1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include "qemu/osdep.h"
21#include "qemu/error-report.h"
22#include "qapi/error.h"
23#include "qemu-common.h"
24#include "cpu.h"
25#include "hw/boards.h"
26#include "hw/hw.h"
27#include "hw/arm/arm.h"
28#include "hw/arm/omap.h"
29#include "sysemu/sysemu.h"
30#include "hw/arm/soc_dma.h"
31#include "sysemu/qtest.h"
32#include "qemu/range.h"
33#include "hw/sysbus.h"
34#include "qemu/cutils.h"
35#include "qemu/bcd.h"
36
37static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
38{
39 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
40 funcname, 8 * sz, addr);
41}
42
43
44uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
45{
46 uint8_t ret;
47
48 omap_log_badwidth(__func__, addr, 1);
49 cpu_physical_memory_read(addr, &ret, 1);
50 return ret;
51}
52
53void omap_badwidth_write8(void *opaque, hwaddr addr,
54 uint32_t value)
55{
56 uint8_t val8 = value;
57
58 omap_log_badwidth(__func__, addr, 1);
59 cpu_physical_memory_write(addr, &val8, 1);
60}
61
62uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
63{
64 uint16_t ret;
65
66 omap_log_badwidth(__func__, addr, 2);
67 cpu_physical_memory_read(addr, &ret, 2);
68 return ret;
69}
70
71void omap_badwidth_write16(void *opaque, hwaddr addr,
72 uint32_t value)
73{
74 uint16_t val16 = value;
75
76 omap_log_badwidth(__func__, addr, 2);
77 cpu_physical_memory_write(addr, &val16, 2);
78}
79
80uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
81{
82 uint32_t ret;
83
84 omap_log_badwidth(__func__, addr, 4);
85 cpu_physical_memory_read(addr, &ret, 4);
86 return ret;
87}
88
89void omap_badwidth_write32(void *opaque, hwaddr addr,
90 uint32_t value)
91{
92 omap_log_badwidth(__func__, addr, 4);
93 cpu_physical_memory_write(addr, &value, 4);
94}
95
96
97struct omap_mpu_timer_s {
98 MemoryRegion iomem;
99 qemu_irq irq;
100 omap_clk clk;
101 uint32_t val;
102 int64_t time;
103 QEMUTimer *timer;
104 QEMUBH *tick;
105 int64_t rate;
106 int it_ena;
107
108 int enable;
109 int ptv;
110 int ar;
111 int st;
112 uint32_t reset_val;
113};
114
115static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
116{
117 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
118
119 if (timer->st && timer->enable && timer->rate)
120 return timer->val - muldiv64(distance >> (timer->ptv + 1),
121 timer->rate, NANOSECONDS_PER_SECOND);
122 else
123 return timer->val;
124}
125
126static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
127{
128 timer->val = omap_timer_read(timer);
129 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
130}
131
132static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
133{
134 int64_t expires;
135
136 if (timer->enable && timer->st && timer->rate) {
137 timer->val = timer->reset_val;
138 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
139 NANOSECONDS_PER_SECOND, timer->rate);
140
141
142
143
144
145
146
147 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
148 timer_mod(timer->timer, timer->time + expires);
149 } else {
150 qemu_bh_schedule(timer->tick);
151 }
152 } else
153 timer_del(timer->timer);
154}
155
156static void omap_timer_fire(void *opaque)
157{
158 struct omap_mpu_timer_s *timer = opaque;
159
160 if (!timer->ar) {
161 timer->val = 0;
162 timer->st = 0;
163 }
164
165 if (timer->it_ena)
166
167 qemu_irq_pulse(timer->irq);
168}
169
170static void omap_timer_tick(void *opaque)
171{
172 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
173
174 omap_timer_sync(timer);
175 omap_timer_fire(timer);
176 omap_timer_update(timer);
177}
178
179static void omap_timer_clk_update(void *opaque, int line, int on)
180{
181 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
182
183 omap_timer_sync(timer);
184 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
185 omap_timer_update(timer);
186}
187
188static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
189{
190 omap_clk_adduser(timer->clk,
191 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
192 timer->rate = omap_clk_getrate(timer->clk);
193}
194
195static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
196 unsigned size)
197{
198 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
199
200 if (size != 4) {
201 return omap_badwidth_read32(opaque, addr);
202 }
203
204 switch (addr) {
205 case 0x00:
206 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
207
208 case 0x04:
209 break;
210
211 case 0x08:
212 return omap_timer_read(s);
213 }
214
215 OMAP_BAD_REG(addr);
216 return 0;
217}
218
219static void omap_mpu_timer_write(void *opaque, hwaddr addr,
220 uint64_t value, unsigned size)
221{
222 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
223
224 if (size != 4) {
225 omap_badwidth_write32(opaque, addr, value);
226 return;
227 }
228
229 switch (addr) {
230 case 0x00:
231 omap_timer_sync(s);
232 s->enable = (value >> 5) & 1;
233 s->ptv = (value >> 2) & 7;
234 s->ar = (value >> 1) & 1;
235 s->st = value & 1;
236 omap_timer_update(s);
237 return;
238
239 case 0x04:
240 s->reset_val = value;
241 return;
242
243 case 0x08:
244 OMAP_RO_REG(addr);
245 break;
246
247 default:
248 OMAP_BAD_REG(addr);
249 }
250}
251
252static const MemoryRegionOps omap_mpu_timer_ops = {
253 .read = omap_mpu_timer_read,
254 .write = omap_mpu_timer_write,
255 .endianness = DEVICE_LITTLE_ENDIAN,
256};
257
258static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
259{
260 timer_del(s->timer);
261 s->enable = 0;
262 s->reset_val = 31337;
263 s->val = 0;
264 s->ptv = 0;
265 s->ar = 0;
266 s->st = 0;
267 s->it_ena = 1;
268}
269
270static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
271 hwaddr base,
272 qemu_irq irq, omap_clk clk)
273{
274 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
275
276 s->irq = irq;
277 s->clk = clk;
278 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
279 s->tick = qemu_bh_new(omap_timer_fire, s);
280 omap_mpu_timer_reset(s);
281 omap_timer_clk_setup(s);
282
283 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
284 "omap-mpu-timer", 0x100);
285
286 memory_region_add_subregion(system_memory, base, &s->iomem);
287
288 return s;
289}
290
291
292struct omap_watchdog_timer_s {
293 struct omap_mpu_timer_s timer;
294 MemoryRegion iomem;
295 uint8_t last_wr;
296 int mode;
297 int free;
298 int reset;
299};
300
301static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
302 unsigned size)
303{
304 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
305
306 if (size != 2) {
307 return omap_badwidth_read16(opaque, addr);
308 }
309
310 switch (addr) {
311 case 0x00:
312 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
313 (s->timer.st << 7) | (s->free << 1);
314
315 case 0x04:
316 return omap_timer_read(&s->timer);
317
318 case 0x08:
319 return s->mode << 15;
320 }
321
322 OMAP_BAD_REG(addr);
323 return 0;
324}
325
326static void omap_wd_timer_write(void *opaque, hwaddr addr,
327 uint64_t value, unsigned size)
328{
329 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
330
331 if (size != 2) {
332 omap_badwidth_write16(opaque, addr, value);
333 return;
334 }
335
336 switch (addr) {
337 case 0x00:
338 omap_timer_sync(&s->timer);
339 s->timer.ptv = (value >> 9) & 7;
340 s->timer.ar = (value >> 8) & 1;
341 s->timer.st = (value >> 7) & 1;
342 s->free = (value >> 1) & 1;
343 omap_timer_update(&s->timer);
344 break;
345
346 case 0x04:
347 s->timer.reset_val = value & 0xffff;
348 break;
349
350 case 0x08:
351 if (!s->mode && ((value >> 15) & 1))
352 omap_clk_get(s->timer.clk);
353 s->mode |= (value >> 15) & 1;
354 if (s->last_wr == 0xf5) {
355 if ((value & 0xff) == 0xa0) {
356 if (s->mode) {
357 s->mode = 0;
358 omap_clk_put(s->timer.clk);
359 }
360 } else {
361
362
363 s->reset = 1;
364 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
365 }
366 }
367 s->last_wr = value & 0xff;
368 break;
369
370 default:
371 OMAP_BAD_REG(addr);
372 }
373}
374
375static const MemoryRegionOps omap_wd_timer_ops = {
376 .read = omap_wd_timer_read,
377 .write = omap_wd_timer_write,
378 .endianness = DEVICE_NATIVE_ENDIAN,
379};
380
381static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
382{
383 timer_del(s->timer.timer);
384 if (!s->mode)
385 omap_clk_get(s->timer.clk);
386 s->mode = 1;
387 s->free = 1;
388 s->reset = 0;
389 s->timer.enable = 1;
390 s->timer.it_ena = 1;
391 s->timer.reset_val = 0xffff;
392 s->timer.val = 0;
393 s->timer.st = 0;
394 s->timer.ptv = 0;
395 s->timer.ar = 0;
396 omap_timer_update(&s->timer);
397}
398
399static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
400 hwaddr base,
401 qemu_irq irq, omap_clk clk)
402{
403 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
404
405 s->timer.irq = irq;
406 s->timer.clk = clk;
407 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
408 omap_wd_timer_reset(s);
409 omap_timer_clk_setup(&s->timer);
410
411 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
412 "omap-wd-timer", 0x100);
413 memory_region_add_subregion(memory, base, &s->iomem);
414
415 return s;
416}
417
418
419struct omap_32khz_timer_s {
420 struct omap_mpu_timer_s timer;
421 MemoryRegion iomem;
422};
423
424static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
425 unsigned size)
426{
427 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
428 int offset = addr & OMAP_MPUI_REG_MASK;
429
430 if (size != 4) {
431 return omap_badwidth_read32(opaque, addr);
432 }
433
434 switch (offset) {
435 case 0x00:
436 return s->timer.reset_val;
437
438 case 0x04:
439 return omap_timer_read(&s->timer);
440
441 case 0x08:
442 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
443
444 default:
445 break;
446 }
447 OMAP_BAD_REG(addr);
448 return 0;
449}
450
451static void omap_os_timer_write(void *opaque, hwaddr addr,
452 uint64_t value, unsigned size)
453{
454 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
455 int offset = addr & OMAP_MPUI_REG_MASK;
456
457 if (size != 4) {
458 omap_badwidth_write32(opaque, addr, value);
459 return;
460 }
461
462 switch (offset) {
463 case 0x00:
464 s->timer.reset_val = value & 0x00ffffff;
465 break;
466
467 case 0x04:
468 OMAP_RO_REG(addr);
469 break;
470
471 case 0x08:
472 s->timer.ar = (value >> 3) & 1;
473 s->timer.it_ena = (value >> 2) & 1;
474 if (s->timer.st != (value & 1) || (value & 2)) {
475 omap_timer_sync(&s->timer);
476 s->timer.enable = value & 1;
477 s->timer.st = value & 1;
478 omap_timer_update(&s->timer);
479 }
480 break;
481
482 default:
483 OMAP_BAD_REG(addr);
484 }
485}
486
487static const MemoryRegionOps omap_os_timer_ops = {
488 .read = omap_os_timer_read,
489 .write = omap_os_timer_write,
490 .endianness = DEVICE_NATIVE_ENDIAN,
491};
492
493static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
494{
495 timer_del(s->timer.timer);
496 s->timer.enable = 0;
497 s->timer.it_ena = 0;
498 s->timer.reset_val = 0x00ffffff;
499 s->timer.val = 0;
500 s->timer.st = 0;
501 s->timer.ptv = 0;
502 s->timer.ar = 1;
503}
504
505static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
506 hwaddr base,
507 qemu_irq irq, omap_clk clk)
508{
509 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
510
511 s->timer.irq = irq;
512 s->timer.clk = clk;
513 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
514 omap_os_timer_reset(s);
515 omap_timer_clk_setup(&s->timer);
516
517 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
518 "omap-os-timer", 0x800);
519 memory_region_add_subregion(memory, base, &s->iomem);
520
521 return s;
522}
523
524
525static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
526 unsigned size)
527{
528 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
529 uint16_t ret;
530
531 if (size != 2) {
532 return omap_badwidth_read16(opaque, addr);
533 }
534
535 switch (addr) {
536 case 0x14:
537 ret = s->ulpd_pm_regs[addr >> 2];
538 s->ulpd_pm_regs[addr >> 2] = 0;
539 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
540 return ret;
541
542 case 0x18:
543 case 0x1c:
544 case 0x20:
545 case 0x28:
546 case 0x2c:
547 OMAP_BAD_REG(addr);
548
549 case 0x00:
550 case 0x04:
551 case 0x08:
552 case 0x0c:
553 case 0x10:
554 case 0x24:
555 case 0x30:
556 case 0x34:
557 case 0x38:
558 case 0x3c:
559 case 0x40:
560
561 case 0x48:
562 case 0x4c:
563 case 0x50:
564 return s->ulpd_pm_regs[addr >> 2];
565 }
566
567 OMAP_BAD_REG(addr);
568 return 0;
569}
570
571static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
572 uint16_t diff, uint16_t value)
573{
574 if (diff & (1 << 4))
575 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
576 if (diff & (1 << 5))
