qemu/block/nvme.c
<<
>>
Prefs
   1/*
   2 * NVMe block driver based on vfio
   3 *
   4 * Copyright 2016 - 2018 Red Hat, Inc.
   5 *
   6 * Authors:
   7 *   Fam Zheng <famz@redhat.com>
   8 *   Paolo Bonzini <pbonzini@redhat.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include <linux/vfio.h>
  16#include "qapi/error.h"
  17#include "qapi/qmp/qdict.h"
  18#include "qapi/qmp/qstring.h"
  19#include "qemu/error-report.h"
  20#include "qemu/cutils.h"
  21#include "qemu/option.h"
  22#include "qemu/vfio-helpers.h"
  23#include "block/block_int.h"
  24#include "trace.h"
  25
  26#include "block/nvme.h"
  27
  28#define NVME_SQ_ENTRY_BYTES 64
  29#define NVME_CQ_ENTRY_BYTES 16
  30#define NVME_QUEUE_SIZE 128
  31#define NVME_BAR_SIZE 8192
  32
  33typedef struct {
  34    int32_t  head, tail;
  35    uint8_t  *queue;
  36    uint64_t iova;
  37    /* Hardware MMIO register */
  38    volatile uint32_t *doorbell;
  39} NVMeQueue;
  40
  41typedef struct {
  42    BlockCompletionFunc *cb;
  43    void *opaque;
  44    int cid;
  45    void *prp_list_page;
  46    uint64_t prp_list_iova;
  47    bool busy;
  48} NVMeRequest;
  49
  50typedef struct {
  51    CoQueue     free_req_queue;
  52    QemuMutex   lock;
  53
  54    /* Fields protected by BQL */
  55    int         index;
  56    uint8_t     *prp_list_pages;
  57
  58    /* Fields protected by @lock */
  59    NVMeQueue   sq, cq;
  60    int         cq_phase;
  61    NVMeRequest reqs[NVME_QUEUE_SIZE];
  62    bool        busy;
  63    int         need_kick;
  64    int         inflight;
  65} NVMeQueuePair;
  66
  67/* Memory mapped registers */
  68typedef volatile struct {
  69    uint64_t cap;
  70    uint32_t vs;
  71    uint32_t intms;
  72    uint32_t intmc;
  73    uint32_t cc;
  74    uint32_t reserved0;
  75    uint32_t csts;
  76    uint32_t nssr;
  77    uint32_t aqa;
  78    uint64_t asq;
  79    uint64_t acq;
  80    uint32_t cmbloc;
  81    uint32_t cmbsz;
  82    uint8_t  reserved1[0xec0];
  83    uint8_t  cmd_set_specfic[0x100];
  84    uint32_t doorbells[];
  85} QEMU_PACKED NVMeRegs;
  86
  87QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
  88
  89typedef struct {
  90    AioContext *aio_context;
  91    QEMUVFIOState *vfio;
  92    NVMeRegs *regs;
  93    /* The submission/completion queue pairs.
  94     * [0]: admin queue.
  95     * [1..]: io queues.
  96     */
  97    NVMeQueuePair **queues;
  98    int nr_queues;
  99    size_t page_size;
 100    /* How many uint32_t elements does each doorbell entry take. */
 101    size_t doorbell_scale;
 102    bool write_cache_supported;
 103    EventNotifier irq_notifier;
 104    uint64_t nsze; /* Namespace size reported by identify command */
 105    int nsid;      /* The namespace id to read/write data. */
 106    uint64_t max_transfer;
 107    bool plugged;
 108
 109    CoMutex dma_map_lock;
 110    CoQueue dma_flush_queue;
 111
 112    /* Total size of mapped qiov, accessed under dma_map_lock */
 113    int dma_map_count;
 114} BDRVNVMeState;
 115
 116#define NVME_BLOCK_OPT_DEVICE "device"
 117#define NVME_BLOCK_OPT_NAMESPACE "namespace"
 118
 119static QemuOptsList runtime_opts = {
 120    .name = "nvme",
 121    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
 122    .desc = {
 123        {
 124            .name = NVME_BLOCK_OPT_DEVICE,
 125            .type = QEMU_OPT_STRING,
 126            .help = "NVMe PCI device address",
 127        },
 128        {
 129            .name = NVME_BLOCK_OPT_NAMESPACE,
 130            .type = QEMU_OPT_NUMBER,
 131            .help = "NVMe namespace",
 132        },
 133        { /* end of list */ }
 134    },
 135};
 136
 137static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
 138                            int nentries, int entry_bytes, Error **errp)
 139{
 140    BDRVNVMeState *s = bs->opaque;
 141    size_t bytes;
 142    int r;
 143
 144    bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
 145    q->head = q->tail = 0;
 146    q->queue = qemu_try_blockalign0(bs, bytes);
 147
 148    if (!q->queue) {
 149        error_setg(errp, "Cannot allocate queue");
 150        return;
 151    }
 152    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
 153    if (r) {
 154        error_setg(errp, "Cannot map queue");
 155    }
 156}
 157
 158static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
 159{
 160    qemu_vfree(q->prp_list_pages);
 161    qemu_vfree(q->sq.queue);
 162    qemu_vfree(q->cq.queue);
 163    qemu_mutex_destroy(&q->lock);
 164    g_free(q);
 165}
 166
 167static void nvme_free_req_queue_cb(void *opaque)
 168{
 169    NVMeQueuePair *q = opaque;
 170
 171    qemu_mutex_lock(&q->lock);
 172    while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
 173        /* Retry all pending requests */
