock_name;
  40    uint16_t cur_entry;
  41    /*
  42     * Start and length of a discard range (bytes)
  43     */
  44    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  45    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  46    unsigned int nsentwords;
  47    unsigned int nsentcmds;
  48};
  49
  50static NotifierWithReturnList postcopy_notifier_list;
  51
  52void postcopy_infrastructure_init(void)
  53{
  54    notifier_with_return_list_init(&postcopy_notifier_list);
  55}
  56
  57void postcopy_add_notifier(NotifierWithReturn *nn)
  58{
  59    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  60}
  61
  62void postcopy_remove_notifier(NotifierWithReturn *n)
  63{
  64    notifier_with_return_remove(n);
  65}
  66
  67int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  68{
  69    struct PostcopyNotifyData pnd;
  70    pnd.reason = reason;
  71    pnd.errp = errp;
  72
  73    return notifier_with_return_list_notify(&postcopy_notifier_list,
  74                                            &pnd);
  75}
  76
  77/* Postcopy needs to detect accesses to pages that haven't yet been copied
  78 * across, and efficiently map new pages in, the techniques for doing this
  79 * are target OS specific.
  80 */
  81#if defined(__linux__)
  82
  83#include <poll.h>
  84#include <sys/ioctl.h>
  85#include <sys/syscall.h>
  86#include <asm/types.h> /* for __u64 */
  87#endif
  88
  89#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  90#include <sys/eventfd.h>
  91#include <linux/userfaultfd.h>
  92
  93typedef struct PostcopyBlocktimeContext {
  94    /* time when page fault initiated per vCPU */
  95    uint32_t *page_fault_vcpu_time;
  96    /* page address per vCPU */
  97    uintptr_t *vcpu_addr;
  98    uint32_t total_blocktime;
  99    /* blocktime per vCPU */
 100    uint32_t *vcpu_blocktime;
 101    /* point in time when last page fault was initiated */
 102    uint32_t last_begin;
 103    /* number of vCPU are suspended */
 104    int smp_cpus_down;
 105    uint64_t start_time;
 106
 107    /*
 108     * Handler for exit event, necessary for
 109     * releasing whole blocktime_ctx
 110     */
 111    Notifier exit_notifier;
 112} PostcopyBlocktimeContext;
 113
 114static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 115{
 116    g_free(ctx->page_fault_vcpu_time);
 117    g_free(ctx->vcpu_addr);
 118    g_free(ctx->vcpu_blocktime);
 119    g_free(ctx);
 120}
 121
 122static void migration_exit_cb(Notifier *n, void *data)
 123{
 124    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 125                                                 exit_notifier);
 126    destroy_blocktime_context(ctx);
 127}
 128
 129static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 130{
 131    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 132    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 133    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 134    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 135
 136    ctx->exit_notifier.notify = migration_exit_cb;
 137    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 138    qemu_add_exit_notifier(&ctx->exit_notifier);
 139    return ctx;
 140}
 141
 142static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 143{
 144    uint32List *list = NULL, *entry = NULL;
 145    int i;
 146
 147    for (i = smp_cpus - 1; i >= 0; i--) {
 148        entry = g_new0(uint32List, 1);
 149        entry->value = ctx->vcpu_blocktime[i];
 150        entry->next = list;
 151        list = entry;
 152    }
 153
 154    return list;
 155}
 156
 157/*
 158 * This function just populates MigrationInfo from postcopy's
 159 * blocktime context. It will not populate MigrationInfo,
 160 * unless postcopy-blocktime capability was set.
 161 *
 162 * @info: pointer to MigrationInfo to populate
 163 */
 164void fill_destination_postcopy_migration_info(MigrationInfo *info)
 165{
 166    MigrationIncomingState *mis = migration_incoming_get_current();
 167    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 168
 169    if (!bc) {
 170        return;
 171    }
 172
 173    info->has_postcopy_blocktime = true;
 174    info->postcopy_blocktime = bc->total_blocktime;
 175    info->has_postcopy_vcpu_blocktime = true;
 176    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 177}
 178
 179static uint32_t get_postcopy_total_blocktime(void)
 180{
 181    MigrationIncomingState *mis = migration_incoming_get_current();
 182    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 183
 184    if (!bc) {
 185        return 0;
 186    }
 187
 188    return bc->total_blocktime;
 189}
 190
 191/**
 192 * receive_ufd_features: check userfault fd features, to request only supported
 193 * features in the future.
 194 *
 195 * Returns: true on success
 196 *
 197 * __NR_userfaultfd - should be checked before
 198 *  @features: out parameter will contain uffdio_api.features provided by kernel
 199 *              in case of success
 200 */
 201static bool receive_ufd_features(uint64_t *features)
 202{
 203    struct uffdio_api api_struct = {0};
 204    int ufd;
 205    bool ret = true;
 206
 207    /* if we are here __NR_userfaultfd should exists */
 208    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 209    if (ufd == -1) {
 210        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 211                     strerror(errno));
 212        return false;
 213    }
 214
 215    /* ask features */
 216    api_struct.api = UFFD_API;
 217    api_struct.features = 0;
 218    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 219        error_report("%s: UFFDIO_API failed: %s", __func__,
 220                     strerror(errno));
 221        ret = false;
 222        goto release_ufd;
 223    }
 224
 225    *features = api_struct.features;
 226
 227release_ufd:
 228    close(ufd);
 229    return ret;
 230}
 231
 232/**
 233 * request_ufd_features: this function should be called only once on a newly
 234 * opened ufd, subsequent calls will lead to error.