577 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
578}
579
580static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
581 uint16_t diff, uint16_t value)
582{
583 if (diff & (1 << 0))
584 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
585 if (diff & (1 << 1))
586 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
587 if (diff & (1 << 2))
588 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
589 if (diff & (1 << 3))
590 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
591}
592
593static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
594 uint64_t value, unsigned size)
595{
596 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
597 int64_t now, ticks;
598 int div, mult;
599 static const int bypass_div[4] = { 1, 2, 4, 4 };
600 uint16_t diff;
601
602 if (size != 2) {
603 omap_badwidth_write16(opaque, addr, value);
604 return;
605 }
606
607 switch (addr) {
608 case 0x00:
609 case 0x04:
610 case 0x08:
611 case 0x0c:
612 case 0x14:
613 case 0x40:
614 OMAP_RO_REG(addr);
615 break;
616
617 case 0x10:
618
619 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
620 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
621
622 if (value & 1)
623 s->ulpd_gauge_start = now;
624 else {
625 now -= s->ulpd_gauge_start;
626
627
628 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
629 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
630 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
631 if (ticks >> 32)
632 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
633
634
635 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
636 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
637 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
638 if (ticks >> 32)
639 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
640
641 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;
642 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
643 }
644 }
645 s->ulpd_pm_regs[addr >> 2] = value;
646 break;
647
648 case 0x18:
649 case 0x1c:
650 case 0x20:
651 case 0x28:
652 case 0x2c:
653 OMAP_BAD_REG(addr);
654
655 case 0x24:
656 case 0x38:
657 case 0x48:
658 case 0x50:
659 s->ulpd_pm_regs[addr >> 2] = value;
660 break;
661
662 case 0x30:
663 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
665 omap_ulpd_clk_update(s, diff, value);
666 break;
667
668 case 0x34:
669 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
670 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
671 omap_ulpd_req_update(s, diff, value);
672 break;
673
674 case 0x3c:
675
676
677
678
679 diff = s->ulpd_pm_regs[addr >> 2] & value;
680 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
681 if (diff & (0x3ff << 2)) {
682 if (value & (1 << 4)) {
683 div = ((value >> 5) & 3) + 1;
684 mult = MIN((value >> 7) & 0x1f, 1);
685 } else {
686 div = bypass_div[((value >> 2) & 3)];
687 mult = 1;
688 }
689 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
690 }
691
692
693 s->ulpd_pm_regs[addr >> 2] =
694 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
695 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
696
697
698 s->ulpd_pm_regs[addr >> 2] |= 2;
699 break;
700
701 case 0x4c:
702 diff = s->ulpd_pm_regs[addr >> 2] & value;
703 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
704 if (diff & (1 << 0))
705 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
706 (value & (1 << 0)) ? "apll" : "dpll4"));
707 break;
708
709 default:
710 OMAP_BAD_REG(addr);
711 }
712}
713
714static const MemoryRegionOps omap_ulpd_pm_ops = {
715 .read = omap_ulpd_pm_read,
716 .write = omap_ulpd_pm_write,
717 .endianness = DEVICE_NATIVE_ENDIAN,
718};
719
720static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
721{
722 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
723 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
724 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
725 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
726 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
727 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
728 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
729 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
730 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
731 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
732 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
733 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
734 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
735 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
736 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
737 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
738 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
739 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000;
740 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
741 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
742 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
743 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
744 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
745}
746
747static void omap_ulpd_pm_init(MemoryRegion *system_memory,
748 hwaddr base,
749 struct omap_mpu_state_s *mpu)
750{
751 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
752 "omap-ulpd-pm", 0x800);
753 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
754 omap_ulpd_pm_reset(mpu);
755}
756
757
758static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
759 unsigned size)
760{
761 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
762
763 if (size != 4) {
764 return omap_badwidth_read32(opaque, addr);
765 }
766
767 switch (addr) {
768 case 0x00:
769 case 0x04:
770 case 0x08:
771 return s->func_mux_ctrl[addr >> 2];
772
773 case 0x0c:
774 return s->comp_mode_ctrl[0];
775
776 case 0x10:
777 case 0x14:
778 case 0x18:
779 case 0x1c:
780 case 0x20:
781 case 0x24:
782 case 0x28:
783 case 0x2c:
784 case 0x30:
785 case 0x34:
786 case 0x38:
787 return s->func_mux_ctrl[(addr >> 2) - 1];
788
789 case 0x40:
790 case 0x44:
791 case 0x48:
792 case 0x4c:
793 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
794
795 case 0x50:
796 return s->gate_inh_ctrl[0];
797
798 case 0x60:
799 return s->voltage_ctrl[0];
800
801 case 0x70:
802 return s->test_dbg_ctrl[0];
803
804 case 0x80:
805 return s->mod_conf_ctrl[0];
806 }
807
808 OMAP_BAD_REG(addr);
809 return 0;
810}
811
812static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
813 uint32_t diff, uint32_t value)
814{
815 if (s->compat1509) {
816 if (diff & (1 << 9))
817 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
818 (~value >> 9) & 1);
819 if (diff & (1 << 7))
820 omap_clk_onoff(omap_findclk(s, "usb.clko"),
821 (value >> 7) & 1);
822 }
823}
824
825static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
826 uint32_t diff, uint32_t value)
827{
828 if (s->compat1509) {
829 if (diff & (1U << 31)) {
830
831 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
832 }
833 if (diff & (1 << 1)) {
834
835 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
836 }
837 }
838}
839
840static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
841 uint32_t diff, uint32_t value)
842{
843 if (diff & (1U << 31)) {
844
845 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
846 omap_findclk(s, ((value >> 31) & 1) ?
847 "ck_48m" : "armper_ck"));
848 }
849 if (diff & (1 << 30))
850 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
851 omap_findclk(s, ((value >> 30) & 1) ?
852 "ck_48m" : "armper_ck"));
853 if (diff & (1 << 29))
854 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
855 omap_findclk(s, ((value >> 29) & 1) ?
856 "ck_48m" : "armper_ck"));
857 if (diff & (1 << 23))
858 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
859 omap_findclk(s, ((value >> 23) & 1) ?
860 "ck_48m" : "armper_ck"));
861 if (diff & (1 << 12))
862 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
863 omap_findclk(s, ((value >> 12) & 1) ?
864 "ck_48m" : "armper_ck"));
865 if (diff & (1 << 9))
866 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
867}
868
869static void omap_pin_cfg_write(void *opaque, hwaddr addr,
870 uint64_t value, unsigned size)
871{
872 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
873 uint32_t diff;
874
875 if (size != 4) {
876 omap_badwidth_write32(opaque, addr, value);
877 return;
878 }
879
880 switch (addr) {
881 case 0x00:
882 diff = s->func_mux_ctrl[addr >> 2] ^ value;
883 s->func_mux_ctrl[addr >> 2] = value;
884 omap_pin_funcmux0_update(s, diff, value);
885 return;
886
887 case 0x04:
888 diff = s->func_mux_ctrl[addr >> 2] ^ value;
889 s->func_mux_ctrl[addr >> 2] = value;
890 omap_pin_funcmux1_update(s, diff, value);
891 return;
892
893 case 0x08:
894 s->func_mux_ctrl[addr >> 2] = value;
895 return;
896
897 case 0x0c:
898 s->comp_mode_ctrl[0] = value;
899 s->compat1509 = (value != 0x0000eaef);
900 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
901 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
902 return;
903
904 case 0x10:
905 case 0x14:
906 case 0x18:
907 case 0x1c:
908 case 0x20:
909 case 0x24:
910 case 0x28:
911 case 0x2c:
912 case 0x30:
913 case 0x34:
914 case 0x38:
915 s->func_mux_ctrl[(addr >> 2) - 1] = value;
916 return;
917
918 case 0x40:
919 case 0x44:
920 case 0x48:
921 case 0x4c:
922 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
923 return;
924
925 case 0x50:
926 s->gate_inh_ctrl[0] = value;
927 return;
928
929 case 0x60:
930 s->voltage_ctrl[0] = value;
931 return;
932
933 case 0x70:
934 s->test_dbg_ctrl[0] = value;
935 return;
936
937 case 0x80:
938 diff = s->mod_conf_ctrl[0] ^ value;
939 s->mod_conf_ctrl[0] = value;
940 omap_pin_modconf1_update(s, diff, value);
941 return;
942
943 default:
944 OMAP_BAD_REG(addr);
945 }
946}
947
948static const MemoryRegionOps omap_pin_cfg_ops = {
949 .read = omap_pin_cfg_read,
950 .write = omap_pin_cfg_write,
951 .endianness = DEVICE_NATIVE_ENDIAN,
952};
953
954static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
955{
956
957 mpu->compat1509 = 1;
958 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
959 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
960 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
961 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
962 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
963 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
964 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
965 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
966 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
967 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
968}
969
970static void omap_pin_cfg_init(MemoryRegion *system_memory,
971 hwaddr base,
972 struct omap_mpu_state_s *mpu)
973{
974 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
975 "omap-pin-cfg", 0x800);
976 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
977 omap_pin_cfg_reset(mpu);
978}
979
980
981static uint64_t omap_id_read(void *opaque, hwaddr addr,
982 unsigned size)
983{
984 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
985
986 if (size != 4) {
987 return omap_badwidth_read32(opaque, addr);
988 }
989
990 switch (addr) {
991 case 0xfffe1800:
992 return 0xc9581f0e;
993 case 0xfffe1804:
994 return 0xa8858bfa;
995
996 case 0xfffe2000:
997 return 0x00aaaafc;
998 case 0xfffe2004:
999 return 0xcafeb574;
1000
1001 case 0xfffed400:
1002 switch (s->mpu_model) {
1003 case omap310:
1004 return 0x03310315;
1005 case omap1510:
1006 return 0x03310115;
1007 default:
1008 hw_error("%s: bad mpu model\n", __func__);
1009 }
1010 break;
1011
1012 case 0xfffed404:
1013 switch (s->mpu_model) {
1014 case omap310:
1015 return 0xfb57402f;
1016 case omap1510:
1017 return 0xfb47002f;
1018 default:
1019 hw_error("%s: bad mpu model\n", __func__);
1020 }
1021 break;
1022 }
1023
1024 OMAP_BAD_REG(addr);
1025 return 0;
1026}
1027
1028static void omap_id_write(void *opaque, hwaddr addr,
1029 uint64_t value, unsigned size)
1030{
1031 if (size != 4) {
1032 omap_badwidth_write32(opaque, addr, value);
1033 return;
1034 }
1035
1036 OMAP_BAD_REG(addr);
1037}
1038
1039static const MemoryRegionOps omap_id_ops = {
1040 .read = omap_id_read,
1041 .write = omap_id_write,
1042 .endianness = DEVICE_NATIVE_ENDIAN,
1043};
1044
1045static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1046{
1047 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1048 "omap-id", 0x100000000ULL);
1049 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1050 0xfffe1800, 0x800);