 174    }
 175    qemu_mutex_unlock(&q->lock);
 176}
 177
 178static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
 179                                             int idx, int size,
 180                                             Error **errp)
 181{
 182    int i, r;
 183    BDRVNVMeState *s = bs->opaque;
 184    Error *local_err = NULL;
 185    NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
 186    uint64_t prp_list_iova;
 187
 188    qemu_mutex_init(&q->lock);
 189    q->index = idx;
 190    qemu_co_queue_init(&q->free_req_queue);
 191    q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
 192    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
 193                          s->page_size * NVME_QUEUE_SIZE,
 194                          false, &prp_list_iova);
 195    if (r) {
 196        goto fail;
 197    }
 198    for (i = 0; i < NVME_QUEUE_SIZE; i++) {
 199        NVMeRequest *req = &q->reqs[i];
 200        req->cid = i + 1;
 201        req->prp_list_page = q->prp_list_pages + i * s->page_size;
 202        req->prp_list_iova = prp_list_iova + i * s->page_size;
 203    }
 204    nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
 205    if (local_err) {
 206        error_propagate(errp, local_err);
 207        goto fail;
 208    }
 209    q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
 210
 211    nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
 212    if (local_err) {
 213        error_propagate(errp, local_err);
 214        goto fail;
 215    }
 216    q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
 217
 218    return q;
 219fail:
 220    nvme_free_queue_pair(bs, q);
 221    return NULL;
 222}
 223
 224/* With q->lock */
 225static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
 226{
 227    if (s->plugged || !q->need_kick) {
 228        return;
 229    }
 230    trace_nvme_kick(s, q->index);
 231    assert(!(q->sq.tail & 0xFF00));
 232    /* Fence the write to submission queue entry before notifying the device. */
 233    smp_wmb();
 234    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
 235    q->inflight += q->need_kick;
 236    q->need_kick = 0;
 237}
 238
 239/* Find a free request element if any, otherwise:
 240 * a) if in coroutine context, try to wait for one to become available;
 241 * b) if not in coroutine, return NULL;
 242 */
 243static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
 244{
 245    int i;
 246    NVMeRequest *req = NULL;
 247
 248    qemu_mutex_lock(&q->lock);
 249    while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
 250        /* We have to leave one slot empty as that is the full queue case (head
 251         * == tail + 1). */
 252        if (qemu_in_coroutine()) {
 253            trace_nvme_free_req_queue_wait(q);
 254            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
 255        } else {
 256            qemu_mutex_unlock(&q->lock);
 257            return NULL;
 258        }
 259    }
 260    for (i = 0; i < NVME_QUEUE_SIZE; i++) {
 261        if (!q->reqs[i].busy) {
 262            q->reqs[i].busy = true;
 263            req = &q->reqs[i];
 264            break;
 265        }
 266    }
 267    /* We have checked inflight and need_kick while holding q->lock, so one
 268     * free req must be available. */
 269    assert(req);
 270    qemu_mutex_unlock(&q->lock);
 271    return req;
 272}
 273
 274static inline int nvme_translate_error(const NvmeCqe *c)
 275{
 276    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
 277    if (status) {
 278        trace_nvme_error(le32_to_cpu(c->result),
 279                         le16_to_cpu(c->sq_head),
 280                         le16_to_cpu(c->sq_id),
 281                         le16_to_cpu(c->cid),
 282                         le16_to_cpu(status));
 283    }
 284    switch (status) {
 285    case 0:
 286        return 0;
 287    case 1:
 288        return -ENOSYS;
 289    case 2:
 290        return -EINVAL;
 291    default:
 292        return -EIO;
 293    }
 294}
 295
 296/* With q->lock */
 297static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
 298{
 299    bool progress = false;
 300    NVMeRequest *preq;
 301    NVMeRequest req;
 302    NvmeCqe *c;
 303
 304    trace_nvme_process_completion(s, q->index, q->inflight);
 305    if (q->busy || s->plugged) {
 306        trace_nvme_process_completion_queue_busy(s, q->index);
 307        return false;
 308    }
 309    q->busy = true;
 310    assert(q->inflight >= 0);
 311    while (q->inflight) {
 312        int16_t cid;
 313        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
 314        if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
 315            break;
 316        }
 317        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