 235 *
 236 * Returns: true on succes
 237 *
 238 * @ufd: fd obtained from userfaultfd syscall
 239 * @features: bit mask see UFFD_API_FEATURES
 240 */
 241static bool request_ufd_features(int ufd, uint64_t features)
 242{
 243    struct uffdio_api api_struct = {0};
 244    uint64_t ioctl_mask;
 245
 246    api_struct.api = UFFD_API;
 247    api_struct.features = features;
 248    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 249        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 250                     strerror(errno));
 251        return false;
 252    }
 253
 254    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 255                 (__u64)1 << _UFFDIO_UNREGISTER;
 256    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 257        error_report("Missing userfault features: %" PRIx64,
 258                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 259        return false;
 260    }
 261
 262    return true;
 263}
 264
 265static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 266{
 267    uint64_t asked_features = 0;
 268    static uint64_t supported_features;
 269
 270    /*
 271     * it's not possible to
 272     * request UFFD_API twice per one fd
 273     * userfault fd features is persistent
 274     */
 275    if (!supported_features) {
 276        if (!receive_ufd_features(&supported_features)) {
 277            error_report("%s failed", __func__);
 278            return false;
 279        }
 280    }
 281
 282#ifdef UFFD_FEATURE_THREAD_ID
 283    if (migrate_postcopy_blocktime() && mis &&
 284        UFFD_FEATURE_THREAD_ID & supported_features) {
 285        /* kernel supports that feature */
 286        /* don't create blocktime_context if it exists */
 287        if (!mis->blocktime_ctx) {
 288            mis->blocktime_ctx = blocktime_context_new();
 289        }
 290
 291        asked_features |= UFFD_FEATURE_THREAD_ID;
 292    }
 293#endif
 294
 295    /*
 296     * request features, even if asked_features is 0, due to
 297     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 298     * userfault file descriptor
 299     */
 300    if (!request_ufd_features(ufd, asked_features)) {
 301        error_report("%s failed: features %" PRIu64, __func__,
 302                     asked_features);
 303        return false;
 304    }
 305
 306    if (getpagesize() != ram_pagesize_summary()) {
 307        bool have_hp = false;
 308        /* We've got a huge page */
 309#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 310        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 311#endif
 312        if (!have_hp) {
 313            error_report("Userfault on this host does not support huge pages");
 314            return false;
 315        }
 316    }
 317    return true;
 318}
 319
 320/* Callback from postcopy_ram_supported_by_host block iterator.
 321 */
 322static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
 323                             ram_addr_t offset, ram_addr_t length, void *opaque)
 324{
 325    RAMBlock *rb = qemu_ram_block_by_name(block_name);
 326    size_t pagesize = qemu_ram_pagesize(rb);
 327
 328    if (length % pagesize) {
 329        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 330                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 331                     "page size of 0x%zx", block_name, length, pagesize);
 332        return 1;
 333    }
 334    return 0;
 335}
 336
 337/*
 338 * Note: This has the side effect of munlock'ing all of RAM, that's
 339 * normally fine since if the postcopy succeeds it gets turned back on at the
 340 * end.
 341 */
 342bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 343{
 344    long pagesize = getpagesize();
 345    int ufd = -1;
 346    bool ret = false; /* Error unless we change it */
 347    void *testarea = NULL;
 348    struct uffdio_register reg_struct;
 349    struct uffdio_range range_struct;
 350    uint64_t feature_mask;
 351    Error *local_err = NULL;
 352
 353    if (qemu_target_page_size() > pagesize) {
 354        error_report("Target page size bigger than host page size");
 355        goto out;
 356    }
 357
 358    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 359    if (ufd == -1) {
 360        error_report("%s: userfaultfd not available: %s", __func__,
 361                     strerror(errno));
 362        goto out;
 363    }
 364
 365    /* Give devices a chance to object */
 366    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 367        error_report_err(local_err);
 368        goto out;
 369    }
 370
 371    /* Version and features check */
 372    if (!ufd_check_and_apply(ufd, mis)) {
 373        goto out;
 374    }
 375
 376    /* We don't support postcopy with shared RAM yet */
 377    if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
 378        goto out;
 379    }
 380
 381    /*
 382     * userfault and mlock don't go together; we'll put it back later if
 383     * it was enabled.
 384     */
 385    if (munlockall()) {
 386        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 387        return -1;
 388    }
 389
 390    /*
 391     *  We need to check that the ops we need are supported on anon memory
 392     *  To do that we need to register a chunk and see the flags that
 393     *  are returned.