1051 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1052 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1053 0xfffed400, 0x100);
1054 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1055 if (!cpu_is_omap15xx(mpu)) {
1056 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1057 &mpu->id_iomem, 0xfffe2000, 0x800);
1058 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1059 }
1060}
1061
1062
1063static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1064 unsigned size)
1065{
1066 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1067
1068 if (size != 4) {
1069 return omap_badwidth_read32(opaque, addr);
1070 }
1071
1072 switch (addr) {
1073 case 0x00:
1074 return s->mpui_ctrl;
1075 case 0x04:
1076 return 0x01ffffff;
1077 case 0x08:
1078 return 0xffffffff;
1079 case 0x0c:
1080 return 0x00000800;
1081 case 0x10:
1082 return 0x00000000;
1083
1084
1085 case 0x14:
1086 case 0x18:
1087 return 0x00000000;
1088 case 0x1c:
1089 return 0x0000ffff;
1090 }
1091
1092 OMAP_BAD_REG(addr);
1093 return 0;
1094}
1095
1096static void omap_mpui_write(void *opaque, hwaddr addr,
1097 uint64_t value, unsigned size)
1098{
1099 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1100
1101 if (size != 4) {
1102 omap_badwidth_write32(opaque, addr, value);
1103 return;
1104 }
1105
1106 switch (addr) {
1107 case 0x00:
1108 s->mpui_ctrl = value & 0x007fffff;
1109 break;
1110
1111 case 0x04:
1112 case 0x08:
1113 case 0x0c:
1114 case 0x10:
1115
1116 case 0x14:
1117 OMAP_RO_REG(addr);
1118 break;
1119 case 0x18:
1120 case 0x1c:
1121 break;
1122
1123 default:
1124 OMAP_BAD_REG(addr);
1125 }
1126}
1127
1128static const MemoryRegionOps omap_mpui_ops = {
1129 .read = omap_mpui_read,
1130 .write = omap_mpui_write,
1131 .endianness = DEVICE_NATIVE_ENDIAN,
1132};
1133
1134static void omap_mpui_reset(struct omap_mpu_state_s *s)
1135{
1136 s->mpui_ctrl = 0x0003ff1b;
1137}
1138
1139static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1140 struct omap_mpu_state_s *mpu)
1141{
1142 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1143 "omap-mpui", 0x100);
1144 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1145
1146 omap_mpui_reset(mpu);
1147}
1148
1149
1150struct omap_tipb_bridge_s {
1151 qemu_irq abort;
1152 MemoryRegion iomem;
1153
1154 int width_intr;
1155 uint16_t control;
1156 uint16_t alloc;
1157 uint16_t buffer;
1158 uint16_t enh_control;
1159};
1160
1161static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1162 unsigned size)
1163{
1164 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1165
1166 if (size < 2) {
1167 return omap_badwidth_read16(opaque, addr);
1168 }
1169
1170 switch (addr) {
1171 case 0x00:
1172 return s->control;
1173 case 0x04:
1174 return s->alloc;
1175 case 0x08:
1176 return s->buffer;
1177 case 0x0c:
1178 return s->enh_control;
1179 case 0x10:
1180 case 0x14:
1181 case 0x18:
1182 return 0xffff;
1183 case 0x1c:
1184 return 0x00f8;
1185 }
1186
1187 OMAP_BAD_REG(addr);
1188 return 0;
1189}
1190
1191static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1192 uint64_t value, unsigned size)
1193{
1194 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1195
1196 if (size < 2) {
1197 omap_badwidth_write16(opaque, addr, value);
1198 return;
1199 }
1200
1201 switch (addr) {
1202 case 0x00:
1203 s->control = value & 0xffff;
1204 break;
1205
1206 case 0x04:
1207 s->alloc = value & 0x003f;
1208 break;
1209
1210 case 0x08:
1211 s->buffer = value & 0x0003;
1212 break;
1213
1214 case 0x0c:
1215 s->width_intr = !(value & 2);
1216 s->enh_control = value & 0x000f;
1217 break;
1218
1219 case 0x10:
1220 case 0x14:
1221 case 0x18:
1222 case 0x1c:
1223 OMAP_RO_REG(addr);
1224 break;
1225
1226 default:
1227 OMAP_BAD_REG(addr);
1228 }
1229}
1230
1231static const MemoryRegionOps omap_tipb_bridge_ops = {
1232 .read = omap_tipb_bridge_read,
1233 .write = omap_tipb_bridge_write,
1234 .endianness = DEVICE_NATIVE_ENDIAN,
1235};
1236
1237static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1238{
1239 s->control = 0xffff;
1240 s->alloc = 0x0009;
1241 s->buffer = 0x0000;
1242 s->enh_control = 0x000f;
1243}
1244
1245static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1246 MemoryRegion *memory, hwaddr base,
1247 qemu_irq abort_irq, omap_clk clk)
1248{
1249 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1250
1251 s->abort = abort_irq;
1252 omap_tipb_bridge_reset(s);
1253
1254 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1255 "omap-tipb-bridge", 0x100);
1256 memory_region_add_subregion(memory, base, &s->iomem);
1257
1258 return s;
1259}
1260
1261
1262static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1263 unsigned size)
1264{
1265 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1266 uint32_t ret;
1267
1268 if (size != 4) {
1269 return omap_badwidth_read32(opaque, addr);
1270 }
1271
1272 switch (addr) {
1273 case 0x00:
1274 case 0x04:
1275 case 0x08:
1276 case 0x0c:
1277 case 0x10:
1278 case 0x14:
1279 case 0x18:
1280 case 0x1c:
1281 case 0x24:
1282 case 0x28:
1283 case 0x2c:
1284 case 0x30:
1285 case 0x3c:
1286 case 0x40:
1287 return s->tcmi_regs[addr >> 2];
1288
1289 case 0x20:
1290 ret = s->tcmi_regs[addr >> 2];
1291 s->tcmi_regs[addr >> 2] &= ~1;
1292
1293 return ret;
1294 }
1295
1296 OMAP_BAD_REG(addr);
1297 return 0;
1298}
1299
1300static void omap_tcmi_write(void *opaque, hwaddr addr,
1301 uint64_t value, unsigned size)
1302{
1303 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1304
1305 if (size != 4) {
1306 omap_badwidth_write32(opaque, addr, value);
1307 return;
1308 }
1309
1310 switch (addr) {
1311 case 0x00:
1312 case 0x04:
1313 case 0x08:
1314 case 0x10:
1315 case 0x14:
1316 case 0x18:
1317 case 0x1c:
1318 case 0x20:
1319 case 0x24:
1320 case 0x28:
1321 case 0x2c:
1322 case 0x30:
1323 case 0x3c:
1324 case 0x40:
1325 s->tcmi_regs[addr >> 2] = value;
1326 break;
1327 case 0x0c:
1328 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1329 break;
1330
1331 default:
1332 OMAP_BAD_REG(addr);
1333 }
1334}
1335
1336static const MemoryRegionOps omap_tcmi_ops = {
1337 .read = omap_tcmi_read,
1338 .write = omap_tcmi_write,
1339 .endianness = DEVICE_NATIVE_ENDIAN,
1340};
1341
1342static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1343{
1344 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1345 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1346 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1347 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1348 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1349 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1350 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1351 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1352 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1353 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1354 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1355 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1356 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1357 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1358 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1359}
1360
1361static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1362 struct omap_mpu_state_s *mpu)
1363{
1364 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1365 "omap-tcmi", 0x100);
1366 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1367 omap_tcmi_reset(mpu);
1368}
1369
1370
1371struct dpll_ctl_s {
1372 MemoryRegion iomem;
1373 uint16_t mode;
1374 omap_clk dpll;
1375};
1376
1377static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1378 unsigned size)
1379{
1380 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1381
1382 if (size != 2) {
1383 return omap_badwidth_read16(opaque, addr);
1384 }
1385
1386 if (addr == 0x00)
1387 return s->mode;
1388
1389 OMAP_BAD_REG(addr);
1390 return 0;
1391}
1392
1393static void omap_dpll_write(void *opaque, hwaddr addr,
1394 uint64_t value, unsigned size)
1395{
1396 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1397 uint16_t diff;
1398 static const int bypass_div[4] = { 1, 2, 4, 4 };
1399 int div, mult;
1400
1401 if (size != 2) {
1402 omap_badwidth_write16(opaque, addr, value);
1403 return;
1404 }
1405
1406 if (addr == 0x00) {
1407
1408 diff = s->mode & value;
1409 s->mode = value & 0x2fff;
1410 if (diff & (0x3ff << 2)) {
1411 if (value & (1 << 4)) {
1412 div = ((value >> 5) & 3) + 1;
1413 mult = MIN((value >> 7) & 0x1f, 1);
1414 } else {
1415 div = bypass_div[((value >> 2) & 3)];
1416 mult = 1;
1417 }
1418 omap_clk_setrate(s->dpll, div, mult);
1419 }
1420
1421
1422 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1423
1424
1425 s->mode |= 2;
1426 } else {
1427 OMAP_BAD_REG(addr);
1428 }
1429}
1430
1431static const MemoryRegionOps omap_dpll_ops = {
1432 .read = omap_dpll_read,
1433 .write = omap_dpll_write,
1434 .endianness = DEVICE_NATIVE_ENDIAN,
1435};
1436
1437static void omap_dpll_reset(struct dpll_ctl_s *s)
1438{
1439 s->mode = 0x2002;
1440 omap_clk_setrate(s->dpll, 1, 1);
1441}
1442
1443static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1444 hwaddr base, omap_clk clk)
1445{
1446 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1447 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1448
1449 s->dpll = clk;
1450 omap_dpll_reset(s);
1451
1452 memory_region_add_subregion(memory, base, &s->iomem);
1453 return s;
1454}
1455
1456
1457static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1458 unsigned size)
1459{
1460 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1461
1462 if (size != 2) {
1463 return omap_badwidth_read16(opaque, addr);
1464 }
1465
1466 switch (addr) {
1467 case 0x00:
1468 return s->clkm.arm_ckctl;
1469
1470 case 0x04:
1471 return s->clkm.arm_idlect1;
1472
1473 case 0x08:
1474 return s->clkm.arm_idlect2;
1475
1476 case 0x0c:
1477 return s->clkm.arm_ewupct;
1478
1479 case 0x10:
1480 return s->clkm.arm_rstct1;
1481
1482 case 0x14:
1483 return s->clkm.arm_rstct2;
1484
1485 case 0x18:
1486 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1487
1488 case 0x1c:
1489 return s->clkm.arm_ckout1;
1490
1491 case 0x20:
1492 break;
1493 }
1494
1495 OMAP_BAD_REG(addr);
1496 return 0;
1497}
1498
1499static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1500 uint16_t diff, uint16_t value)
1501{
1502 omap_clk clk;
1503
1504 if (diff & (1 << 14)) {
1505 if (value & (1 << 14))
1506 ;
1507 else {
1508 clk = omap_findclk(s, "arminth_ck");
1509 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1510 }
1511 }
1512 if (diff & (1 << 12)) {
1513 clk = omap_findclk(s, "armtim_ck");
1514 if (value & (1 << 12))
1515 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1516 else
1517 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1518 }
1519
1520 if (diff & (3 << 10)) {
1521 clk = omap_findclk(s, "dspmmu_ck");
1522 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1523 }
1524 if (diff & (3 << 8)) {
1525 clk = omap_findclk(s, "tc_ck");
1526 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1527 }
1528 if (diff & (3 << 6)) {
1529 clk = omap_findclk(s, "dsp_ck");
1530 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1531 }
1532 if (diff & (3 << 4)) {
1533 clk = omap_findclk(s, "arm_ck");
1534 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1535 }
1536 if (diff & (3 << 2)) {
1537 clk = omap_findclk(s, "lcd_ck");
1538 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1539 }
1540 if (diff & (3 << 0)) {
1541 clk = omap_findclk(s, "armper_ck");
1542 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1543 }
1544}
1545
1546static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1547 uint16_t diff, uint16_t value)
1548{
1549 omap_clk clk;
1550
1551 if (value & (1 << 11)) {
1552 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1553 }
1554 if (!(value & (1 << 10))) {
1555
1556 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1557 }
1558
1559#define SET_CANIDLE(clock, bit) \
1560 if (diff & (1 << bit)) { \
1561 clk = omap_findclk(s, clock); \
1562 omap_clk_canidle(clk, (value >> bit) & 1); \
1563 }
1564 SET_CANIDLE("mpuwd_ck", 0)
1565 SET_CANIDLE("armxor_ck", 1)
1566 SET_CANIDLE("mpuper_ck", 2)
1567 SET_CANIDLE("lcd_ck", 3)
1568 SET_CANIDLE("lb_ck", 4)
1569 SET_CANIDLE("hsab_ck", 5)
1570 SET_CANIDLE("tipb_ck", 6)
1571 SET_CANIDLE("dma_ck", 6)
1572 SET_CANIDLE("tc_ck", 6)
1573 SET_CANIDLE("dpll1", 7)
1574 SET_CANIDLE("dpll2", 7)
1575 SET_CANIDLE("dpll3", 7)
1576 SET_CANIDLE("mpui_ck", 8)
1577 SET_CANIDLE("armtim_ck", 9)
1578}
1579
1580static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1581 uint16_t diff, uint16_t value)