 318        if (!q->cq.head) {
 319            q->cq_phase = !q->cq_phase;
 320        }
 321        cid = le16_to_cpu(c->cid);
 322        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
 323            fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
 324                    cid);
 325            continue;
 326        }
 327        assert(cid <= NVME_QUEUE_SIZE);
 328        trace_nvme_complete_command(s, q->index, cid);
 329        preq = &q->reqs[cid - 1];
 330        req = *preq;
 331        assert(req.cid == cid);
 332        assert(req.cb);
 333        preq->busy = false;
 334        preq->cb = preq->opaque = NULL;
 335        qemu_mutex_unlock(&q->lock);
 336        req.cb(req.opaque, nvme_translate_error(c));
 337        qemu_mutex_lock(&q->lock);
 338        c->cid = cpu_to_le16(0);
 339        q->inflight--;
 340        /* Flip Phase Tag bit. */
 341        c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
 342        progress = true;
 343    }
 344    if (progress) {
 345        /* Notify the device so it can post more completions. */
 346        smp_mb_release();
 347        *q->cq.doorbell = cpu_to_le32(q->cq.head);
 348        if (!qemu_co_queue_empty(&q->free_req_queue)) {
 349            aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
 350        }
 351    }
 352    q->busy = false;
 353    return progress;
 354}
 355
 356static void nvme_trace_command(const NvmeCmd *cmd)
 357{
 358    int i;
 359
 360    for (i = 0; i < 8; ++i) {
 361        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
 362        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
 363                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
 364    }
 365}
 366
 367static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
 368                                NVMeRequest *req,
 369                                NvmeCmd *cmd, BlockCompletionFunc cb,
 370                                void *opaque)
 371{
 372    assert(!req->cb);
 373    req->cb = cb;
 374    req->opaque = opaque;
 375    cmd->cid = cpu_to_le32(req->cid);
 376
 377    trace_nvme_submit_command(s, q->index, req->cid);
 378    nvme_trace_command(cmd);
 379    qemu_mutex_lock(&q->lock);
 380    memcpy((uint8_t *)q->sq.queue +
 381           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
 382    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
 383    q->need_kick++;
 384    nvme_kick(s, q);
 385    nvme_process_completion(s, q);
 386    qemu_mutex_unlock(&q->lock);
 387}
 388
 389static void nvme_cmd_sync_cb(void *opaque, int ret)
 390{
 391    int *pret = opaque;
 392    *pret = ret;
 393}
 394
 395static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
 396                         NvmeCmd *cmd)
 397{
 398    NVMeRequest *req;
 399    BDRVNVMeState *s = bs->opaque;
 400    int ret = -EINPROGRESS;
 401    req = nvme_get_free_req(q);
 402    if (!req) {
 403        return -EBUSY;
 404    }
 405    nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
 406
 407    BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
 408    return ret;
 409}
 410
 411static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
 412{
 413    BDRVNVMeState *s = bs->opaque;
 414    NvmeIdCtrl *idctrl;
 415    NvmeIdNs *idns;
 416    uint8_t *resp;
 417    int r;
 418    uint64_t iova;
 419    NvmeCmd cmd = {
 420        .opcode = NVME_ADM_CMD_IDENTIFY,
 421        .cdw10 = cpu_to_le32(0x1),
 422    };
 423
 424    resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
 425    if (!resp) {
 426        error_setg(errp, "Cannot allocate buffer for identify response");
 427        goto out;
 428    }
 429    idctrl = (NvmeIdCtrl *)resp;
 430    idns = (NvmeIdNs *)resp;
 431    r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
 432    if (r) {
 433        error_setg(errp, "Cannot map buffer for DMA");
 434        goto out;
 435    }
 436    cmd.prp1 = cpu_to_le64(iova);
 437
 438    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 439        error_setg(errp, "Failed to identify controller");
 440        goto out;
 441    }
 442
 443    if (le32_to_cpu(idctrl->nn) < namespace) {
 444        error_setg(errp, "Invalid namespace");
 445        goto out;
 446    }
 447    s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
 448    s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
 449    /* For now the page list buffer per command is one page, to hold at most
 450     * s->page_size / sizeof(uint64_t) entries. */
 451    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
 452                          s->page_size / sizeof(uint64_t) * s->page_size);
 453
 454    memset(resp, 0, 4096);
 455
 456    cmd.cdw10 = 0;
 457    cmd.nsid = cpu_to_le32(namespace);