 394     */
 395    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 396                                    MAP_ANONYMOUS, -1, 0);
 397    if (testarea == MAP_FAILED) {
 398        error_report("%s: Failed to map test area: %s", __func__,
 399                     strerror(errno));
 400        goto out;
 401    }
 402    g_assert(((size_t)testarea & (pagesize-1)) == 0);
 403
 404    reg_struct.range.start = (uintptr_t)testarea;
 405    reg_struct.range.len = pagesize;
 406    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 407
 408    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 409        error_report("%s userfault register: %s", __func__, strerror(errno));
 410        goto out;
 411    }
 412
 413    range_struct.start = (uintptr_t)testarea;
 414    range_struct.len = pagesize;
 415    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 416        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 417        goto out;
 418    }
 419
 420    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 421                   (__u64)1 << _UFFDIO_COPY |
 422                   (__u64)1 << _UFFDIO_ZEROPAGE;
 423    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 424        error_report("Missing userfault map features: %" PRIx64,
 425                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 426        goto out;
 427    }
 428
 429    /* Success! */
 430    ret = true;
 431out:
 432    if (testarea) {
 433        munmap(testarea, pagesize);
 434    }
 435    if (ufd != -1) {
 436        close(ufd);
 437    }
 438    return ret;
 439}
 440
 441/*
 442 * Setup an area of RAM so that it *can* be used for postcopy later; this
 443 * must be done right at the start prior to pre-copy.
 444 * opaque should be the MIS.
 445 */
 446static int init_range(const char *block_name, void *host_addr,
 447                      ram_addr_t offset, ram_addr_t length, void *opaque)
 448{
 449    trace_postcopy_init_range(block_name, host_addr, offset, length);
 450
 451    /*
 452     * We need the whole of RAM to be truly empty for postcopy, so things
 453     * like ROMs and any data tables built during init must be zero'd
 454     * - we're going to get the copy from the source anyway.
 455     * (Precopy will just overwrite this data, so doesn't need the discard)
 456     */
 457    if (ram_discard_range(block_name, 0, length)) {
 458        return -1;
 459    }
 460
 461    return 0;
 462}
 463
 464/*
 465 * At the end of migration, undo the effects of init_range
 466 * opaque should be the MIS.
 467 */
 468static int cleanup_range(const char *block_name, void *host_addr,
 469                        ram_addr_t offset, ram_addr_t length, void *opaque)
 470{
 471    MigrationIncomingState *mis = opaque;
 472    struct uffdio_range range_struct;
 473    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 474
 475    /*
 476     * We turned off hugepage for the precopy stage with postcopy enabled
 477     * we can turn it back on now.
 478     */
 479    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 480
 481    /*
 482     * We can also turn off userfault now since we should have all the
 483     * pages.   It can be useful to leave it on to debug postcopy
 484     * if you're not sure it's always getting every page.
 485     */
 486    range_struct.start = (uintptr_t)host_addr;
 487    range_struct.len = length;
 488
 489    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 490        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 491
 492        return -1;
 493    }
 494
 495    return 0;
 496}
 497
 498/*
 499 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 500 * postcopy later; must be called prior to any precopy.
 501 * called from arch_init's similarly named ram_postcopy_incoming_init
 502 */
 503int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 504{
 505    if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
 506        return -1;
 507    }
 508
 509    return 0;
 510}
 511
 512/*
 513 * At the end of a migration where postcopy_ram_incoming_init was called.
 514 */
 515int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 516{
 517    trace_postcopy_ram_incoming_cleanup_entry();
 518
 519    if (mis->have_fault_thread) {
 520        Error *local_err = NULL;
 521
 522        /* Let the fault thread quit */
 523        atomic_set(&mis->fault_thread_quit, 1);
 524        postcopy_fault_thread_notify(mis);
 525        trace_postcopy_ram_incoming_cleanup_join();
 526        qemu_thread_join(&mis->fault_thread);
 527
 528        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 529            error_report_err(local_err);
 530            return -1;
 531        }
 532
 533        if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
 534            return -1;
 535        }
 536
 537        trace_postcopy_ram_incoming_cleanup_closeuf();
 538        close(mis->userfault_fd);
 539        close(mis->userfault_event_fd);
 540        mis->have_fault_thread = false;
 541    }
 542
 543    qemu_balloon_inhibit(false);
 544
 545    if (enable_mlock) {
 546        if (os_mlock() < 0) {
 547            error_report("mlock: %s", strerror(errno));
 548            /*
 549             * It doesn't feel right to fail at this point, we have a valid
 550             * VM state.
 551             */
 552        }
 553    }
 554
 555    postcopy_state_set(POSTCOPY_INCOMING_END);
 556
 557    if (mis->postcopy_tmp_page) {
 558        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 559        mis->postcopy_tmp_page = NULL;
 560    }
 561    if (mis->postcopy_tmp_zero_page) {
 562        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 563        mis->postcopy_tmp_zero_page = NULL;
 564    }
 565    trace_postcopy_ram_incoming_cleanup_blocktime(
 566            get_postcopy_total_blocktime());
 567
 568    trace_postcopy_ram_incoming_cleanup_exit();
 569    return 0;
 570}
 571
 572/*
 573 * Disable huge pages on an area
 574 */
 575static int nhp_range(const char *block_name, void *host_addr,
 576                    ram_addr_t offset, ram_addr_t length, void *opaque)
 577{
 578    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 579
 580    /*
 581     * Before we do discards we need to ensure those discards really
 582     * do delete areas of the page, even if THP thinks a hugepage would
 583     * be a good idea, so force hugepages off.