1582{
1583 omap_clk clk;
1584
1585#define SET_ONOFF(clock, bit) \
1586 if (diff & (1 << bit)) { \
1587 clk = omap_findclk(s, clock); \
1588 omap_clk_onoff(clk, (value >> bit) & 1); \
1589 }
1590 SET_ONOFF("mpuwd_ck", 0)
1591 SET_ONOFF("armxor_ck", 1)
1592 SET_ONOFF("mpuper_ck", 2)
1593 SET_ONOFF("lcd_ck", 3)
1594 SET_ONOFF("lb_ck", 4)
1595 SET_ONOFF("hsab_ck", 5)
1596 SET_ONOFF("mpui_ck", 6)
1597 SET_ONOFF("armtim_ck", 7)
1598 SET_CANIDLE("dma_ck", 8)
1599 SET_ONOFF("arm_gpio_ck", 9)
1600 SET_ONOFF("lbfree_ck", 10)
1601}
1602
1603static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1604 uint16_t diff, uint16_t value)
1605{
1606 omap_clk clk;
1607
1608 if (diff & (3 << 4)) {
1609 clk = omap_findclk(s, "tclk_out");
1610 switch ((value >> 4) & 3) {
1611 case 1:
1612 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1613 omap_clk_onoff(clk, 1);
1614 break;
1615 case 2:
1616 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1617 omap_clk_onoff(clk, 1);
1618 break;
1619 default:
1620 omap_clk_onoff(clk, 0);
1621 }
1622 }
1623 if (diff & (3 << 2)) {
1624 clk = omap_findclk(s, "dclk_out");
1625 switch ((value >> 2) & 3) {
1626 case 0:
1627 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1628 break;
1629 case 1:
1630 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1631 break;
1632 case 2:
1633 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1634 break;
1635 case 3:
1636 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1637 break;
1638 }
1639 }
1640 if (diff & (3 << 0)) {
1641 clk = omap_findclk(s, "aclk_out");
1642 switch ((value >> 0) & 3) {
1643 case 1:
1644 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1645 omap_clk_onoff(clk, 1);
1646 break;
1647 case 2:
1648 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1649 omap_clk_onoff(clk, 1);
1650 break;
1651 case 3:
1652 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1653 omap_clk_onoff(clk, 1);
1654 break;
1655 default:
1656 omap_clk_onoff(clk, 0);
1657 }
1658 }
1659}
1660
1661static void omap_clkm_write(void *opaque, hwaddr addr,
1662 uint64_t value, unsigned size)
1663{
1664 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1665 uint16_t diff;
1666 omap_clk clk;
1667 static const char *clkschemename[8] = {
1668 "fully synchronous", "fully asynchronous", "synchronous scalable",
1669 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1670 };
1671
1672 if (size != 2) {
1673 omap_badwidth_write16(opaque, addr, value);
1674 return;
1675 }
1676
1677 switch (addr) {
1678 case 0x00:
1679 diff = s->clkm.arm_ckctl ^ value;
1680 s->clkm.arm_ckctl = value & 0x7fff;
1681 omap_clkm_ckctl_update(s, diff, value);
1682 return;
1683
1684 case 0x04:
1685 diff = s->clkm.arm_idlect1 ^ value;
1686 s->clkm.arm_idlect1 = value & 0x0fff;
1687 omap_clkm_idlect1_update(s, diff, value);
1688 return;
1689
1690 case 0x08:
1691 diff = s->clkm.arm_idlect2 ^ value;
1692 s->clkm.arm_idlect2 = value & 0x07ff;
1693 omap_clkm_idlect2_update(s, diff, value);
1694 return;
1695
1696 case 0x0c:
1697 s->clkm.arm_ewupct = value & 0x003f;
1698 return;
1699
1700 case 0x10:
1701 diff = s->clkm.arm_rstct1 ^ value;
1702 s->clkm.arm_rstct1 = value & 0x0007;
1703 if (value & 9) {
1704 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1705 s->clkm.cold_start = 0xa;
1706 }
1707 if (diff & ~value & 4) {
1708 omap_mpui_reset(s);
1709 omap_tipb_bridge_reset(s->private_tipb);
1710 omap_tipb_bridge_reset(s->public_tipb);
1711 }
1712 if (diff & 2) {
1713 clk = omap_findclk(s, "dsp_ck");
1714 omap_clk_canidle(clk, (~value >> 1) & 1);
1715 }
1716 return;
1717
1718 case 0x14:
1719 s->clkm.arm_rstct2 = value & 0x0001;
1720 return;
1721
1722 case 0x18:
1723 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1724 s->clkm.clocking_scheme = (value >> 11) & 7;
1725 printf("%s: clocking scheme set to %s\n", __func__,
1726 clkschemename[s->clkm.clocking_scheme]);
1727 }
1728 s->clkm.cold_start &= value & 0x3f;
1729 return;
1730
1731 case 0x1c:
1732 diff = s->clkm.arm_ckout1 ^ value;
1733 s->clkm.arm_ckout1 = value & 0x003f;
1734 omap_clkm_ckout1_update(s, diff, value);
1735 return;
1736
1737 case 0x20:
1738 default:
1739 OMAP_BAD_REG(addr);
1740 }
1741}
1742
1743static const MemoryRegionOps omap_clkm_ops = {
1744 .read = omap_clkm_read,
1745 .write = omap_clkm_write,
1746 .endianness = DEVICE_NATIVE_ENDIAN,
1747};
1748
1749static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1750 unsigned size)
1751{
1752 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1753 CPUState *cpu = CPU(s->cpu);
1754
1755 if (size != 2) {
1756 return omap_badwidth_read16(opaque, addr);
1757 }
1758
1759 switch (addr) {
1760 case 0x04:
1761 return s->clkm.dsp_idlect1;
1762
1763 case 0x08:
1764 return s->clkm.dsp_idlect2;
1765
1766 case 0x14:
1767 return s->clkm.dsp_rstct2;
1768
1769 case 0x18:
1770 cpu = CPU(s->cpu);
1771 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1772 (cpu->halted << 6);
1773 }
1774
1775 OMAP_BAD_REG(addr);
1776 return 0;
1777}
1778
1779static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1780 uint16_t diff, uint16_t value)
1781{
1782 omap_clk clk;
1783
1784 SET_CANIDLE("dspxor_ck", 1);
1785}
1786
1787static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1788 uint16_t diff, uint16_t value)
1789{
1790 omap_clk clk;
1791
1792 SET_ONOFF("dspxor_ck", 1);
1793}
1794
1795static void omap_clkdsp_write(void *opaque, hwaddr addr,
1796 uint64_t value, unsigned size)
1797{
1798 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1799 uint16_t diff;
1800
1801 if (size != 2) {
1802 omap_badwidth_write16(opaque, addr, value);
1803 return;
1804 }
1805
1806 switch (addr) {
1807 case 0x04:
1808 diff = s->clkm.dsp_idlect1 ^ value;
1809 s->clkm.dsp_idlect1 = value & 0x01f7;
1810 omap_clkdsp_idlect1_update(s, diff, value);
1811 break;
1812
1813 case 0x08:
1814 s->clkm.dsp_idlect2 = value & 0x0037;
1815 diff = s->clkm.dsp_idlect1 ^ value;
1816 omap_clkdsp_idlect2_update(s, diff, value);
1817 break;
1818
1819 case 0x14:
1820 s->clkm.dsp_rstct2 = value & 0x0001;
1821 break;
1822
1823 case 0x18:
1824 s->clkm.cold_start &= value & 0x3f;
1825 break;
1826
1827 default:
1828 OMAP_BAD_REG(addr);
1829 }
1830}
1831
1832static const MemoryRegionOps omap_clkdsp_ops = {
1833 .read = omap_clkdsp_read,
1834 .write = omap_clkdsp_write,
1835 .endianness = DEVICE_NATIVE_ENDIAN,
1836};
1837
1838static void omap_clkm_reset(struct omap_mpu_state_s *s)
1839{
1840 if (s->wdt && s->wdt->reset)
1841 s->clkm.cold_start = 0x6;
1842 s->clkm.clocking_scheme = 0;
1843 omap_clkm_ckctl_update(s, ~0, 0x3000);
1844 s->clkm.arm_ckctl = 0x3000;
1845 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1846 s->clkm.arm_idlect1 = 0x0400;
1847 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1848 s->clkm.arm_idlect2 = 0x0100;
1849 s->clkm.arm_ewupct = 0x003f;
1850 s->clkm.arm_rstct1 = 0x0000;
1851 s->clkm.arm_rstct2 = 0x0000;
1852 s->clkm.arm_ckout1 = 0x0015;
1853 s->clkm.dpll1_mode = 0x2002;
1854 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1855 s->clkm.dsp_idlect1 = 0x0040;
1856 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1857 s->clkm.dsp_idlect2 = 0x0000;
1858 s->clkm.dsp_rstct2 = 0x0000;
1859}
1860
1861static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1862 hwaddr dsp_base, struct omap_mpu_state_s *s)
1863{
1864 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1865 "omap-clkm", 0x100);
1866 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1867 "omap-clkdsp", 0x1000);
1868
1869 s->clkm.arm_idlect1 = 0x03ff;
1870 s->clkm.arm_idlect2 = 0x0100;
1871 s->clkm.dsp_idlect1 = 0x0002;
1872 omap_clkm_reset(s);
1873 s->clkm.cold_start = 0x3a;
1874
1875 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1876 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1877}
1878
1879
1880struct omap_mpuio_s {
1881 qemu_irq irq;
1882 qemu_irq kbd_irq;
1883 qemu_irq *in;
1884 qemu_irq handler[16];
1885 qemu_irq wakeup;
1886 MemoryRegion iomem;
1887
1888 uint16_t inputs;
1889 uint16_t outputs;
1890 uint16_t dir;
1891 uint16_t edge;
1892 uint16_t mask;
1893 uint16_t ints;
1894
1895 uint16_t debounce;
1896 uint16_t latch;
1897 uint8_t event;
1898
1899 uint8_t buttons[5];
1900 uint8_t row_latch;
1901 uint8_t cols;
1902 int kbd_mask;
1903 int clk;
1904};
1905
1906static void omap_mpuio_set(void *opaque, int line, int level)
1907{
1908 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1909 uint16_t prev = s->inputs;
1910
1911 if (level)
1912 s->inputs |= 1 << line;
1913 else
1914 s->inputs &= ~(1 << line);
1915
1916 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1917 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1918 s->ints |= 1 << line;
1919 qemu_irq_raise(s->irq);
1920
1921 }
1922 if ((s->event & (1 << 0)) &&
1923 (s->event >> 1) == line)
1924 s->latch = s->inputs;
1925 }
1926}
1927
1928static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1929{
1930 int i;
1931 uint8_t *row, rows = 0, cols = ~s->cols;
1932
1933 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1934 if (*row & cols)
1935 rows |= i;
1936
1937 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1938 s->row_latch = ~rows;
1939}
1940
1941static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1942 unsigned size)
1943{
1944 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1945 int offset = addr & OMAP_MPUI_REG_MASK;
1946 uint16_t ret;
1947
1948 if (size != 2) {
1949 return omap_badwidth_read16(opaque, addr);
1950 }
1951
1952 switch (offset) {
1953 case 0x00:
1954 return s->inputs;
1955
1956 case 0x04:
1957 return s->outputs;
1958
1959 case 0x08:
1960 return s->dir;
1961
1962 case 0x10:
1963 return s->row_latch;
1964
1965 case 0x14:
1966 return s->cols;
1967
1968 case 0x18:
1969 return s->event;
1970
1971 case 0x1c:
1972 return s->edge;
1973
1974 case 0x20:
1975 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1976
1977 case 0x24:
1978 ret = s->ints;
1979 s->ints &= s->mask;
1980 if (ret)
1981 qemu_irq_lower(s->irq);
1982 return ret;
1983
1984 case 0x28:
1985 return s->kbd_mask;
1986
1987 case 0x2c:
1988 return s->mask;
1989
1990 case 0x30:
1991 return s->debounce;
1992
1993 case 0x34:
1994 return s->latch;
1995 }
1996
1997 OMAP_BAD_REG(addr);
1998 return 0;
1999}
2000
2001static void omap_mpuio_write(void *opaque, hwaddr addr,
2002 uint64_t value, unsigned size)
2003{
2004 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2005 int offset = addr & OMAP_MPUI_REG_MASK;
2006 uint16_t diff;
2007 int ln;
2008
2009 if (size != 2) {
2010 omap_badwidth_write16(opaque, addr, value);
2011 return;
2012 }
2013
2014 switch (offset) {
2015 case 0x04:
2016 diff = (s->outputs ^ value) & ~s->dir;
2017 s->outputs = value;
2018 while ((ln = ctz32(diff)) != 32) {
2019 if (s->handler[ln])
2020 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2021 diff &= ~(1 << ln);
2022 }
2023 break;
2024
2025 case 0x08:
2026 diff = s->outputs & (s->dir ^ value);
2027 s->dir = value;
2028
2029 value = s->outputs & ~s->dir;
2030 while ((ln = ctz32(diff)) != 32) {
2031 if (s->handler[ln])
2032 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2033 diff &= ~(1 << ln);
2034 }
2035 break;
2036
2037 case 0x14:
2038 s->cols = value;
2039 omap_mpuio_kbd_update(s);
2040 break;
2041
2042 case 0x18:
2043 s->event = value & 0x1f;
2044 break;
2045
2046 case 0x1c:
2047 s->edge = value;
2048 break;
2049
2050 case 0x28:
2051 s->kbd_mask = value & 1;
2052 omap_mpuio_kbd_update(s);
2053 break;
2054
2055 case 0x2c:
2056 s->mask = value;
2057 break;
2058
2059 case 0x30:
2060 s->debounce = value & 0x1ff;
2061 break;
2062
2063 case 0x00:
2064 case 0x10:
2065 case 0x20:
2066 case 0x24:
2067 case 0x34:
2068 OMAP_RO_REG(addr);
2069 return;
2070
2071 default:
2072 OMAP_BAD_REG(addr);
2073 return;
2074 }
2075}
2076
2077static const MemoryRegionOps omap_mpuio_ops = {
2078 .read = omap_mpuio_read,
2079 .write = omap_mpuio_write,
2080 .endianness = DEVICE_NATIVE_ENDIAN,
2081};
2082
2083static void omap_mpuio_reset(struct omap_mpuio_s *s)
2084{
2085 s->inputs = 0;
2086 s->outputs = 0;
2087 s->dir = ~0;
2088 s->event = 0;
2089 s->edge = 0;
2090 s->kbd_mask = 0;
2091 s->mask = 0;
2092 s->debounce = 0;
2093 s->latch = 0;
2094 s->ints = 0;
2095 s->row_latch = 0x1f;
2096 s->clk = 1;
2097}
2098
2099static void omap_mpuio_onoff(void *opaque, int line, int on)
2100{
2101 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2102
2103 s->clk = on;
2104 if (on)
2105 omap_mpuio_kbd_update(s);
2106}
2107