 458    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 459        error_setg(errp, "Failed to identify namespace");
 460        goto out;
 461    }
 462
 463    s->nsze = le64_to_cpu(idns->nsze);
 464
 465out:
 466    qemu_vfio_dma_unmap(s->vfio, resp);
 467    qemu_vfree(resp);
 468}
 469
 470static bool nvme_poll_queues(BDRVNVMeState *s)
 471{
 472    bool progress = false;
 473    int i;
 474
 475    for (i = 0; i < s->nr_queues; i++) {
 476        NVMeQueuePair *q = s->queues[i];
 477        qemu_mutex_lock(&q->lock);
 478        while (nvme_process_completion(s, q)) {
 479            /* Keep polling */
 480            progress = true;
 481        }
 482        qemu_mutex_unlock(&q->lock);
 483    }
 484    return progress;
 485}
 486
 487static void nvme_handle_event(EventNotifier *n)
 488{
 489    BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
 490
 491    trace_nvme_handle_event(s);
 492    event_notifier_test_and_clear(n);
 493    nvme_poll_queues(s);
 494}
 495
 496static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
 497{
 498    BDRVNVMeState *s = bs->opaque;
 499    int n = s->nr_queues;
 500    NVMeQueuePair *q;
 501    NvmeCmd cmd;
 502    int queue_size = NVME_QUEUE_SIZE;
 503
 504    q = nvme_create_queue_pair(bs, n, queue_size, errp);
 505    if (!q) {
 506        return false;
 507    }
 508    cmd = (NvmeCmd) {
 509        .opcode = NVME_ADM_CMD_CREATE_CQ,
 510        .prp1 = cpu_to_le64(q->cq.iova),
 511        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
 512        .cdw11 = cpu_to_le32(0x3),
 513    };
 514    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 515        error_setg(errp, "Failed to create io queue [%d]", n);
 516        nvme_free_queue_pair(bs, q);
 517        return false;
 518    }
 519    cmd = (NvmeCmd) {
 520        .opcode = NVME_ADM_CMD_CREATE_SQ,
 521        .prp1 = cpu_to_le64(q->sq.iova),
 522        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
 523        .cdw11 = cpu_to_le32(0x1 | (n << 16)),
 524    };
 525    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 526        error_setg(errp, "Failed to create io queue [%d]", n);
 527        nvme_free_queue_pair(bs, q);
 528        return false;
 529    }
 530    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
 531    s->queues[n] = q;
 532    s->nr_queues++;
 533    return true;
 534}
 535
 536static bool nvme_poll_cb(void *opaque)
 537{
 538    EventNotifier *e = opaque;
 539    BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
 540    bool progress = false;
 541
 542    trace_nvme_poll_cb(s);
 543    progress = nvme_poll_queues(s);
 544    return progress;
 545}
 546
 547static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
 548                     Error **errp)
 549{
 550    BDRVNVMeState *s = bs->opaque;
 551    int ret;
 552    uint64_t cap;
 553    uint64_t timeout_ms;
 554    uint64_t deadline, now;
 555    Error *local_err = NULL;
 556
 557    qemu_co_mutex_init(&s->dma_map_lock);
 558    qemu_co_queue_init(&s->dma_flush_queue);
 559    s->nsid = namespace;
 560    s->aio_context = bdrv_get_aio_context(bs);
 561    ret = event_notifier_init(&s->irq_notifier, 0);
 562    if (ret) {
 563        error_setg(errp, "Failed to init event notifier");
 564        return ret;
 565    }
 566
 567    s->vfio = qemu_vfio_open_pci(device, errp);
 568    if (!s->vfio) {
 569        ret = -EINVAL;
 570        goto out;
 571    }
 572
 573    s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
 574    if (!s->regs) {
 575        ret = -EINVAL;
 576        goto out;
 577    }
 578
 579    /* Perform initialize sequence as described in NVMe spec "7.6.1
 580     * Initialization". */
 581
 582    cap = le64_to_cpu(s->regs->cap);
 583    if (!(cap & (1ULL << 37))) {
 584        error_setg(errp, "Device doesn't support NVMe command set");
 585        ret = -EINVAL;
 586        goto out;
 587    }
 588
 589    s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
 590    s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
 591    bs->bl.opt_mem_alignment = s->page_size;
 592    timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
 593
 594    /* Reset device to get a clean state. */
 595    s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
 596    /* Wait for CSTS.RDY = 0. */
 597    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
 598    while (le32_to_cpu(s->regs->csts) & 0x1) {
 599        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 600            error_setg(errp, "Timeout while waiting for device to reset (%"
 601                             PRId64 " ms)",
 602                       timeout_ms);
 603            ret = -ETIMEDOUT;
 604            goto out;
 605        }
 606    }
 607
 608    /* Set up admin queue. */
 609    s->queues = g_new(NVMeQueuePair *, 1);