 584     */
 585    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 586
 587    return 0;
 588}
 589
 590/*
 591 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 592 * however leaving it until after precopy means that most of the precopy
 593 * data is still THPd
 594 */
 595int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 596{
 597    if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
 598        return -1;
 599    }
 600
 601    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 602
 603    return 0;
 604}
 605
 606/*
 607 * Mark the given area of RAM as requiring notification to unwritten areas
 608 * Used as a  callback on qemu_ram_foreach_migratable_block.
 609 *   host_addr: Base of area to mark
 610 *   offset: Offset in the whole ram arena
 611 *   length: Length of the section
 612 *   opaque: MigrationIncomingState pointer
 613 * Returns 0 on success
 614 */
 615static int ram_block_enable_notify(const char *block_name, void *host_addr,
 616                                   ram_addr_t offset, ram_addr_t length,
 617                                   void *opaque)
 618{
 619    MigrationIncomingState *mis = opaque;
 620    struct uffdio_register reg_struct;
 621
 622    reg_struct.range.start = (uintptr_t)host_addr;
 623    reg_struct.range.len = length;
 624    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 625
 626    /* Now tell our userfault_fd that it's responsible for this area */
 627    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 628        error_report("%s userfault register: %s", __func__, strerror(errno));
 629        return -1;
 630    }
 631    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 632        error_report("%s userfault: Region doesn't support COPY", __func__);
 633        return -1;
 634    }
 635    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 636        RAMBlock *rb = qemu_ram_block_by_name(block_name);
 637        qemu_ram_set_uf_zeroable(rb);
 638    }
 639
 640    return 0;
 641}
 642
 643int postcopy_wake_shared(struct PostCopyFD *pcfd,
 644                         uint64_t client_addr,
 645                         RAMBlock *rb)
 646{
 647    size_t pagesize = qemu_ram_pagesize(rb);
 648    struct uffdio_range range;
 649    int ret;
 650    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 651    range.start = client_addr & ~(pagesize - 1);
 652    range.len = pagesize;
 653    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 654    if (ret) {
 655        error_report("%s: Failed to wake: %zx in %s (%s)",
 656                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 657                     strerror(errno));
 658    }
 659    return ret;
 660}
 661
 662/*
 663 * Callback from shared fault handlers to ask for a page,
 664 * the page must be specified by a RAMBlock and an offset in that rb
 665 * Note: Only for use by shared fault handlers (in fault thread)
 666 */
 667int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 668                                 uint64_t client_addr, uint64_t rb_offset)
 669{
 670    size_t pagesize = qemu_ram_pagesize(rb);
 671    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 672    MigrationIncomingState *mis = migration_incoming_get_current();
 673
 674    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 675                                       rb_offset);
 676    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 677        trace_postcopy_request_shared_page_present(pcfd->idstr,
 678                                        qemu_ram_get_idstr(rb), rb_offset);
 679        return postcopy_wake_shared(pcfd, client_addr, rb);
 680    }
 681    if (rb != mis->last_rb) {
 682        mis->last_rb = rb;
 683        migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
 684                                  aligned_rbo, pagesize);
 685    } else {
 686        /* Save some space */
 687        migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
 688    }
 689    return 0;
 690}
 691
 692static int get_mem_fault_cpu_index(uint32_t pid)
 693{
 694    CPUState *cpu_iter;
 695
 696    CPU_FOREACH(cpu_iter) {
 697        if (cpu_iter->thread_id == pid) {
 698            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 699            return cpu_iter->cpu_index;
 700        }
 701    }
 702    trace_get_mem_fault_cpu_index(-1, pid);
 703    return -1;
 704}
 705
 706static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 707{
 708    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 709                                    dc->start_time;
 710    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 711}
 712
 713/*
 714 * This function is being called when pagefault occurs. It
 715 * tracks down vCPU blocking time.
 716 *
 717 * @addr: faulted host virtual address
 718 * @ptid: faulted process thread id
 719 * @rb: ramblock appropriate to addr
 720 */
 721static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 722                                          RAMBlock *rb)
 723{
 724    int cpu, already_received;
 725    MigrationIncomingState *mis = migration_incoming_get_current();
 726    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 727    uint32_t low_time_offset;
 728
 729    if (!dc || ptid == 0) {
 730        return;
 731    }
 732    cpu = get_mem_fault_cpu_index(ptid);
 733    if (cpu < 0) {
 734        return;
 735    }
 736
 737    low_time_offset = get_low_time_offset(dc);
 738    if (dc->vcpu_addr[cpu] == 0) {
 739        atomic_inc(&dc->smp_cpus_down);
 740    }
 741
 742    atomic_xchg(&dc->last_begin, low_time_offset);
 743    atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 744    atomic_xchg(&dc->vcpu_addr[cpu], addr);
 745
 746    /* check it here, not at the begining of the function,
 747     * due to, check could accur early than bitmap_set in
 748     * qemu_ufd_copy_ioctl */
 749    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 750    if (already_received) {
 751        atomic_xchg(&dc->vcpu_addr[cpu], 0);
 752        atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 753        atomic_dec(&dc->smp_cpus_down);
 754    }
 755    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 756                                        cpu, already_received);
 757}
 758
 759/*
 760 *  This function just provide calculated blocktime per cpu and trace it.