2108static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2109 hwaddr base,
2110 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2111 omap_clk clk)
2112{
2113 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2114
2115 s->irq = gpio_int;
2116 s->kbd_irq = kbd_int;
2117 s->wakeup = wakeup;
2118 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2119 omap_mpuio_reset(s);
2120
2121 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2122 "omap-mpuio", 0x800);
2123 memory_region_add_subregion(memory, base, &s->iomem);
2124
2125 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2126
2127 return s;
2128}
2129
2130qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2131{
2132 return s->in;
2133}
2134
2135void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2136{
2137 if (line >= 16 || line < 0)
2138 hw_error("%s: No GPIO line %i\n", __func__, line);
2139 s->handler[line] = handler;
2140}
2141
2142void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2143{
2144 if (row >= 5 || row < 0)
2145 hw_error("%s: No key %i-%i\n", __func__, col, row);
2146
2147 if (down)
2148 s->buttons[row] |= 1 << col;
2149 else
2150 s->buttons[row] &= ~(1 << col);
2151
2152 omap_mpuio_kbd_update(s);
2153}
2154
2155
2156struct omap_uwire_s {
2157 MemoryRegion iomem;
2158 qemu_irq txirq;
2159 qemu_irq rxirq;
2160 qemu_irq txdrq;
2161
2162 uint16_t txbuf;
2163 uint16_t rxbuf;
2164 uint16_t control;
2165 uint16_t setup[5];
2166
2167 uWireSlave *chip[4];
2168};
2169
2170static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2171{
2172 int chipselect = (s->control >> 10) & 3;
2173 uWireSlave *slave = s->chip[chipselect];
2174
2175 if ((s->control >> 5) & 0x1f) {
2176 if (s->control & (1 << 12))
2177 if (slave && slave->send)
2178 slave->send(slave->opaque,
2179 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2180 s->control &= ~(1 << 14);
2181
2182
2183 }
2184
2185 if ((s->control >> 0) & 0x1f) {
2186 if (s->control & (1 << 12))
2187 if (slave && slave->receive)
2188 s->rxbuf = slave->receive(slave->opaque);
2189 s->control |= 1 << 15;
2190
2191
2192 }
2193}
2194
2195static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2196 unsigned size)
2197{
2198 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2199 int offset = addr & OMAP_MPUI_REG_MASK;
2200
2201 if (size != 2) {
2202 return omap_badwidth_read16(opaque, addr);
2203 }
2204
2205 switch (offset) {
2206 case 0x00:
2207 s->control &= ~(1 << 15);
2208 return s->rxbuf;
2209
2210 case 0x04:
2211 return s->control;
2212
2213 case 0x08:
2214 return s->setup[0];
2215 case 0x0c:
2216 return s->setup[1];
2217 case 0x10:
2218 return s->setup[2];
2219 case 0x14:
2220 return s->setup[3];
2221 case 0x18:
2222 return s->setup[4];
2223 }
2224
2225 OMAP_BAD_REG(addr);
2226 return 0;
2227}
2228
2229static void omap_uwire_write(void *opaque, hwaddr addr,
2230 uint64_t value, unsigned size)
2231{
2232 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2233 int offset = addr & OMAP_MPUI_REG_MASK;
2234
2235 if (size != 2) {
2236 omap_badwidth_write16(opaque, addr, value);
2237 return;
2238 }
2239
2240 switch (offset) {
2241 case 0x00:
2242 s->txbuf = value;
2243 if ((s->setup[4] & (1 << 2)) &&
2244 ((s->setup[4] & (1 << 3)) ||
2245 (s->control & (1 << 12)))) {
2246 s->control |= 1 << 14;
2247 omap_uwire_transfer_start(s);
2248 }
2249 break;
2250
2251 case 0x04:
2252 s->control = value & 0x1fff;
2253 if (value & (1 << 13))
2254 omap_uwire_transfer_start(s);
2255 break;
2256
2257 case 0x08:
2258 s->setup[0] = value & 0x003f;
2259 break;
2260
2261 case 0x0c:
2262 s->setup[1] = value & 0x0fc0;
2263 break;
2264
2265 case 0x10:
2266 s->setup[2] = value & 0x0003;
2267 break;
2268
2269 case 0x14:
2270 s->setup[3] = value & 0x0001;
2271 break;
2272
2273 case 0x18:
2274 s->setup[4] = value & 0x000f;
2275 break;
2276
2277 default:
2278 OMAP_BAD_REG(addr);
2279 return;
2280 }
2281}
2282
2283static const MemoryRegionOps omap_uwire_ops = {
2284 .read = omap_uwire_read,
2285 .write = omap_uwire_write,
2286 .endianness = DEVICE_NATIVE_ENDIAN,
2287};
2288
2289static void omap_uwire_reset(struct omap_uwire_s *s)
2290{
2291 s->control = 0;
2292 s->setup[0] = 0;
2293 s->setup[1] = 0;
2294 s->setup[2] = 0;
2295 s->setup[3] = 0;
2296 s->setup[4] = 0;
2297}
2298
2299static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2300 hwaddr base,
2301 qemu_irq txirq, qemu_irq rxirq,
2302 qemu_irq dma,
2303 omap_clk clk)
2304{
2305 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2306
2307 s->txirq = txirq;
2308 s->rxirq = rxirq;
2309 s->txdrq = dma;
2310 omap_uwire_reset(s);
2311
2312 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2313 memory_region_add_subregion(system_memory, base, &s->iomem);
2314
2315 return s;
2316}
2317
2318void omap_uwire_attach(struct omap_uwire_s *s,
2319 uWireSlave *slave, int chipselect)
2320{
2321 if (chipselect < 0 || chipselect > 3) {
2322 error_report("%s: Bad chipselect %i", __func__, chipselect);
2323 exit(-1);
2324 }
2325
2326 s->chip[chipselect] = slave;
2327}
2328
2329
2330struct omap_pwl_s {
2331 MemoryRegion iomem;
2332 uint8_t output;
2333 uint8_t level;
2334 uint8_t enable;
2335 int clk;
2336};
2337
2338static void omap_pwl_update(struct omap_pwl_s *s)
2339{
2340 int output = (s->clk && s->enable) ? s->level : 0;
2341
2342 if (output != s->output) {
2343 s->output = output;
2344 printf("%s: Backlight now at %i/256\n", __func__, output);
2345 }
2346}
2347
2348static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2349 unsigned size)
2350{
2351 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2352 int offset = addr & OMAP_MPUI_REG_MASK;
2353
2354 if (size != 1) {
2355 return omap_badwidth_read8(opaque, addr);
2356 }
2357
2358 switch (offset) {
2359 case 0x00:
2360 return s->level;
2361 case 0x04:
2362 return s->enable;
2363 }
2364 OMAP_BAD_REG(addr);
2365 return 0;
2366}
2367
2368static void omap_pwl_write(void *opaque, hwaddr addr,
2369 uint64_t value, unsigned size)
2370{
2371 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2372 int offset = addr & OMAP_MPUI_REG_MASK;
2373
2374 if (size != 1) {
2375 omap_badwidth_write8(opaque, addr, value);
2376 return;
2377 }
2378
2379 switch (offset) {
2380 case 0x00:
2381 s->level = value;
2382 omap_pwl_update(s);
2383 break;
2384 case 0x04:
2385 s->enable = value & 1;
2386 omap_pwl_update(s);
2387 break;
2388 default:
2389 OMAP_BAD_REG(addr);
2390 return;
2391 }
2392}
2393
2394static const MemoryRegionOps omap_pwl_ops = {
2395 .read = omap_pwl_read,
2396 .write = omap_pwl_write,
2397 .endianness = DEVICE_NATIVE_ENDIAN,
2398};
2399
2400static void omap_pwl_reset(struct omap_pwl_s *s)
2401{
2402 s->output = 0;
2403 s->level = 0;
2404 s->enable = 0;
2405 s->clk = 1;
2406 omap_pwl_update(s);
2407}
2408
2409static void omap_pwl_clk_update(void *opaque, int line, int on)
2410{
2411 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2412
2413 s->clk = on;
2414 omap_pwl_update(s);
2415}
2416
2417static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2418 hwaddr base,
2419 omap_clk clk)
2420{
2421 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2422
2423 omap_pwl_reset(s);
2424
2425 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2426 "omap-pwl", 0x800);
2427 memory_region_add_subregion(system_memory, base, &s->iomem);
2428
2429 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2430 return s;
2431}
2432
2433
2434struct omap_pwt_s {
2435 MemoryRegion iomem;
2436 uint8_t frc;
2437 uint8_t vrc;
2438 uint8_t gcr;
2439 omap_clk clk;
2440};
2441
2442static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2443 unsigned size)
2444{
2445 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2446 int offset = addr & OMAP_MPUI_REG_MASK;
2447
2448 if (size != 1) {
2449 return omap_badwidth_read8(opaque, addr);
2450 }
2451
2452 switch (offset) {
2453 case 0x00:
2454 return s->frc;
2455 case 0x04:
2456 return s->vrc;
2457 case 0x08:
2458 return s->gcr;
2459 }
2460 OMAP_BAD_REG(addr);
2461 return 0;
2462}
2463
2464static void omap_pwt_write(void *opaque, hwaddr addr,
2465 uint64_t value, unsigned size)
2466{
2467 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2468 int offset = addr & OMAP_MPUI_REG_MASK;
2469
2470 if (size != 1) {
2471 omap_badwidth_write8(opaque, addr, value);
2472 return;
2473 }
2474
2475 switch (offset) {
2476 case 0x00:
2477 s->frc = value & 0x3f;
2478 break;
2479 case 0x04:
2480 if ((value ^ s->vrc) & 1) {
2481 if (value & 1)
2482 printf("%s: %iHz buzz on\n", __func__, (int)
2483
2484 ((omap_clk_getrate(s->clk) >> 3) /
2485
2486 ((s->gcr & 2) ? 1 : 154) /
2487
2488 (2 << (value & 3)) *
2489
2490 ((value & (1 << 2)) ? 101 : 107) *
2491
2492 ((value & (1 << 3)) ? 49 : 55) *
2493
2494 ((value & (1 << 4)) ? 50 : 63) *
2495
2496 ((value & (1 << 5)) ? 80 : 127) /
2497 (107 * 55 * 63 * 127)));
2498 else
2499 printf("%s: silence!\n", __func__);
2500 }
2501 s->vrc = value & 0x7f;
2502 break;
2503 case 0x08:
2504 s->gcr = value & 3;
2505 break;
2506 default:
2507 OMAP_BAD_REG(addr);
2508 return;
2509 }
2510}
2511
2512static const MemoryRegionOps omap_pwt_ops = {
2513 .read =omap_pwt_read,
2514 .write = omap_pwt_write,
2515 .endianness = DEVICE_NATIVE_ENDIAN,
2516};
2517
2518static void omap_pwt_reset(struct omap_pwt_s *s)
2519{
2520 s->frc = 0;
2521 s->vrc = 0;
2522 s->gcr = 0;
2523}
2524
2525static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2526 hwaddr base,
2527 omap_clk clk)
2528{
2529 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2530 s->clk = clk;
2531 omap_pwt_reset(s);
2532
2533 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2534 "omap-pwt", 0x800);
2535 memory_region_add_subregion(system_memory, base, &s->iomem);
2536 return s;
2537}
2538
2539
2540struct omap_rtc_s {
2541 MemoryRegion iomem;
2542 qemu_irq irq;
2543 qemu_irq alarm;
2544 QEMUTimer *clk;
2545
2546 uint8_t interrupts;
2547 uint8_t status;
2548 int16_t comp_reg;
2549 int running;
2550 int pm_am;
2551 int auto_comp;
2552 int round;
2553 struct tm alarm_tm;
2554 time_t alarm_ti;
2555
2556 struct tm current_tm;
2557 time_t ti;
2558 uint64_t tick;
2559};
2560
2561static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2562{
2563
2564 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2565}
2566
2567static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2568{
2569 s->alarm_ti = mktimegm(&s->alarm_tm);
2570 if (s->alarm_ti == -1)
2571 printf("%s: conversion failed\n", __func__);
2572}
2573
2574static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2575 unsigned size)
2576{
2577 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2578 int offset = addr & OMAP_MPUI_REG_MASK;
2579 uint8_t i;
2580
2581 if (size != 1) {
2582 return omap_badwidth_read8(opaque, addr);
2583 }
2584
2585 switch (offset) {
2586 case 0x00:
2587 return to_bcd(s->current_tm.tm_sec);
2588
2589 case 0x04:
2590 return to_bcd(s->current_tm.tm_min);
2591
2592 case 0x08:
2593 if (s->pm_am)
2594 return ((s->current_tm.tm_hour > 11) << 7) |
2595 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2596 else
2597 return to_bcd(s->current_tm.tm_hour);
2598
2599 case 0x0c:
2600 return to_bcd(s->current_tm.tm_mday);
2601
2602 case 0x10:
2603 return to_bcd(s->current_tm.tm_mon + 1);
2604
2605 case 0x14:
2606 return to_bcd(s->current_tm.tm_year % 100);
2607
2608 case 0x18:
2609 return s->current_tm.tm_wday;
2610
2611 case 0x20:
2612 return to_bcd(s->alarm_tm.tm_sec);
2613
2614 case 0x24:
2615 return to_bcd(s->alarm_tm.tm_min);
2616
2617 case 0x28:
2618 if (s->pm_am)
2619 return ((s->alarm_tm.tm_hour > 11) << 7) |
2620 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2621 else
2622 return to_bcd(s->alarm_tm.tm_hour);
2623
2624 case 0x2c:
2625 return to_bcd(s->alarm_tm.tm_mday);
2626
2627 case 0x30:
2628 return to_bcd(s->alarm_tm.tm_mon + 1);
2629
2630 case 0x34:
2631 return to_bcd(s->alarm_tm.tm_year % 100);
2632
2633 case 0x40:
2634 return (s->pm_am << 3) | (s->auto_comp << 2) |
2635 (s->round << 1) | s->running;
2636
2637 case 0x44:
2638 i = s->status;
2639 s->status &= ~0x3d;
2640 return i;
2641
2642 case 0x48:
2643 return s->interrupts;
2644
2645 case 0x4c:
2646 return ((uint16_t) s->comp_reg) & 0xff;
2647
2648 case 0x50:
2649 return ((uint16_t) s->comp_reg) >> 8;
2650 }
2651
2652 OMAP_BAD_REG(addr);
2653 return 0;
2654}
2655
2656static void omap_rtc_write(void *opaque, hwaddr addr,
2657 uint64_t value, unsigned size)
2658{
2659 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2660 int offset = addr & OMAP_MPUI_REG_MASK;