 610    s->nr_queues = 1;
 611    s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
 612    if (!s->queues[0]) {
 613        ret = -EINVAL;
 614        goto out;
 615    }
 616    QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
 617    s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
 618    s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
 619    s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
 620
 621    /* After setting up all control registers we can enable device now. */
 622    s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
 623                              (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
 624                              0x1);
 625    /* Wait for CSTS.RDY = 1. */
 626    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 627    deadline = now + timeout_ms * 1000000;
 628    while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
 629        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 630            error_setg(errp, "Timeout while waiting for device to start (%"
 631                             PRId64 " ms)",
 632                       timeout_ms);
 633            ret = -ETIMEDOUT;
 634            goto out;
 635        }
 636    }
 637
 638    ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
 639                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
 640    if (ret) {
 641        goto out;
 642    }
 643    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 644                           false, nvme_handle_event, nvme_poll_cb);
 645
 646    nvme_identify(bs, namespace, &local_err);
 647    if (local_err) {
 648        error_propagate(errp, local_err);
 649        ret = -EIO;
 650        goto out;
 651    }
 652
 653    /* Set up command queues. */
 654    if (!nvme_add_io_queue(bs, errp)) {
 655        ret = -EIO;
 656    }
 657out:
 658    /* Cleaning up is done in nvme_file_open() upon error. */
 659    return ret;
 660}
 661
 662/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
 663 *
 664 *     nvme://0000:44:00.0/1
 665 *
 666 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
 667 * is the PCI address, and the last part is the namespace number starting from
 668 * 1 according to the NVMe spec. */
 669static void nvme_parse_filename(const char *filename, QDict *options,
 670                                Error **errp)
 671{
 672    int pref = strlen("nvme://");
 673
 674    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
 675        const char *tmp = filename + pref;
 676        char *device;
 677        const char *namespace;
 678        unsigned long ns;
 679        const char *slash = strchr(tmp, '/');
 680        if (!slash) {
 681            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
 682            return;
 683        }
 684        device = g_strndup(tmp, slash - tmp);
 685        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
 686        g_free(device);
 687        namespace = slash + 1;
 688        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
 689            error_setg(errp, "Invalid namespace '%s', positive number expected",
 690                       namespace);
 691            return;
 692        }
 693        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
 694                      *namespace ? namespace : "1");
 695    }
 696}
 697
 698static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
 699                                           Error **errp)
 700{
 701    int ret;
 702    BDRVNVMeState *s = bs->opaque;
 703    NvmeCmd cmd = {
 704        .opcode = NVME_ADM_CMD_SET_FEATURES,
 705        .nsid = cpu_to_le32(s->nsid),
 706        .cdw10 = cpu_to_le32(0x06),
 707        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
 708    };
 709
 710    ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
 711    if (ret) {
 712        error_setg(errp, "Failed to configure NVMe write cache");
 713    }
 714    return ret;
 715}
 716
 717static void nvme_close(BlockDriverState *bs)
 718{
 719    int i;
 720    BDRVNVMeState *s = bs->opaque;
 721
 722    for (i = 0; i < s->nr_queues; ++i) {
 723        nvme_free_queue_pair(bs, s->queues[i]);
 724    }
 725    g_free(s->queues);
 726    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 727                           false, NULL, NULL);
 728    event_notifier_cleanup(&s->irq_notifier);
 729    qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
 730    qemu_vfio_close(s->vfio);
 731}
 732
 733static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
 734                          Error **errp)
 735{
 736    const char *device;
 737    QemuOpts *opts;
 738    int namespace;
 739    int ret;
 740    BDRVNVMeState *s = bs->opaque;
 741