 761 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 762 *
 763 *
 764 * Assume we have 3 CPU
 765 *
 766 *      S1        E1           S1               E1
 767 * -----***********------------xxx***************------------------------> CPU1
 768 *
 769 *             S2                E2
 770 * ------------****************xxx---------------------------------------> CPU2
 771 *
 772 *                         S3            E3
 773 * ------------------------****xxx********-------------------------------> CPU3
 774 *
 775 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 776 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 777 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 778 *            it's a part of total blocktime.
 779 * S1 - here is last_begin
 780 * Legend of the picture is following:
 781 *              * - means blocktime per vCPU
 782 *              x - means overlapped blocktime (total blocktime)
 783 *
 784 * @addr: host virtual address
 785 */
 786static void mark_postcopy_blocktime_end(uintptr_t addr)
 787{
 788    MigrationIncomingState *mis = migration_incoming_get_current();
 789    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 790    int i, affected_cpu = 0;
 791    bool vcpu_total_blocktime = false;
 792    uint32_t read_vcpu_time, low_time_offset;
 793
 794    if (!dc) {
 795        return;
 796    }
 797
 798    low_time_offset = get_low_time_offset(dc);
 799    /* lookup cpu, to clear it,
 800     * that algorithm looks straighforward, but it's not
 801     * optimal, more optimal algorithm is keeping tree or hash
 802     * where key is address value is a list of  */
 803    for (i = 0; i < smp_cpus; i++) {
 804        uint32_t vcpu_blocktime = 0;
 805
 806        read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 807        if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 808            read_vcpu_time == 0) {
 809            continue;
 810        }
 811        atomic_xchg(&dc->vcpu_addr[i], 0);
 812        vcpu_blocktime = low_time_offset - read_vcpu_time;
 813        affected_cpu += 1;
 814        /* we need to know is that mark_postcopy_end was due to
 815         * faulted page, another possible case it's prefetched
 816         * page and in that case we shouldn't be here */
 817        if (!vcpu_total_blocktime &&
 818            atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 819            vcpu_total_blocktime = true;
 820        }
 821        /* continue cycle, due to one page could affect several vCPUs */
 822        dc->vcpu_blocktime[i] += vcpu_blocktime;
 823    }
 824
 825    atomic_sub(&dc->smp_cpus_down, affected_cpu);
 826    if (vcpu_total_blocktime) {
 827        dc->total_blocktime += low_time_offset - atomic_fetch_add(
 828                &dc->last_begin, 0);
 829    }
 830    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 831                                      affected_cpu);
 832}
 833
 834static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 835{
 836    trace_postcopy_pause_fault_thread();
 837
 838    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 839
 840    trace_postcopy_pause_fault_thread_continued();
 841
 842    return true;
 843}
 844
 845/*
 846 * Handle faults detected by the USERFAULT markings
 847 */
 848static void *postcopy_ram_fault_thread(void *opaque)
 849{
 850    MigrationIncomingState *mis = opaque;
 851    struct uffd_msg msg;
 852    int ret;
 853    size_t index;
 854    RAMBlock *rb = NULL;
 855
 856    trace_postcopy_ram_fault_thread_entry();
 857    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 858    qemu_sem_post(&mis->fault_thread_sem);
 859
 860    struct pollfd *pfd;
 861    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 862
 863    pfd = g_new0(struct pollfd, pfd_len);
 864
 865    pfd[0].fd = mis->userfault_fd;
 866    pfd[0].events = POLLIN;
 867    pfd[1].fd = mis->userfault_event_fd;
 868    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 869    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 870    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 871        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 872                                                 struct PostCopyFD, index);
 873        pfd[2 + index].fd = pcfd->fd;
 874        pfd[2 + index].events = POLLIN;
 875        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 876                                                  pcfd->fd);
 877    }
 878
 879    while (true) {
 880        ram_addr_t rb_offset;
 881        int poll_result;
 882
 883        /*
 884         * We're mainly waiting for the kernel to give us a faulting HVA,
 885         * however we can be told to quit via userfault_quit_fd which is
 886         * an eventfd
 887         */
 888
 889        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 890        if (poll_result == -1) {
 891            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 892            break;
 893        }
 894
 895        if (!mis->to_src_file) {
 896            /*
 897             * Possibly someone tells us that the return path is
 898             * broken already using the event. We should hold until
 899             * the channel is rebuilt.
 900             */
 901            if (postcopy_pause_fault_thread(mis)) {
 902                mis->last_rb = NULL;
 903                /* Continue to read the userfaultfd */
 904            } else {
 905                error_report("%s: paused but don't allow to continue",
 906                             __func__);
 907                break;
 908            }
 909        }
 910
 911        if (pfd[1].revents) {
 912            uint64_t tmp64 = 0;
 913
 914            /* Consume the signal */
 915            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 916                /* Nothing obviously nicer than posting this error. */
 917                error_report("%s: read() failed", __func__);
 918            }
 919
 920            if (atomic_read(&mis->fault_thread_quit)) {
 921                trace_postcopy_ram_fault_thread_quit();
 922                break;
 923            }
 924        }
 925
 926        if (pfd[0].revents) {
 927            poll_result--;
 928            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 929            if (ret != sizeof(msg)) {
 930                if (errno == EAGAIN) {
 931                    /*
 932                     * if a wake up happens on the other thread just after
 933                     * the poll, there is nothing to read.
