qemu/hw/mem/memory-device.c
<<
>>
Prefs
   1/*
   2 * Memory Device Interface
   3 *
   4 * Copyright ProfitBricks GmbH 2012
   5 * Copyright (C) 2014 Red Hat Inc
   6 * Copyright (c) 2018 Red Hat Inc
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   9 * See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "hw/mem/memory-device.h"
  14#include "hw/qdev.h"
  15#include "qapi/error.h"
  16#include "hw/boards.h"
  17#include "qemu/range.h"
  18#include "hw/virtio/vhost.h"
  19#include "sysemu/kvm.h"
  20#include "trace.h"
  21
  22static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
  23{
  24    const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
  25    const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
  26    const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
  27    const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
  28    const uint64_t addr_a = mdc_a->get_addr(md_a);
  29    const uint64_t addr_b = mdc_b->get_addr(md_b);
  30
  31    if (addr_a > addr_b) {
  32        return 1;
  33    } else if (addr_a < addr_b) {
  34        return -1;
  35    }
  36    return 0;
  37}
  38
  39static int memory_device_build_list(Object *obj, void *opaque)
  40{
  41    GSList **list = opaque;
  42
  43    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  44        DeviceState *dev = DEVICE(obj);
  45        if (dev->realized) { /* only realized memory devices matter */
  46            *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
  47        }
  48    }
  49
  50    object_child_foreach(obj, memory_device_build_list, opaque);
  51    return 0;
  52}
  53
  54static int memory_device_used_region_size(Object *obj, void *opaque)
  55{
  56    uint64_t *size = opaque;
  57
  58    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
  59        const DeviceState *dev = DEVICE(obj);
  60        const MemoryDeviceState *md = MEMORY_DEVICE(obj);
  61
  62        if (dev->realized) {
  63            *size += memory_device_get_region_size(md, &error_abort);
  64        }
  65    }
  66
  67    object_child_foreach(obj, memory_device_used_region_size, opaque);
  68    return 0;
  69}
  70
  71static void memory_device_check_addable(MachineState *ms, uint64_t size,
  72                                        Error **errp)
  73{
  74    uint64_t used_region_size = 0;
  75
  76    /* we will need a new memory slot for kvm and vhost */
  77    if (kvm_enabled() && !kvm_has_free_slot(ms)) {
  78        error_setg(errp, "hypervisor has no free memory slots left");
  79        return;
  80    }
  81    if (!vhost_has_free_slot()) {
  82        error_setg(errp, "a used vhost backend has no free memory slots left");
  83        return;
  84    }
  85
  86    /* will we exceed the total amount of memory specified */
  87    memory_device_used_region_size(OBJECT(ms), &used_region_size);
  88    if (used_region_size + size > ms->maxram_size - ms->ram_size) {
  89        error_setg(errp, "not enough space, currently 0x%" PRIx64
  90                   " in use of total space for memory devices 0x" RAM_ADDR_FMT,
  91                   used_region_size, ms->maxram_size - ms->ram_size);
  92        return;
  93    }
  94
  95}
  96
  97static uint64_t memory_device_get_free_addr(MachineState *ms,
  98                                            const uint64_t *hint,
  99                                            uint64_t align, uint64_t size,
 100                                            Error **errp)
 101{
 102    uint64_t address_space_start, address_space_end;
 103    GSList *list = NULL, *item;
 104    uint64_t new_addr = 0;
 105
 106    if (!ms->device_memory) {
 107        error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
 108                         "supported by the machine");
 109        return 0;
 110    }
 111
 112    if (!memory_region_size(&ms->device_memory->mr)) {
 113        error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
 114                         "enabled, please specify the maxmem option");
 115        return 0;
 116    }
 117    address_space_start = ms->device_memory->base;
 118    address_space_end = address_space_start +
 119                        memory_region_size(&ms->device_memory->mr);
 120    g_assert(address_space_end >= address_space_start);
 121
 122    /* address_space_start indicates the maximum alignment we expect */
 123    if (QEMU_ALIGN_UP(address_space_start, align) != address_space_start) {
 124        error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported",
 125                   align);
 126        return 0;
 127    }
 128
 129    memory_device_check_addable(ms, size, errp);
 130    if (*errp) {
 131        return 0;
 132    }
 133
 134    if (hint && QEMU_ALIGN_UP(*hint, align) != *hint) {
 135        error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
 136                   align);
 137        return 0;
 138    }
 139
 140    if (QEMU_ALIGN_UP(size, align) != size) {
 141        error_setg(errp, "backend memory size must be multiple of 0x%"
 142                   PRIx64, align);
 143        return 0;
 144    }
 145
 146    if (hint) {
 147        new_addr = *hint;
 148        if (new_addr < address_space_start) {
 149            error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
 150                       "] before 0x%" PRIx64, new_addr, size,
 151                       address_space_start);
 152            return 0;
 153        } else if ((new_addr + size) > address_space_end) {
 154            error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
 155                       "] beyond 0x%" PRIx64, new_addr, size,
 156                       address_space_end);
 157            return 0;
 158        }
 159    } else {
 160        new_addr = address_space_start;
 161    }
 162
 163    /* find address range that will fit new memory device */
 164    object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