 742    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
 743    qemu_opts_absorb_qdict(opts, options, &error_abort);
 744    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
 745    if (!device) {
 746        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
 747        qemu_opts_del(opts);
 748        return -EINVAL;
 749    }
 750
 751    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
 752    ret = nvme_init(bs, device, namespace, errp);
 753    qemu_opts_del(opts);
 754    if (ret) {
 755        goto fail;
 756    }
 757    if (flags & BDRV_O_NOCACHE) {
 758        if (!s->write_cache_supported) {
 759            error_setg(errp,
 760                       "NVMe controller doesn't support write cache configuration");
 761            ret = -EINVAL;
 762        } else {
 763            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
 764                                                  errp);
 765        }
 766        if (ret) {
 767            goto fail;
 768        }
 769    }
 770    bs->supported_write_flags = BDRV_REQ_FUA;
 771    return 0;
 772fail:
 773    nvme_close(bs);
 774    return ret;
 775}
 776
 777static int64_t nvme_getlength(BlockDriverState *bs)
 778{
 779    BDRVNVMeState *s = bs->opaque;
 780
 781    return s->nsze << BDRV_SECTOR_BITS;
 782}
 783
 784/* Called with s->dma_map_lock */
 785static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
 786                                            QEMUIOVector *qiov)
 787{
 788    int r = 0;
 789    BDRVNVMeState *s = bs->opaque;
 790
 791    s->dma_map_count -= qiov->size;
 792    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
 793        r = qemu_vfio_dma_reset_temporary(s->vfio);
 794        if (!r) {
 795            qemu_co_queue_restart_all(&s->dma_flush_queue);
 796        }
 797    }
 798    return r;
 799}
 800
 801/* Called with s->dma_map_lock */
 802static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
 803                                          NVMeRequest *req, QEMUIOVector *qiov)
 804{
 805    BDRVNVMeState *s = bs->opaque;
 806    uint64_t *pagelist = req->prp_list_page;
 807    int i, j, r;
 808    int entries = 0;
 809
 810    assert(qiov->size);
 811    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
 812    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
 813    for (i = 0; i < qiov->niov; ++i) {
 814        bool retry = true;
 815        uint64_t iova;
 816try_map:
 817        r = qemu_vfio_dma_map(s->vfio,
 818                              qiov->iov[i].iov_base,
 819                              qiov->iov[i].iov_len,
 820                              true, &iova);
 821        if (r == -ENOMEM && retry) {
 822            retry = false;
 823            trace_nvme_dma_flush_queue_wait(s);
 824            if (s->dma_map_count) {
 825                trace_nvme_dma_map_flush(s);
 826                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
 827            } else {
 828                r = qemu_vfio_dma_reset_temporary(s->vfio);
 829                if (r) {
 830                    goto fail;
 831                }
 832            }
 833            goto try_map;
 834        }
 835        if (r) {
 836            goto fail;
 837        }
 838
 839        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
 840            pagelist[entries++] = iova + j * s->page_size;
 841        }
 842        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
 843                                    qiov->iov[i].iov_len / s->page_size);
 844    }
 845
 846    s->dma_map_count += qiov->size;
 847
 848    assert(entries <= s->page_size / sizeof(uint64_t));
 849    switch (entries) {
 850    case 0:
 851        abort();
 852    case 1:
 853        cmd->prp1 = cpu_to_le64(pagelist[0]);
 854        cmd->prp2 = 0;
 855        break;
 856    case 2:
 857        cmd->prp1 = cpu_to_le64(pagelist[0]);
 858        cmd->prp2 = cpu_to_le64(pagelist[1]);;
 859        break;
 860    default:
 861        cmd->prp1 = cpu_to_le64(pagelist[0]);
 862        cmd->prp2 = cpu_to_le64(req->prp_list_iova);
 863        for (i = 0; i < entries - 1; ++i) {
 864            pagelist[i] = cpu_to_le64(pagelist[i + 1]);
 865        }
 866        pagelist[entries - 1] = 0;
 867        break;
 868    }
 869    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
 870    for (i = 0; i < entries; ++i) {
 871        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
 872    }
 873    return 0;
 874fail:
 875    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
 876     * increment s->dma_map_count. This is okay for fixed mapping memory areas
 877     * because they are already mapped before calling this function; for
 878     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