 934                     */
 935                    continue;
 936                }
 937                if (ret < 0) {
 938                    error_report("%s: Failed to read full userfault "
 939                                 "message: %s",
 940                                 __func__, strerror(errno));
 941                    break;
 942                } else {
 943                    error_report("%s: Read %d bytes from userfaultfd "
 944                                 "expected %zd",
 945                                 __func__, ret, sizeof(msg));
 946                    break; /* Lost alignment, don't know what we'd read next */
 947                }
 948            }
 949            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 950                error_report("%s: Read unexpected event %ud from userfaultfd",
 951                             __func__, msg.event);
 952                continue; /* It's not a page fault, shouldn't happen */
 953            }
 954
 955            rb = qemu_ram_block_from_host(
 956                     (void *)(uintptr_t)msg.arg.pagefault.address,
 957                     true, &rb_offset);
 958            if (!rb) {
 959                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 960                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 961                break;
 962            }
 963
 964            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 965            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 966                                                qemu_ram_get_idstr(rb),
 967                                                rb_offset,
 968                                                msg.arg.pagefault.feat.ptid);
 969            mark_postcopy_blocktime_begin(
 970                    (uintptr_t)(msg.arg.pagefault.address),
 971                                msg.arg.pagefault.feat.ptid, rb);
 972
 973retry:
 974            /*
 975             * Send the request to the source - we want to request one
 976             * of our host page sizes (which is >= TPS)
 977             */
 978            if (rb != mis->last_rb) {
 979                mis->last_rb = rb;
 980                ret = migrate_send_rp_req_pages(mis,
 981                                                qemu_ram_get_idstr(rb),
 982                                                rb_offset,
 983                                                qemu_ram_pagesize(rb));
 984            } else {
 985                /* Save some space */
 986                ret = migrate_send_rp_req_pages(mis,
 987                                                NULL,
 988                                                rb_offset,
 989                                                qemu_ram_pagesize(rb));
 990            }
 991
 992            if (ret) {
 993                /* May be network failure, try to wait for recovery */
 994                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
 995                    /* We got reconnected somehow, try to continue */
 996                    mis->last_rb = NULL;
 997                    goto retry;
 998                } else {
 999                    /* This is a unavoidable fault */
1000                    error_report("%s: migrate_send_rp_req_pages() get %d",
1001                                 __func__, ret);
1002                    break;
1003                }
1004            }
1005        }
1006
1007        /* Now handle any requests from external processes on shared memory */
1008        /* TODO: May need to handle devices deregistering during postcopy */
1009        for (index = 2; index < pfd_len && poll_result; index++) {
1010            if (pfd[index].revents) {
1011                struct PostCopyFD *pcfd =
1012                    &g_array_index(mis->postcopy_remote_fds,
1013                                   struct PostCopyFD, index - 2);
1014
1015                poll_result--;
1016                if (pfd[index].revents & POLLERR) {
1017                    error_report("%s: POLLERR on poll %zd fd=%d",
1018                                 __func__, index, pcfd->fd);
1019                    pfd[index].events = 0;
1020                    continue;
1021                }
1022
1023                ret = read(pcfd->fd, &msg, sizeof(msg));
1024                if (ret != sizeof(msg)) {
1025                    if (errno == EAGAIN) {
1026                        /*
1027                         * if a wake up happens on the other thread just after
1028                         * the poll, there is nothing to read.
1029                         */
1030                        continue;
1031                    }
1032                    if (ret < 0) {
1033                        error_report("%s: Failed to read full userfault "
1034                                     "message: %s (shared) revents=%d",
1035                                     __func__, strerror(errno),
1036                                     pfd[index].revents);
1037                        /*TODO: Could just disable this sharer */
1038                        break;
1039                    } else {
1040                        error_report("%s: Read %d bytes from userfaultfd "
1041                                     "expected %zd (shared)",
1042                                     __func__, ret, sizeof(msg));
1043                        /*TODO: Could just disable this sharer */
1044                        break; /*Lost alignment,don't know what we'd read next*/
1045                    }
1046                }
1047                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1048                    error_report("%s: Read unexpected event %ud "
1049                                 "from userfaultfd (shared)",
1050                                 __func__, msg.event);
1051                    continue; /* It's not a page fault, shouldn't happen */
1052                }
1053                /* Call the device handler registered with us */
1054                ret = pcfd->handler(pcfd, &msg);
1055                if (ret) {
1056                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1057                                 __func__, index, pcfd->idstr);
1058                    /* TODO: Fail? Disable this sharer? */
1059                }
1060            }
1061        }
1062    }
1063    trace_postcopy_ram_fault_thread_exit();
1064    g_free(pfd);
1065    return NULL;
1066}
1067
1068int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1069{
1070    /* Open the fd for the kernel to give us userfaults */
1071    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1072    if (mis->userfault_fd == -1) {
1073        error_report("%s: Failed to open userfault fd: %s", __func__,
1074                     strerror(errno));
1075        return -1;
1076    }
1077
1078    /*
1079     * Although the host check already tested the API, we need to
1080     * do the check again as an ABI handshake on the new fd.