2661 struct tm new_tm;
2662 time_t ti[2];
2663
2664 if (size != 1) {
2665 omap_badwidth_write8(opaque, addr, value);
2666 return;
2667 }
2668
2669 switch (offset) {
2670 case 0x00:
2671#ifdef ALMDEBUG
2672 printf("RTC SEC_REG <-- %02x\n", value);
2673#endif
2674 s->ti -= s->current_tm.tm_sec;
2675 s->ti += from_bcd(value);
2676 return;
2677
2678 case 0x04:
2679#ifdef ALMDEBUG
2680 printf("RTC MIN_REG <-- %02x\n", value);
2681#endif
2682 s->ti -= s->current_tm.tm_min * 60;
2683 s->ti += from_bcd(value) * 60;
2684 return;
2685
2686 case 0x08:
2687#ifdef ALMDEBUG
2688 printf("RTC HRS_REG <-- %02x\n", value);
2689#endif
2690 s->ti -= s->current_tm.tm_hour * 3600;
2691 if (s->pm_am) {
2692 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2693 s->ti += ((value >> 7) & 1) * 43200;
2694 } else
2695 s->ti += from_bcd(value & 0x3f) * 3600;
2696 return;
2697
2698 case 0x0c:
2699#ifdef ALMDEBUG
2700 printf("RTC DAY_REG <-- %02x\n", value);
2701#endif
2702 s->ti -= s->current_tm.tm_mday * 86400;
2703 s->ti += from_bcd(value) * 86400;
2704 return;
2705
2706 case 0x10:
2707#ifdef ALMDEBUG
2708 printf("RTC MTH_REG <-- %02x\n", value);
2709#endif
2710 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2711 new_tm.tm_mon = from_bcd(value);
2712 ti[0] = mktimegm(&s->current_tm);
2713 ti[1] = mktimegm(&new_tm);
2714
2715 if (ti[0] != -1 && ti[1] != -1) {
2716 s->ti -= ti[0];
2717 s->ti += ti[1];
2718 } else {
2719
2720 s->ti -= s->current_tm.tm_mon * 2592000;
2721 s->ti += from_bcd(value) * 2592000;
2722 }
2723 return;
2724
2725 case 0x14:
2726#ifdef ALMDEBUG
2727 printf("RTC YRS_REG <-- %02x\n", value);
2728#endif
2729 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2730 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2731 ti[0] = mktimegm(&s->current_tm);
2732 ti[1] = mktimegm(&new_tm);
2733
2734 if (ti[0] != -1 && ti[1] != -1) {
2735 s->ti -= ti[0];
2736 s->ti += ti[1];
2737 } else {
2738
2739 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2740 s->ti += (time_t)from_bcd(value) * 31536000;
2741 }
2742 return;
2743
2744 case 0x18:
2745 return;
2746
2747 case 0x20:
2748#ifdef ALMDEBUG
2749 printf("ALM SEC_REG <-- %02x\n", value);
2750#endif
2751 s->alarm_tm.tm_sec = from_bcd(value);
2752 omap_rtc_alarm_update(s);
2753 return;
2754
2755 case 0x24:
2756#ifdef ALMDEBUG
2757 printf("ALM MIN_REG <-- %02x\n", value);
2758#endif
2759 s->alarm_tm.tm_min = from_bcd(value);
2760 omap_rtc_alarm_update(s);
2761 return;
2762
2763 case 0x28:
2764#ifdef ALMDEBUG
2765 printf("ALM HRS_REG <-- %02x\n", value);
2766#endif
2767 if (s->pm_am)
2768 s->alarm_tm.tm_hour =
2769 ((from_bcd(value & 0x3f)) % 12) +
2770 ((value >> 7) & 1) * 12;
2771 else
2772 s->alarm_tm.tm_hour = from_bcd(value);
2773 omap_rtc_alarm_update(s);
2774 return;
2775
2776 case 0x2c:
2777#ifdef ALMDEBUG
2778 printf("ALM DAY_REG <-- %02x\n", value);
2779#endif
2780 s->alarm_tm.tm_mday = from_bcd(value);
2781 omap_rtc_alarm_update(s);
2782 return;
2783
2784 case 0x30:
2785#ifdef ALMDEBUG
2786 printf("ALM MON_REG <-- %02x\n", value);
2787#endif
2788 s->alarm_tm.tm_mon = from_bcd(value);
2789 omap_rtc_alarm_update(s);
2790 return;
2791
2792 case 0x34:
2793#ifdef ALMDEBUG
2794 printf("ALM YRS_REG <-- %02x\n", value);
2795#endif
2796 s->alarm_tm.tm_year = from_bcd(value);
2797 omap_rtc_alarm_update(s);
2798 return;
2799
2800 case 0x40:
2801#ifdef ALMDEBUG
2802 printf("RTC CONTROL <-- %02x\n", value);
2803#endif
2804 s->pm_am = (value >> 3) & 1;
2805 s->auto_comp = (value >> 2) & 1;
2806 s->round = (value >> 1) & 1;
2807 s->running = value & 1;
2808 s->status &= 0xfd;
2809 s->status |= s->running << 1;
2810 return;
2811
2812 case 0x44:
2813#ifdef ALMDEBUG
2814 printf("RTC STATUSL <-- %02x\n", value);
2815#endif
2816 s->status &= ~((value & 0xc0) ^ 0x80);
2817 omap_rtc_interrupts_update(s);
2818 return;
2819
2820 case 0x48:
2821#ifdef ALMDEBUG
2822 printf("RTC INTRS <-- %02x\n", value);
2823#endif
2824 s->interrupts = value;
2825 return;
2826
2827 case 0x4c:
2828#ifdef ALMDEBUG
2829 printf("RTC COMPLSB <-- %02x\n", value);
2830#endif
2831 s->comp_reg &= 0xff00;
2832 s->comp_reg |= 0x00ff & value;
2833 return;
2834
2835 case 0x50:
2836#ifdef ALMDEBUG
2837 printf("RTC COMPMSB <-- %02x\n", value);
2838#endif
2839 s->comp_reg &= 0x00ff;
2840 s->comp_reg |= 0xff00 & (value << 8);
2841 return;
2842
2843 default:
2844 OMAP_BAD_REG(addr);
2845 return;
2846 }
2847}
2848
2849static const MemoryRegionOps omap_rtc_ops = {
2850 .read = omap_rtc_read,
2851 .write = omap_rtc_write,
2852 .endianness = DEVICE_NATIVE_ENDIAN,
2853};
2854
2855static void omap_rtc_tick(void *opaque)
2856{
2857 struct omap_rtc_s *s = opaque;
2858
2859 if (s->round) {
2860
2861 if (s->current_tm.tm_sec < 30)
2862 s->ti -= s->current_tm.tm_sec;
2863 else
2864 s->ti += 60 - s->current_tm.tm_sec;
2865
2866 s->round = 0;
2867 }
2868
2869 localtime_r(&s->ti, &s->current_tm);
2870
2871 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2872 s->status |= 0x40;
2873 omap_rtc_interrupts_update(s);
2874 }
2875
2876 if (s->interrupts & 0x04)
2877 switch (s->interrupts & 3) {
2878 case 0:
2879 s->status |= 0x04;
2880 qemu_irq_pulse(s->irq);
2881 break;
2882 case 1:
2883 if (s->current_tm.tm_sec)
2884 break;
2885 s->status |= 0x08;
2886 qemu_irq_pulse(s->irq);
2887 break;
2888 case 2:
2889 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2890 break;
2891 s->status |= 0x10;
2892 qemu_irq_pulse(s->irq);
2893 break;
2894 case 3:
2895 if (s->current_tm.tm_sec ||
2896 s->current_tm.tm_min || s->current_tm.tm_hour)
2897 break;
2898 s->status |= 0x20;
2899 qemu_irq_pulse(s->irq);
2900 break;
2901 }
2902
2903
2904 if (s->running)
2905 s->ti ++;
2906 s->tick += 1000;
2907
2908
2909
2910
2911
2912 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2913 s->tick += s->comp_reg * 1000 / 32768;
2914
2915 timer_mod(s->clk, s->tick);
2916}
2917
2918static void omap_rtc_reset(struct omap_rtc_s *s)
2919{
2920 struct tm tm;
2921
2922 s->interrupts = 0;
2923 s->comp_reg = 0;
2924 s->running = 0;
2925 s->pm_am = 0;
2926 s->auto_comp = 0;
2927 s->round = 0;
2928 s->tick = qemu_clock_get_ms(rtc_clock);
2929 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2930 s->alarm_tm.tm_mday = 0x01;
2931 s->status = 1 << 7;
2932 qemu_get_timedate(&tm, 0);
2933 s->ti = mktimegm(&tm);
2934
2935 omap_rtc_alarm_update(s);
2936 omap_rtc_tick(s);
2937}
2938
2939static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2940 hwaddr base,
2941 qemu_irq timerirq, qemu_irq alarmirq,
2942 omap_clk clk)
2943{
2944 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2945
2946 s->irq = timerirq;
2947 s->alarm = alarmirq;
2948 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2949
2950 omap_rtc_reset(s);
2951
2952 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2953 "omap-rtc", 0x800);
2954 memory_region_add_subregion(system_memory, base, &s->iomem);
2955
2956 return s;
2957}
2958
2959
2960struct omap_mcbsp_s {
2961 MemoryRegion iomem;
2962 qemu_irq txirq;
2963 qemu_irq rxirq;
2964 qemu_irq txdrq;
2965 qemu_irq rxdrq;
2966
2967 uint16_t spcr[2];
2968 uint16_t rcr[2];
2969 uint16_t xcr[2];
2970 uint16_t srgr[2];
2971 uint16_t mcr[2];
2972 uint16_t pcr;
2973 uint16_t rcer[8];
2974 uint16_t xcer[8];
2975 int tx_rate;
2976 int rx_rate;
2977 int tx_req;
2978 int rx_req;
2979
2980 I2SCodec *codec;
2981 QEMUTimer *source_timer;
2982 QEMUTimer *sink_timer;
2983};
2984
2985static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2986{
2987 int irq;
2988
2989 switch ((s->spcr[0] >> 4) & 3) {
2990 case 0:
2991 irq = (s->spcr[0] >> 1) & 1;
2992 break;
2993 case 3:
2994 irq = (s->spcr[0] >> 3) & 1;
2995 break;
2996 default:
2997 irq = 0;
2998 break;
2999 }
3000
3001 if (irq)
3002 qemu_irq_pulse(s->rxirq);
3003
3004 switch ((s->spcr[1] >> 4) & 3) {
3005 case 0:
3006 irq = (s->spcr[1] >> 1) & 1;
3007 break;
3008 case 3:
3009 irq = (s->spcr[1] >> 3) & 1;
3010 break;
3011 default:
3012 irq = 0;
3013 break;
3014 }
3015
3016 if (irq)
3017 qemu_irq_pulse(s->txirq);
3018}
3019
3020static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3021{
3022 if ((s->spcr[0] >> 1) & 1)
3023 s->spcr[0] |= 1 << 2;
3024 s->spcr[0] |= 1 << 1;
3025 qemu_irq_raise(s->rxdrq);
3026 omap_mcbsp_intr_update(s);
3027}
3028
3029static void omap_mcbsp_source_tick(void *opaque)
3030{
3031 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3032 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3033
3034 if (!s->rx_rate)
3035 return;
3036 if (s->rx_req)
3037 printf("%s: Rx FIFO overrun\n", __func__);
3038
3039 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3040
3041 omap_mcbsp_rx_newdata(s);
3042 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3043 NANOSECONDS_PER_SECOND);
3044}
3045
3046static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3047{
3048 if (!s->codec || !s->codec->rts)
3049 omap_mcbsp_source_tick(s);
3050 else if (s->codec->in.len) {
3051 s->rx_req = s->codec->in.len;
3052 omap_mcbsp_rx_newdata(s);
3053 }
3054}
3055
3056static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3057{
3058 timer_del(s->source_timer);
3059}
3060
3061static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3062{
3063 s->spcr[0] &= ~(1 << 1);
3064 qemu_irq_lower(s->rxdrq);
3065 omap_mcbsp_intr_update(s);
3066}
3067
3068static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3069{
3070 s->spcr[1] |= 1 << 1;
3071 qemu_irq_raise(s->txdrq);
3072 omap_mcbsp_intr_update(s);
3073}
3074
3075static void omap_mcbsp_sink_tick(void *opaque)
3076{
3077 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3078 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3079
3080 if (!s->tx_rate)
3081 return;
3082 if (s->tx_req)
3083 printf("%s: Tx FIFO underrun\n", __func__);
3084
3085 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3086
3087 omap_mcbsp_tx_newdata(s);
3088 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3089 NANOSECONDS_PER_SECOND);
3090}
3091
3092static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3093{
3094 if (!s->codec || !s->codec->cts)
3095 omap_mcbsp_sink_tick(s);
3096 else if (s->codec->out.size) {
3097 s->tx_req = s->codec->out.size;
3098 omap_mcbsp_tx_newdata(s);
3099 }
3100}
3101
3102static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3103{
3104 s->spcr[1] &= ~(1 << 1);
3105 qemu_irq_lower(s->txdrq);
3106 omap_mcbsp_intr_update(s);
3107 if (s->codec && s->codec->cts)
3108 s->codec->tx_swallow(s->codec->opaque);
3109}
3110
3111static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3112{
3113 s->tx_req = 0;
3114 omap_mcbsp_tx_done(s);
3115 timer_del(s->sink_timer);
3116}
3117
3118static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3119{
3120 int prev_rx_rate, prev_tx_rate;
3121 int rx_rate = 0, tx_rate = 0;
3122 int cpu_rate = 1500000;
3123
3124
3125 if (s->spcr[1] & (1 << 6)) {
3126 if (s->spcr[0] & (1 << 0)) {
3127 if ((s->srgr[1] & (1 << 13)) &&
3128 (s->pcr & (1 << 8))) {
3129 if (~s->pcr & (1 << 7))
3130 rx_rate = cpu_rate /
3131 ((s->srgr[0] & 0xff) + 1);
3132 } else
3133 if (s->codec)
3134 rx_rate = s->codec->rx_rate;
3135 }
3136
3137 if (s->spcr[1] & (1 << 0)) {
3138 if ((s->srgr[1] & (1 << 13)) &&
3139 (s->pcr & (1 << 9))) {
3140 if (~s->pcr & (1 << 7))
3141 tx_rate = cpu_rate /
3142 ((s->srgr[0] & 0xff) + 1);
3143 } else
3144 if (s->codec)
3145 tx_rate = s->codec->tx_rate;
3146 }
3147 }
3148 prev_tx_rate = s->tx_rate;
3149 prev_rx_rate = s->rx_rate;
3150 s->tx_rate = tx_rate;
3151 s->rx_rate = rx_rate;
3152
3153 if (s->codec)
3154 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3155
3156 if (!prev_tx_rate && tx_rate)
3157 omap_mcbsp_tx_start(s);
3158 else if (s->tx_rate && !tx_rate)
3159 omap_mcbsp_tx_stop(s);
3160
3161 if (!prev_rx_rate && rx_rate)
3162 omap_mcbsp_rx_start(s);
3163 else if (prev_tx_rate && !tx_rate)
3164 omap_mcbsp_rx_stop(s);
3165}
3166
3167static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3168 unsigned size)
3169{
3170 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3171 int offset = addr & OMAP_MPUI_REG_MASK;
3172 uint16_t ret;
3173
3174 if (size != 2) {
3175 return omap_badwidth_read16(opaque, addr);
3176 }
3177
3178 switch (offset) {
3179 case 0x00:
3180 if (((s->rcr[0] >> 5) & 7) < 3)
3181 return 0x0000;
3182
3183 case 0x02:
3184 if (s->rx_req < 2) {
3185 printf("%s: Rx FIFO underrun\n", __func__);
3186 omap_mcbsp_rx_done(s);
3187 } else {
3188 s->tx_req -= 2;
3189 if (s->codec && s->codec->in.len >= 2) {