 879     * calling qemu_vfio_dma_reset_temporary when necessary. */
 880    return r;
 881}
 882
 883typedef struct {
 884    Coroutine *co;
 885    int ret;
 886    AioContext *ctx;
 887} NVMeCoData;
 888
 889static void nvme_rw_cb_bh(void *opaque)
 890{
 891    NVMeCoData *data = opaque;
 892    qemu_coroutine_enter(data->co);
 893}
 894
 895static void nvme_rw_cb(void *opaque, int ret)
 896{
 897    NVMeCoData *data = opaque;
 898    data->ret = ret;
 899    if (!data->co) {
 900        /* The rw coroutine hasn't yielded, don't try to enter. */
 901        return;
 902    }
 903    aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
 904}
 905
 906static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
 907                                            uint64_t offset, uint64_t bytes,
 908                                            QEMUIOVector *qiov,
 909                                            bool is_write,
 910                                            int flags)
 911{
 912    int r;
 913    BDRVNVMeState *s = bs->opaque;
 914    NVMeQueuePair *ioq = s->queues[1];
 915    NVMeRequest *req;
 916    uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
 917                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
 918    NvmeCmd cmd = {
 919        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
 920        .nsid = cpu_to_le32(s->nsid),
 921        .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
 922        .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
 923        .cdw12 = cpu_to_le32(cdw12),
 924    };
 925    NVMeCoData data = {
 926        .ctx = bdrv_get_aio_context(bs),
 927        .ret = -EINPROGRESS,
 928    };
 929
 930    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
 931    assert(s->nr_queues > 1);
 932    req = nvme_get_free_req(ioq);
 933    assert(req);
 934
 935    qemu_co_mutex_lock(&s->dma_map_lock);
 936    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
 937    qemu_co_mutex_unlock(&s->dma_map_lock);
 938    if (r) {
 939        req->busy = false;
 940        return r;
 941    }
 942    nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
 943
 944    data.co = qemu_coroutine_self();
 945    while (data.ret == -EINPROGRESS) {
 946        qemu_coroutine_yield();
 947    }
 948
 949    qemu_co_mutex_lock(&s->dma_map_lock);
 950    r = nvme_cmd_unmap_qiov(bs, qiov);
 951    qemu_co_mutex_unlock(&s->dma_map_lock);
 952    if (r) {
 953        return r;
 954    }
 955
 956    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
 957    return data.ret;
 958}
 959
 960static inline bool nvme_qiov_aligned(BlockDriverState *bs,
 961                                     const QEMUIOVector *qiov)
 962{
 963    int i;
 964    BDRVNVMeState *s = bs->opaque;
 965
 966    for (i = 0; i < qiov->niov; ++i) {
 967        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
 968            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
 969            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
 970                                      qiov->iov[i].iov_len, s->page_size);
 971            return false;
 972        }
 973    }
 974    return true;
 975}
 976
 977static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
 978                       QEMUIOVector *qiov, bool is_write, int flags)
 979{
 980    BDRVNVMeState *s = bs->opaque;
 981    int r;
 982    uint8_t *buf = NULL;
 983    QEMUIOVector local_qiov;
 984
 985    assert(QEMU_IS_ALIGNED(offset, s->page_size));
 986    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
 987    assert(bytes <= s->max_transfer);
 988    if (nvme_qiov_aligned(bs, qiov)) {
 989        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
 990    }
 991    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
 992    buf = qemu_try_blockalign(bs, bytes);
 993
 994    if (!buf) {
 995        return -ENOMEM;
 996    }
 997    qemu_iovec_init(&local_qiov, 1);
 998    if (is_write) {
 999        qemu_iovec_to_buf(qiov, 0, buf, bytes);
1000    }
1001    qemu_iovec_add(&local_qiov, buf, bytes);
1002    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1003    qemu_iovec_destroy(&local_qiov);
1004    if (!r && !is_write) {
1005        qemu_iovec_from_buf(qiov, 0, buf, bytes);
1006    }
1007    qemu_vfree(buf);
1008    return r;
1009}
1010
1011static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1012                                       uint64_t offset, uint64_t bytes,
1013                                       QEMUIOVector *qiov, int flags)
1014{
1015    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1016}
1017
1018static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1019                                        uint64_t offset, uint64_t bytes,
1020                                        QEMUIOVector *qiov, int flags)