1081     */
1082    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1083        return -1;
1084    }
1085
1086    /* Now an eventfd we use to tell the fault-thread to quit */
1087    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1088    if (mis->userfault_event_fd == -1) {
1089        error_report("%s: Opening userfault_event_fd: %s", __func__,
1090                     strerror(errno));
1091        close(mis->userfault_fd);
1092        return -1;
1093    }
1094
1095    qemu_sem_init(&mis->fault_thread_sem, 0);
1096    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1097                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1098    qemu_sem_wait(&mis->fault_thread_sem);
1099    qemu_sem_destroy(&mis->fault_thread_sem);
1100    mis->have_fault_thread = true;
1101
1102    /* Mark so that we get notified of accesses to unwritten areas */
1103    if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
1104        return -1;
1105    }
1106
1107    /*
1108     * Ballooning can mark pages as absent while we're postcopying
1109     * that would cause false userfaults.
1110     */
1111    qemu_balloon_inhibit(true);
1112
1113    trace_postcopy_ram_enable_notify();
1114
1115    return 0;
1116}
1117
1118static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1119                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1120{
1121    int ret;
1122    if (from_addr) {
1123        struct uffdio_copy copy_struct;
1124        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1125        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1126        copy_struct.len = pagesize;
1127        copy_struct.mode = 0;
1128        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1129    } else {
1130        struct uffdio_zeropage zero_struct;
1131        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1132        zero_struct.range.len = pagesize;
1133        zero_struct.mode = 0;
1134        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1135    }
1136    if (!ret) {
1137        ramblock_recv_bitmap_set_range(rb, host_addr,
1138                                       pagesize / qemu_target_page_size());
1139        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1140
1141    }
1142    return ret;
1143}
1144
1145int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1146{
1147    int i;
1148    MigrationIncomingState *mis = migration_incoming_get_current();
1149    GArray *pcrfds = mis->postcopy_remote_fds;
1150
1151    for (i = 0; i < pcrfds->len; i++) {
1152        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1153        int ret = cur->waker(cur, rb, offset);
1154        if (ret) {
1155            return ret;
1156        }
1157    }
1158    return 0;
1159}
1160
1161/*
1162 * Place a host page (from) at (host) atomically
1163 * returns 0 on success
1164 */
1165int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1166                        RAMBlock *rb)
1167{
1168    size_t pagesize = qemu_ram_pagesize(rb);
1169
1170    /* copy also acks to the kernel waking the stalled thread up
1171     * TODO: We can inhibit that ack and only do it if it was requested
1172     * which would be slightly cheaper, but we'd have to be careful
1173     * of the order of updating our page state.
1174     */
1175    if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1176        int e = errno;
1177        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1178                     __func__, strerror(e), host, from, pagesize);
1179
1180        return -e;
1181    }
1182
1183    trace_postcopy_place_page(host);
1184    return postcopy_notify_shared_wake(rb,
1185                                       qemu_ram_block_host_offset(rb, host));
1186}
1187
1188/*
1189 * Place a zero page at (host) atomically
1190 * returns 0 on success
1191 */
1192int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1193                             RAMBlock *rb)
1194{
1195    size_t pagesize = qemu_ram_pagesize(rb);
1196    trace_postcopy_place_page_zero(host);
1197
1198    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1199     * but it's not available for everything (e.g. hugetlbpages)
1200     */
1201    if (qemu_ram_is_uf_zeroable(rb)) {
1202        if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1203            int e = errno;
1204            error_report("%s: %s zero host: %p",
1205                         __func__, strerror(e), host);
1206
1207            return -e;
1208        }
1209        return postcopy_notify_shared_wake(rb,
1210                                           qemu_ram_block_host_offset(rb,
1211                                                                      host));
1212    } else {
1213        /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1214        if (!mis->postcopy_tmp_zero_page) {
1215            mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1216                                               PROT_READ | PROT_WRITE,
1217                                               MAP_PRIVATE | MAP_ANONYMOUS,
1218                                               -1, 0);
1219            if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1220                int e = errno;
1221                mis->postcopy_tmp_zero_page = NULL;
1222                error_report("%s: %s mapping large zero page",
1223                             __func__, strerror(e));
1224                return -e;
1225            }
1226            memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1227        }
1228        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1229                                   rb);
1230    }
1231}
1232
1233/*
1234 * Returns a target page of memory that can be mapped at a later point in time
1235 * using postcopy_place_page
1236 * The same address is used repeatedly, postcopy_place_page just takes the
1237 * backing page away.