3190 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3191 ret |= s->codec->in.fifo[s->codec->in.start ++];
3192 s->codec->in.len -= 2;
3193 } else
3194 ret = 0x0000;
3195 if (!s->tx_req)
3196 omap_mcbsp_rx_done(s);
3197 return ret;
3198 }
3199 return 0x0000;
3200
3201 case 0x04:
3202 case 0x06:
3203 return 0x0000;
3204
3205 case 0x08:
3206 return s->spcr[1];
3207 case 0x0a:
3208 return s->spcr[0];
3209 case 0x0c:
3210 return s->rcr[1];
3211 case 0x0e:
3212 return s->rcr[0];
3213 case 0x10:
3214 return s->xcr[1];
3215 case 0x12:
3216 return s->xcr[0];
3217 case 0x14:
3218 return s->srgr[1];
3219 case 0x16:
3220 return s->srgr[0];
3221 case 0x18:
3222 return s->mcr[1];
3223 case 0x1a:
3224 return s->mcr[0];
3225 case 0x1c:
3226 return s->rcer[0];
3227 case 0x1e:
3228 return s->rcer[1];
3229 case 0x20:
3230 return s->xcer[0];
3231 case 0x22:
3232 return s->xcer[1];
3233 case 0x24:
3234 return s->pcr;
3235 case 0x26:
3236 return s->rcer[2];
3237 case 0x28:
3238 return s->rcer[3];
3239 case 0x2a:
3240 return s->xcer[2];
3241 case 0x2c:
3242 return s->xcer[3];
3243 case 0x2e:
3244 return s->rcer[4];
3245 case 0x30:
3246 return s->rcer[5];
3247 case 0x32:
3248 return s->xcer[4];
3249 case 0x34:
3250 return s->xcer[5];
3251 case 0x36:
3252 return s->rcer[6];
3253 case 0x38:
3254 return s->rcer[7];
3255 case 0x3a:
3256 return s->xcer[6];
3257 case 0x3c:
3258 return s->xcer[7];
3259 }
3260
3261 OMAP_BAD_REG(addr);
3262 return 0;
3263}
3264
3265static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3266 uint32_t value)
3267{
3268 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3269 int offset = addr & OMAP_MPUI_REG_MASK;
3270
3271 switch (offset) {
3272 case 0x00:
3273 case 0x02:
3274 OMAP_RO_REG(addr);
3275 return;
3276
3277 case 0x04:
3278 if (((s->xcr[0] >> 5) & 7) < 3)
3279 return;
3280
3281 case 0x06:
3282 if (s->tx_req > 1) {
3283 s->tx_req -= 2;
3284 if (s->codec && s->codec->cts) {
3285 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3286 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3287 }
3288 if (s->tx_req < 2)
3289 omap_mcbsp_tx_done(s);
3290 } else
3291 printf("%s: Tx FIFO overrun\n", __func__);
3292 return;
3293
3294 case 0x08:
3295 s->spcr[1] &= 0x0002;
3296 s->spcr[1] |= 0x03f9 & value;
3297 s->spcr[1] |= 0x0004 & (value << 2);
3298 if (~value & 1)
3299 s->spcr[1] &= ~6;
3300 omap_mcbsp_req_update(s);
3301 return;
3302 case 0x0a:
3303 s->spcr[0] &= 0x0006;
3304 s->spcr[0] |= 0xf8f9 & value;
3305 if (value & (1 << 15))
3306 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3307 if (~value & 1) {
3308 s->spcr[0] &= ~6;
3309 s->rx_req = 0;
3310 omap_mcbsp_rx_done(s);
3311 }
3312 omap_mcbsp_req_update(s);
3313 return;
3314
3315 case 0x0c:
3316 s->rcr[1] = value & 0xffff;
3317 return;
3318 case 0x0e:
3319 s->rcr[0] = value & 0x7fe0;
3320 return;
3321 case 0x10:
3322 s->xcr[1] = value & 0xffff;
3323 return;
3324 case 0x12:
3325 s->xcr[0] = value & 0x7fe0;
3326 return;
3327 case 0x14:
3328 s->srgr[1] = value & 0xffff;
3329 omap_mcbsp_req_update(s);
3330 return;
3331 case 0x16:
3332 s->srgr[0] = value & 0xffff;
3333 omap_mcbsp_req_update(s);
3334 return;
3335 case 0x18:
3336 s->mcr[1] = value & 0x03e3;
3337 if (value & 3)
3338 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3339 return;
3340 case 0x1a:
3341 s->mcr[0] = value & 0x03e1;
3342 if (value & 1)
3343 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3344 return;
3345 case 0x1c:
3346 s->rcer[0] = value & 0xffff;
3347 return;
3348 case 0x1e:
3349 s->rcer[1] = value & 0xffff;
3350 return;
3351 case 0x20:
3352 s->xcer[0] = value & 0xffff;
3353 return;
3354 case 0x22:
3355 s->xcer[1] = value & 0xffff;
3356 return;
3357 case 0x24:
3358 s->pcr = value & 0x7faf;
3359 return;
3360 case 0x26:
3361 s->rcer[2] = value & 0xffff;
3362 return;
3363 case 0x28:
3364 s->rcer[3] = value & 0xffff;
3365 return;
3366 case 0x2a:
3367 s->xcer[2] = value & 0xffff;
3368 return;
3369 case 0x2c:
3370 s->xcer[3] = value & 0xffff;
3371 return;
3372 case 0x2e:
3373 s->rcer[4] = value & 0xffff;
3374 return;
3375 case 0x30:
3376 s->rcer[5] = value & 0xffff;
3377 return;
3378 case 0x32:
3379 s->xcer[4] = value & 0xffff;
3380 return;
3381 case 0x34:
3382 s->xcer[5] = value & 0xffff;
3383 return;
3384 case 0x36:
3385 s->rcer[6] = value & 0xffff;
3386 return;
3387 case 0x38:
3388 s->rcer[7] = value & 0xffff;
3389 return;
3390 case 0x3a:
3391 s->xcer[6] = value & 0xffff;
3392 return;
3393 case 0x3c:
3394 s->xcer[7] = value & 0xffff;
3395 return;
3396 }
3397
3398 OMAP_BAD_REG(addr);
3399}
3400
3401static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3402 uint32_t value)
3403{
3404 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3405 int offset = addr & OMAP_MPUI_REG_MASK;
3406
3407 if (offset == 0x04) {
3408 if (((s->xcr[0] >> 5) & 7) < 3)
3409 return;
3410 if (s->tx_req > 3) {
3411 s->tx_req -= 4;
3412 if (s->codec && s->codec->cts) {
3413 s->codec->out.fifo[s->codec->out.len ++] =
3414 (value >> 24) & 0xff;
3415 s->codec->out.fifo[s->codec->out.len ++] =
3416 (value >> 16) & 0xff;
3417 s->codec->out.fifo[s->codec->out.len ++] =
3418 (value >> 8) & 0xff;
3419 s->codec->out.fifo[s->codec->out.len ++] =
3420 (value >> 0) & 0xff;
3421 }
3422 if (s->tx_req < 4)
3423 omap_mcbsp_tx_done(s);
3424 } else
3425 printf("%s: Tx FIFO overrun\n", __func__);
3426 return;
3427 }
3428
3429 omap_badwidth_write16(opaque, addr, value);
3430}
3431
3432static void omap_mcbsp_write(void *opaque, hwaddr addr,
3433 uint64_t value, unsigned size)
3434{
3435 switch (size) {
3436 case 2:
3437 omap_mcbsp_writeh(opaque, addr, value);
3438 break;
3439 case 4:
3440 omap_mcbsp_writew(opaque, addr, value);
3441 break;
3442 default:
3443 omap_badwidth_write16(opaque, addr, value);
3444 }
3445}
3446
3447static const MemoryRegionOps omap_mcbsp_ops = {
3448 .read = omap_mcbsp_read,
3449 .write = omap_mcbsp_write,
3450 .endianness = DEVICE_NATIVE_ENDIAN,
3451};
3452
3453static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3454{
3455 memset(&s->spcr, 0, sizeof(s->spcr));
3456 memset(&s->rcr, 0, sizeof(s->rcr));
3457 memset(&s->xcr, 0, sizeof(s->xcr));
3458 s->srgr[0] = 0x0001;
3459 s->srgr[1] = 0x2000;
3460 memset(&s->mcr, 0, sizeof(s->mcr));
3461 memset(&s->pcr, 0, sizeof(s->pcr));
3462 memset(&s->rcer, 0, sizeof(s->rcer));
3463 memset(&s->xcer, 0, sizeof(s->xcer));
3464 s->tx_req = 0;
3465 s->rx_req = 0;
3466 s->tx_rate = 0;
3467 s->rx_rate = 0;
3468 timer_del(s->source_timer);
3469 timer_del(s->sink_timer);
3470}
3471
3472static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3473 hwaddr base,
3474 qemu_irq txirq, qemu_irq rxirq,
3475 qemu_irq *dma, omap_clk clk)
3476{
3477 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3478
3479 s->txirq = txirq;
3480 s->rxirq = rxirq;
3481 s->txdrq = dma[0];
3482 s->rxdrq = dma[1];
3483 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3484 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3485 omap_mcbsp_reset(s);
3486
3487 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3488 memory_region_add_subregion(system_memory, base, &s->iomem);
3489
3490 return s;
3491}
3492
3493static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3494{
3495 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3496
3497 if (s->rx_rate) {
3498 s->rx_req = s->codec->in.len;
3499 omap_mcbsp_rx_newdata(s);
3500 }
3501}
3502
3503static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3504{
3505 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3506
3507 if (s->tx_rate) {
3508 s->tx_req = s->codec->out.size;
3509 omap_mcbsp_tx_newdata(s);
3510 }
3511}
3512
3513void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3514{
3515 s->codec = slave;
3516 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3517 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3518}
3519
3520
3521struct omap_lpg_s {
3522 MemoryRegion iomem;
3523 QEMUTimer *tm;
3524
3525 uint8_t control;
3526 uint8_t power;
3527 int64_t on;
3528 int64_t period;
3529 int clk;
3530 int cycle;
3531};
3532
3533static void omap_lpg_tick(void *opaque)
3534{
3535 struct omap_lpg_s *s = opaque;
3536
3537 if (s->cycle)
3538 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3539 else
3540 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3541
3542 s->cycle = !s->cycle;
3543 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3544}
3545
3546static void omap_lpg_update(struct omap_lpg_s *s)
3547{
3548 int64_t on, period = 1, ticks = 1000;
3549 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3550
3551 if (~s->control & (1 << 6))
3552 on = 0;
3553 else if (s->control & (1 << 7))
3554 on = period;
3555 else {
3556 period = muldiv64(ticks, per[s->control & 7],
3557 256 / 32);
3558 on = (s->clk && s->power) ? muldiv64(ticks,
3559 per[(s->control >> 3) & 7], 256) : 0;
3560 }
3561
3562 timer_del(s->tm);
3563 if (on == period && s->on < s->period)
3564 printf("%s: LED is on\n", __func__);
3565 else if (on == 0 && s->on)
3566 printf("%s: LED is off\n", __func__);
3567 else if (on && (on != s->on || period != s->period)) {
3568 s->cycle = 0;
3569 s->on = on;
3570 s->period = period;
3571 omap_lpg_tick(s);
3572 return;
3573 }
3574
3575 s->on = on;
3576 s->period = period;
3577}
3578
3579static void omap_lpg_reset(struct omap_lpg_s *s)
3580{
3581 s->control = 0x00;
3582 s->power = 0x00;
3583 s->clk = 1;
3584 omap_lpg_update(s);
3585}
3586
3587static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3588 unsigned size)
3589{
3590 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3591 int offset = addr & OMAP_MPUI_REG_MASK;
3592
3593 if (size != 1) {
3594 return omap_badwidth_read8(opaque, addr);
3595 }
3596
3597 switch (offset) {
3598 case 0x00:
3599 return s->control;
3600
3601 case 0x04:
3602 return s->power;
3603 }
3604
3605 OMAP_BAD_REG(addr);
3606 return 0;
3607}
3608
3609static void omap_lpg_write(void *opaque, hwaddr addr,
3610 uint64_t value, unsigned size)
3611{
3612 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3613 int offset = addr & OMAP_MPUI_REG_MASK;
3614
3615 if (size != 1) {
3616 omap_badwidth_write8(opaque, addr, value);
3617 return;
3618 }
3619
3620 switch (offset) {
3621 case 0x00:
3622 if (~value & (1 << 6))
3623 omap_lpg_reset(s);
3624 s->control = value & 0xff;
3625 omap_lpg_update(s);
3626 return;
3627
3628 case 0x04:
3629 s->power = value & 0x01;
3630 omap_lpg_update(s);
3631 return;
3632
3633 default:
3634 OMAP_BAD_REG(addr);
3635 return;
3636 }
3637}
3638
3639static const MemoryRegionOps omap_lpg_ops = {
3640 .read = omap_lpg_read,
3641 .write = omap_lpg_write,
3642 .endianness = DEVICE_NATIVE_ENDIAN,
3643};
3644
3645static void omap_lpg_clk_update(void *opaque, int line, int on)
3646{
3647 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3648
3649 s->clk = on;
3650 omap_lpg_update(s);
3651}
3652
3653static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3654 hwaddr base, omap_clk clk)
3655{
3656 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3657
3658 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3659
3660 omap_lpg_reset(s);
3661
3662 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3663 memory_region_add_subregion(system_memory, base, &s->iomem);
3664
3665 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3666
3667 return s;
3668}
3669
3670
3671static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3672 unsigned size)
3673{
3674 if (size != 2) {
3675 return omap_badwidth_read16(opaque, addr);
3676 }
3677
3678 if (addr == OMAP_MPUI_BASE)
3679 return 0xfe4d;
3680
3681 OMAP_BAD_REG(addr);
3682 return 0;
3683}
3684
3685static void omap_mpui_io_write(void *opaque, hwaddr addr,
3686 uint64_t value, unsigned size)
3687{
3688
3689 omap_badwidth_write16(opaque, addr, value);
3690}
3691
3692static const MemoryRegionOps omap_mpui_io_ops = {
3693 .read = omap_mpui_io_read,
3694 .write = omap_mpui_io_write,
3695 .endianness = DEVICE_NATIVE_ENDIAN,
3696};
3697
3698static void omap_setup_mpui_io(MemoryRegion *system_memory,
3699 struct omap_mpu_state_s *mpu)
3700{
3701 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3702 "omap-mpui-io", 0x7fff);
3703 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3704 &mpu->mpui_io_iomem);
3705}
3706
3707
3708static void omap1_mpu_reset(void *opaque)
3709{
3710 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3711
3712 omap_dma_reset(mpu->dma);
3713 omap_mpu_timer_reset(mpu->timer[0]);
3714 omap_mpu_timer_reset(mpu->timer[1]);
3715 omap_mpu_timer_reset(mpu->timer[2]);
3716 omap_wd_timer_reset(mpu->wdt);