1021{
1022    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1023}
1024
1025static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1026{
1027    BDRVNVMeState *s = bs->opaque;
1028    NVMeQueuePair *ioq = s->queues[1];
1029    NVMeRequest *req;
1030    NvmeCmd cmd = {
1031        .opcode = NVME_CMD_FLUSH,
1032        .nsid = cpu_to_le32(s->nsid),
1033    };
1034    NVMeCoData data = {
1035        .ctx = bdrv_get_aio_context(bs),
1036        .ret = -EINPROGRESS,
1037    };
1038
1039    assert(s->nr_queues > 1);
1040    req = nvme_get_free_req(ioq);
1041    assert(req);
1042    nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1043
1044    data.co = qemu_coroutine_self();
1045    if (data.ret == -EINPROGRESS) {
1046        qemu_coroutine_yield();
1047    }
1048
1049    return data.ret;
1050}
1051
1052
1053static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1054                               BlockReopenQueue *queue, Error **errp)
1055{
1056    return 0;
1057}
1058
1059static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1060{
1061    qdict_del(opts, "filename");
1062
1063    if (!qdict_size(opts)) {
1064        snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1065                 bs->drv->format_name);
1066    }
1067
1068    qdict_put_str(opts, "driver", bs->drv->format_name);
1069    bs->full_open_options = qobject_ref(opts);
1070}
1071
1072static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1073{
1074    BDRVNVMeState *s = bs->opaque;
1075
1076    bs->bl.opt_mem_alignment = s->page_size;
1077    bs->bl.request_alignment = s->page_size;
1078    bs->bl.max_transfer = s->max_transfer;
1079}
1080
1081static void nvme_detach_aio_context(BlockDriverState *bs)
1082{
1083    BDRVNVMeState *s = bs->opaque;
1084
1085    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1086                           false, NULL, NULL);
1087}
1088
1089static void nvme_attach_aio_context(BlockDriverState *bs,
1090                                    AioContext *new_context)
1091{
1092    BDRVNVMeState *s = bs->opaque;
1093
1094    s->aio_context = new_context;
1095    aio_set_event_notifier(new_context, &s->irq_notifier,
1096                           false, nvme_handle_event, nvme_poll_cb);
1097}
1098
1099static void nvme_aio_plug(BlockDriverState *bs)
1100{
1101    BDRVNVMeState *s = bs->opaque;
1102    assert(!s->plugged);
1103    s->plugged = true;
1104}
1105
1106static void nvme_aio_unplug(BlockDriverState *bs)
1107{
1108    int i;
1109    BDRVNVMeState *s = bs->opaque;
1110    assert(s->plugged);
1111    s->plugged = false;
1112    for (i = 1; i < s->nr_queues; i++) {
1113        NVMeQueuePair *q = s->queues[i];
1114        qemu_mutex_lock(&q->lock);
1115        nvme_kick(s, q);
1116        nvme_process_completion(s, q);
1117        qemu_mutex_unlock(&q->lock);
1118    }
1119}
1120
1121static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1122{
1123    int ret;
1124    BDRVNVMeState *s = bs->opaque;
1125
1126    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1127    if (ret) {
1128        /* FIXME: we may run out of IOVA addresses after repeated
1129         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1130         * doesn't reclaim addresses for fixed mappings. */
1131        error_report("nvme_register_buf failed: %s", strerror(-ret));
1132    }
1133}
1134
1135static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1136{
1137    BDRVNVMeState *s = bs->opaque;
1138
1139    qemu_vfio_dma_unmap(s->vfio, host);
1140}
1141
1142static BlockDriver bdrv_nvme = {
1143    .format_name              = "nvme",
1144    .protocol_name            = "nvme",
1145    .instance_size            = sizeof(BDRVNVMeState),
1146
1147    .bdrv_parse_filename      = nvme_parse_filename,
1148    .bdrv_file_open           = nvme_file_open,
1149    .bdrv_close               = nvme_close,
1150    .bdrv_getlength           = nvme_getlength,
1151
1152    .bdrv_co_preadv           = nvme_co_preadv,
1153    .bdrv_co_pwritev          = nvme_co_pwritev,
1154    .bdrv_co_flush_to_disk    = nvme_co_flush,
1155    .bdrv_reopen_prepare      = nvme_reopen_prepare,
1156
1157    .bdrv_refresh_filename    = nvme_refresh_filename,
1158    .bdrv_refresh_limits      = nvme_refresh_limits,
1159
1160    .bdrv_detach_aio_context  = nvme_detach_aio_context,
1161    .bdrv_attach_aio_context  = nvme_attach_aio_context,
1162
1163    .bdrv_io_plug             = nvme_aio_plug,
1164    .bdrv_io_unplug           = nvme_aio_unplug,
1165
1166    .bdrv_register_buf        = nvme_register_buf,
1167    .bdrv_unregister_buf      = nvme_unregister_buf,
1168};
1169
1170static void bdrv_nvme_init(void)
1171{
1172    bdrv_register(&bdrv_nvme);
1173}
1174
1175block_init(bdrv_nvme_init);
1176