1238 * Returns: Pointer to allocated page
1239 *
1240 */
1241void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1242{
1243    if (!mis->postcopy_tmp_page) {
1244        mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1245                             PROT_READ | PROT_WRITE, MAP_PRIVATE |
1246                             MAP_ANONYMOUS, -1, 0);
1247        if (mis->postcopy_tmp_page == MAP_FAILED) {
1248            mis->postcopy_tmp_page = NULL;
1249            error_report("%s: %s", __func__, strerror(errno));
1250            return NULL;
1251        }
1252    }
1253
1254    return mis->postcopy_tmp_page;
1255}
1256
1257#else
1258/* No target OS support, stubs just fail */
1259void fill_destination_postcopy_migration_info(MigrationInfo *info)
1260{
1261}
1262
1263bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1264{
1265    error_report("%s: No OS support", __func__);
1266    return false;
1267}
1268
1269int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1270{
1271    error_report("postcopy_ram_incoming_init: No OS support");
1272    return -1;
1273}
1274
1275int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1276{
1277    assert(0);
1278    return -1;
1279}
1280
1281int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1282{
1283    assert(0);
1284    return -1;
1285}
1286
1287int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1288                                 uint64_t client_addr, uint64_t rb_offset)
1289{
1290    assert(0);
1291    return -1;
1292}
1293
1294int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1295{
1296    assert(0);
1297    return -1;
1298}
1299
1300int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1301                        RAMBlock *rb)
1302{
1303    assert(0);
1304    return -1;
1305}
1306
1307int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1308                        RAMBlock *rb)
1309{
1310    assert(0);
1311    return -1;
1312}
1313
1314void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1315{
1316    assert(0);
1317    return NULL;
1318}
1319
1320int postcopy_wake_shared(struct PostCopyFD *pcfd,
1321                         uint64_t client_addr,
1322                         RAMBlock *rb)
1323{
1324    assert(0);
1325    return -1;
1326}
1327#endif
1328
1329/* ------------------------------------------------------------------------- */
1330
1331void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1332{
1333    uint64_t tmp64 = 1;
1334
1335    /*
1336     * Wakeup the fault_thread.  It's an eventfd that should currently
1337     * be at 0, we're going to increment it to 1
1338     */
1339    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1340        /* Not much we can do here, but may as well report it */
1341        error_report("%s: incrementing failed: %s", __func__,
1342                     strerror(errno));
1343    }
1344}
1345
1346/**
1347 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1348 *   asking to discard individual ranges.
1349 *
1350 * @ms: The current migration state.
1351 * @offset: the bitmap offset of the named RAMBlock in the migration
1352 *   bitmap.
1353 * @name: RAMBlock that discards will operate on.
1354 *
1355 * returns: a new PDS.
1356 */
1357PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1358                                                 const char *name)
1359{
1360    PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1361
1362    if (res) {
1363        res->ramblock_name = name;
1364    }
1365
1366    return res;
1367}
1368
1369/**
1370 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1371 *   discard. May send a discard message, may just leave it queued to
1372 *   be sent later.
1373 *
1374 * @ms: Current migration state.
1375 * @pds: Structure initialised by postcopy_discard_send_init().
1376 * @start,@length: a range of pages in the migration bitmap in the
1377 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1378 */
1379void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1380                                unsigned long start, unsigned long length)
1381{
1382    size_t tp_size = qemu_target_page_size();
1383    /* Convert to byte offsets within the RAM block */
1384    pds->start_list[pds->cur_entry] = start  * tp_size;
1385    pds->length_list[pds->cur_entry] = length * tp_size;
1386    trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1387    pds->cur_entry++;
1388    pds->nsentwords++;
1389
1390    if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1391        /* Full set, ship it! */
1392        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1393                                              pds->ramblock_name,
1394                                              pds->cur_entry,
1395                                              pds->start_list,
1396                                              pds->length_list);
1397        pds->nsentcmds++;
1398        pds->cur_entry = 0;
1399    }
1400}
1401
1402/**
1403 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1404 * bitmap code. Sends any outstanding discard messages, frees the PDS
1405 *
1406 * @ms: Current migration state.
1407 * @pds: Structure initialised by postcopy_discard_send_init().
1408 */
1409void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1410{
1411    /* Anything unsent? */
1412    if (pds->cur_entry) {
1413        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1414                                              pds->ramblock_name,
1415                                              pds->cur_entry,
1416                                              pds->start_list,
1417                                              pds->length_list);
1418        pds->nsentcmds++;
1419    }
1420
1421    trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1422                                       pds->nsentcmds);
1423
1424    g_free(pds);
1425}
1426
1427/*
1428 * Current state of incoming postcopy; note this is not part of
1429 * MigrationIncomingState since it's state is used during cleanup
1430 * at the end as MIS is being freed.
1431 */
1432static PostcopyState incoming_postcopy_state;
1433
1434PostcopyState  postcopy_state_get(void)
1435{
1436    return atomic_mb_read(&incoming_postcopy_state);
1437}
1438
1439/* Set the state and return the old state */
1440PostcopyState postcopy_state_set(PostcopyState new_state)
1441{
1442    return atomic_xchg(&incoming_postcopy_state, new_state);
1443}
1444
1445/* Register a handler for external shared memory postcopy
1446 * called on the destination.
1447 */
1448void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1449{
1450    MigrationIncomingState *mis = migration_incoming_get_current();
1451
1452    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1453                                                  *pcfd);
1454}
1455
1456/* Unregister a handler for external shared memory postcopy
1457 */
1458void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1459{
1460    guint i;
1461    MigrationIncomingState *mis = migration_incoming_get_current();
1462    GArray *pcrfds = mis->postcopy_remote_fds;
1463
1464    for (i = 0; i < pcrfds->len; i++) {
1465        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1466        if (cur->fd == pcfd->fd) {
1467            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1468            return;
1469        }
1470    }
1471}
1472