3717 omap_os_timer_reset(mpu->os_timer);
3718 omap_lcdc_reset(mpu->lcd);
3719 omap_ulpd_pm_reset(mpu);
3720 omap_pin_cfg_reset(mpu);
3721 omap_mpui_reset(mpu);
3722 omap_tipb_bridge_reset(mpu->private_tipb);
3723 omap_tipb_bridge_reset(mpu->public_tipb);
3724 omap_dpll_reset(mpu->dpll[0]);
3725 omap_dpll_reset(mpu->dpll[1]);
3726 omap_dpll_reset(mpu->dpll[2]);
3727 omap_uart_reset(mpu->uart[0]);
3728 omap_uart_reset(mpu->uart[1]);
3729 omap_uart_reset(mpu->uart[2]);
3730 omap_mmc_reset(mpu->mmc);
3731 omap_mpuio_reset(mpu->mpuio);
3732 omap_uwire_reset(mpu->microwire);
3733 omap_pwl_reset(mpu->pwl);
3734 omap_pwt_reset(mpu->pwt);
3735 omap_rtc_reset(mpu->rtc);
3736 omap_mcbsp_reset(mpu->mcbsp1);
3737 omap_mcbsp_reset(mpu->mcbsp2);
3738 omap_mcbsp_reset(mpu->mcbsp3);
3739 omap_lpg_reset(mpu->led[0]);
3740 omap_lpg_reset(mpu->led[1]);
3741 omap_clkm_reset(mpu);
3742 cpu_reset(CPU(mpu->cpu));
3743}
3744
3745static const struct omap_map_s {
3746 hwaddr phys_dsp;
3747 hwaddr phys_mpu;
3748 uint32_t size;
3749 const char *name;
3750} omap15xx_dsp_mm[] = {
3751
3752 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },
3753 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },
3754 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },
3755 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },
3756 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },
3757 { 0xe1013000, 0xfffb3000, 0x800, "uWire" },
3758 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },
3759 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },
3760 { 0xe1014800, 0xfffb4800, 0x800, "RTC" },
3761 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },
3762 { 0xe1015800, 0xfffb5800, 0x800, "PWL" },
3763 { 0xe1016000, 0xfffb6000, 0x800, "PWT" },
3764 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },
3765 { 0xe1017800, 0xfffb7800, 0x800, "MMC" },
3766 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },
3767 { 0xe1019800, 0xfffb9800, 0x800, "UART3" },
3768 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },
3769
3770 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },
3771
3772 { 0 }
3773};
3774
3775static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3776 const struct omap_map_s *map)
3777{
3778 MemoryRegion *io;
3779
3780 for (; map->phys_dsp; map ++) {
3781 io = g_new(MemoryRegion, 1);
3782 memory_region_init_alias(io, NULL, map->name,
3783 system_memory, map->phys_mpu, map->size);
3784 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3785 }
3786}
3787
3788void omap_mpu_wakeup(void *opaque, int irq, int req)
3789{
3790 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3791 CPUState *cpu = CPU(mpu->cpu);
3792
3793 if (cpu->halted) {
3794 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3795 }
3796}
3797
3798static const struct dma_irq_map omap1_dma_irq_map[] = {
3799 { 0, OMAP_INT_DMA_CH0_6 },
3800 { 0, OMAP_INT_DMA_CH1_7 },
3801 { 0, OMAP_INT_DMA_CH2_8 },
3802 { 0, OMAP_INT_DMA_CH3 },
3803 { 0, OMAP_INT_DMA_CH4 },
3804 { 0, OMAP_INT_DMA_CH5 },
3805 { 1, OMAP_INT_1610_DMA_CH6 },
3806 { 1, OMAP_INT_1610_DMA_CH7 },
3807 { 1, OMAP_INT_1610_DMA_CH8 },
3808 { 1, OMAP_INT_1610_DMA_CH9 },
3809 { 1, OMAP_INT_1610_DMA_CH10 },
3810 { 1, OMAP_INT_1610_DMA_CH11 },
3811 { 1, OMAP_INT_1610_DMA_CH12 },
3812 { 1, OMAP_INT_1610_DMA_CH13 },
3813 { 1, OMAP_INT_1610_DMA_CH14 },
3814 { 1, OMAP_INT_1610_DMA_CH15 }
3815};
3816
3817
3818static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3819 hwaddr addr)
3820{
3821 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3822}
3823
3824static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3825 hwaddr addr)
3826{
3827 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3828 addr);
3829}
3830
3831static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3832 hwaddr addr)
3833{
3834 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3835}
3836
3837static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3838 hwaddr addr)
3839{
3840 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3841}
3842
3843static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3844 hwaddr addr)
3845{
3846 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3847}
3848
3849static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3850 hwaddr addr)
3851{
3852 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3853}
3854
3855struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3856 unsigned long sdram_size,
3857 const char *cpu_type)
3858{
3859 int i;
3860 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3861 qemu_irq dma_irqs[6];
3862 DriveInfo *dinfo;
3863 SysBusDevice *busdev;
3864
3865
3866 s->mpu_model = omap310;
3867 s->cpu = ARM_CPU(cpu_create(cpu_type));
3868 s->sdram_size = sdram_size;
3869 s->sram_size = OMAP15XX_SRAM_SIZE;
3870
3871 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3872
3873
3874 omap_clk_init(s);
3875
3876
3877 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3878 s->sdram_size);
3879 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3880 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3881 &error_fatal);
3882 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3883
3884 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3885
3886 s->ih[0] = qdev_create(NULL, "omap-intc");
3887 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3888 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3889 qdev_init_nofail(s->ih[0]);
3890 busdev = SYS_BUS_DEVICE(s->ih[0]);
3891 sysbus_connect_irq(busdev, 0,
3892 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3893 sysbus_connect_irq(busdev, 1,
3894 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3895 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3896 s->ih[1] = qdev_create(NULL, "omap-intc");
3897 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3898 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3899 qdev_init_nofail(s->ih[1]);
3900 busdev = SYS_BUS_DEVICE(s->ih[1]);
3901 sysbus_connect_irq(busdev, 0,
3902 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3903
3904 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3905
3906 for (i = 0; i < 6; i++) {
3907 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3908 omap1_dma_irq_map[i].intr);
3909 }
3910 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3911 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3912 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3913
3914 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3915 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3916 s->port[imif ].addr_valid = omap_validate_imif_addr;
3917 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3918 s->port[local ].addr_valid = omap_validate_local_addr;
3919 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3920
3921
3922 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3923 OMAP_EMIFF_BASE, s->sdram_size);
3924 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3925 OMAP_IMIF_BASE, s->sram_size);
3926
3927 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3928 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3929 omap_findclk(s, "mputim_ck"));
3930 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3931 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3932 omap_findclk(s, "mputim_ck"));
3933 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3934 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3935 omap_findclk(s, "mputim_ck"));
3936
3937 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3938 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3939 omap_findclk(s, "armwdt_ck"));
3940
3941 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3942 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3943 omap_findclk(s, "clk32-kHz"));
3944
3945 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3946 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3947 omap_dma_get_lcdch(s->dma),
3948 omap_findclk(s, "lcd_ck"));
3949
3950 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3951 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3952 omap_id_init(system_memory, s);
3953
3954 omap_mpui_init(system_memory, 0xfffec900, s);
3955
3956 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3957 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3958 omap_findclk(s, "tipb_ck"));
3959 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3960 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3961 omap_findclk(s, "tipb_ck"));
3962
3963 omap_tcmi_init(system_memory, 0xfffecc00, s);
3964
3965 s->uart[0] = omap_uart_init(0xfffb0000,
3966 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3967 omap_findclk(s, "uart1_ck"),
3968 omap_findclk(s, "uart1_ck"),
3969 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3970 "uart1",
3971 serial_hd(0));
3972 s->uart[1] = omap_uart_init(0xfffb0800,
3973 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3974 omap_findclk(s, "uart2_ck"),
3975 omap_findclk(s, "uart2_ck"),
3976 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3977 "uart2",
3978 serial_hd(0) ? serial_hd(1) : NULL);
3979 s->uart[2] = omap_uart_init(0xfffb9800,
3980 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3981 omap_findclk(s, "uart3_ck"),
3982 omap_findclk(s, "uart3_ck"),
3983 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3984 "uart3",
3985 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3986
3987 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3988 omap_findclk(s, "dpll1"));
3989 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3990 omap_findclk(s, "dpll2"));
3991 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3992 omap_findclk(s, "dpll3"));
3993
3994 dinfo = drive_get(IF_SD, 0, 0);
3995 if (!dinfo && !qtest_enabled()) {
3996 warn_report("missing SecureDigital device");
3997 }
3998 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3999 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4000 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4001 &s->drq[OMAP_DMA_MMC_TX],
4002 omap_findclk(s, "mmc_ck"));
4003
4004 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4007 s->wakeup, omap_findclk(s, "clk32-kHz"));
4008
4009 s->gpio = qdev_create(NULL, "omap-gpio");
4010 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4011 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4012 qdev_init_nofail(s->gpio);
4013 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4014 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4015 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4016
4017 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4018 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4020 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4021
4022 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4023 omap_findclk(s, "armxor_ck"));
4024 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4025 omap_findclk(s, "armxor_ck"));
4026
4027 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4028 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4029 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4030 qdev_init_nofail(s->i2c[0]);
4031 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4032 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4033 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4034 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4035 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4036
4037 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4038 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4040 omap_findclk(s, "clk32-kHz"));
4041
4042 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4045 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4046 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4047 qdev_get_gpio_in(s->ih[0],
4048 OMAP_INT_310_McBSP2_TX),
4049 qdev_get_gpio_in(s->ih[0],
4050 OMAP_INT_310_McBSP2_RX),
4051 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4052 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4053 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4054 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4055 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4056
4057 s->led[0] = omap_lpg_init(system_memory,
4058 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4059 s->led[1] = omap_lpg_init(system_memory,
4060 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4078 omap_setup_mpui_io(system_memory, s);
4079
4080 qemu_register_reset(omap1_mpu_reset, s);
4081
4082 return s;
4083}
4084