 165    for (item = list; item; item = g_slist_next(item)) {
 166        const MemoryDeviceState *md = item->data;
 167        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
 168        uint64_t md_size, md_addr;
 169
 170        md_addr = mdc->get_addr(md);
 171        md_size = memory_device_get_region_size(md, &error_abort);
 172
 173        if (ranges_overlap(md_addr, md_size, new_addr, size)) {
 174            if (hint) {
 175                const DeviceState *d = DEVICE(md);
 176                error_setg(errp, "address range conflicts with memory device"
 177                           " id='%s'", d->id ? d->id : "(unnamed)");
 178                goto out;
 179            }
 180            new_addr = QEMU_ALIGN_UP(md_addr + md_size, align);
 181        }
 182    }
 183
 184    if (new_addr + size > address_space_end) {
 185        error_setg(errp, "could not find position in guest address space for "
 186                   "memory device - memory fragmented due to alignments");
 187        goto out;
 188    }
 189out:
 190    g_slist_free(list);
 191    return new_addr;
 192}
 193
 194MemoryDeviceInfoList *qmp_memory_device_list(void)
 195{
 196    GSList *devices = NULL, *item;
 197    MemoryDeviceInfoList *list = NULL, *prev = NULL;
 198
 199    object_child_foreach(qdev_get_machine(), memory_device_build_list,
 200                         &devices);
 201
 202    for (item = devices; item; item = g_slist_next(item)) {
 203        const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
 204        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
 205        MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
 206        MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
 207
 208        mdc->fill_device_info(md, info);
 209
 210        elem->value = info;
 211        elem->next = NULL;
 212        if (prev) {
 213            prev->next = elem;
 214        } else {
 215            list = elem;
 216        }
 217        prev = elem;
 218    }
 219
 220    g_slist_free(devices);
 221
 222    return list;
 223}
 224
 225static int memory_device_plugged_size(Object *obj, void *opaque)
 226{
 227    uint64_t *size = opaque;
 228
 229    if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
 230        const DeviceState *dev = DEVICE(obj);
 231        const MemoryDeviceState *md = MEMORY_DEVICE(obj);
 232        const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
 233
 234        if (dev->realized) {
 235            *size += mdc->get_plugged_size(md, &error_abort);
 236        }
 237    }
 238
 239    object_child_foreach(obj, memory_device_plugged_size, opaque);
 240    return 0;
 241}
 242
 243uint64_t get_plugged_memory_size(void)
 244{
 245    uint64_t size = 0;
 246
 247    memory_device_plugged_size(qdev_get_machine(), &size);
 248
 249    return size;
 250}
 251
 252void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
 253                            const uint64_t *legacy_align, Error **errp)
 254{
 255    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 256    Error *local_err = NULL;
 257    uint64_t addr, align;
 258    MemoryRegion *mr;
 259
 260    mr = mdc->get_memory_region(md, &local_err);
 261    if (local_err) {
 262        goto out;
 263    }
 264
 265    align = legacy_align ? *legacy_align : memory_region_get_alignment(mr);
 266    addr = mdc->get_addr(md);
 267    addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
 268                                       memory_region_size(mr), &local_err);
 269    if (local_err) {
 270        goto out;
 271    }
 272    mdc->set_addr(md, addr, &local_err);
 273    if (!local_err) {
 274        trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
 275                                     addr);
 276    }
 277out:
 278    error_propagate(errp, local_err);
 279}
 280
 281void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
 282{
 283    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 284    const uint64_t addr = mdc->get_addr(md);
 285    MemoryRegion *mr;
 286
 287    /*
 288     * We expect that a previous call to memory_device_pre_plug() succeeded, so
 289     * it can't fail at this point.
 290     */
 291    mr = mdc->get_memory_region(md, &error_abort);
 292    g_assert(ms->device_memory);
 293
 294    memory_region_add_subregion(&ms->device_memory->mr,
 295                                addr - ms->device_memory->base, mr);
 296    trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
 297}
 298
 299void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
 300{
 301    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 302    MemoryRegion *mr;
 303
 304    /*
 305     * We expect that a previous call to memory_device_pre_plug() succeeded, so
 306     * it can't fail at this point.
 307     */
 308    mr = mdc->get_memory_region(md, &error_abort);
 309    g_assert(ms->device_memory);
 310
 311    memory_region_del_subregion(&ms->device_memory->mr, mr);
 312    trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
 313                               mdc->get_addr(md));
 314}
 315
 316uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
 317                                       Error **errp)
 318{
 319    const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
 320    MemoryRegion *mr;
 321
 322    /* dropping const here is fine as we don't touch the memory region */
 323    mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
 324    if (!mr) {
 325        return 0;
 326    }
 327
 328    return memory_region_size(mr);
 329}
 330
 331static const TypeInfo memory_device_info = {
 332    .name          = TYPE_MEMORY_DEVICE,
 333    .parent        = TYPE_INTERFACE,
 334    .class_size = sizeof(MemoryDeviceClass),
 335};
 336
 337static void memory_device_register_types(void)
 338{
 339    type_register_static(&memory_device_info);
 340}
 341
 342type_init(memory_device_register_types)
 343