qemu/hw/mips/boston.c
<<
>>
Prefs
   1/*
   2 * MIPS Boston development board emulation.
   3 *
   4 * Copyright (c) 2016 Imagination Technologies
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22#include "qemu-common.h"
  23
  24#include "exec/address-spaces.h"
  25#include "hw/boards.h"
  26#include "hw/char/serial.h"
  27#include "hw/hw.h"
  28#include "hw/ide/pci.h"
  29#include "hw/ide/ahci.h"
  30#include "hw/loader.h"
  31#include "hw/loader-fit.h"
  32#include "hw/mips/cps.h"
  33#include "hw/mips/cpudevs.h"
  34#include "hw/pci-host/xilinx-pcie.h"
  35#include "qapi/error.h"
  36#include "qemu/error-report.h"
  37#include "qemu/log.h"
  38#include "chardev/char.h"
  39#include "sysemu/device_tree.h"
  40#include "sysemu/sysemu.h"
  41#include "sysemu/qtest.h"
  42
  43#include <libfdt.h>
  44
  45#define TYPE_MIPS_BOSTON "mips-boston"
  46#define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
  47
  48typedef struct {
  49    SysBusDevice parent_obj;
  50
  51    MachineState *mach;
  52    MIPSCPSState *cps;
  53    SerialState *uart;
  54
  55    CharBackend lcd_display;
  56    char lcd_content[8];
  57    bool lcd_inited;
  58
  59    hwaddr kernel_entry;
  60    hwaddr fdt_base;
  61} BostonState;
  62
  63enum boston_plat_reg {
  64    PLAT_FPGA_BUILD     = 0x00,
  65    PLAT_CORE_CL        = 0x04,
  66    PLAT_WRAPPER_CL     = 0x08,
  67    PLAT_SYSCLK_STATUS  = 0x0c,
  68    PLAT_SOFTRST_CTL    = 0x10,
  69#define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
  70    PLAT_DDR3_STATUS    = 0x14,
  71#define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
  72#define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
  73    PLAT_PCIE_STATUS    = 0x18,
  74#define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
  75#define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
  76#define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
  77    PLAT_FLASH_CTL      = 0x1c,
  78    PLAT_SPARE0         = 0x20,
  79    PLAT_SPARE1         = 0x24,
  80    PLAT_SPARE2         = 0x28,
  81    PLAT_SPARE3         = 0x2c,
  82    PLAT_MMCM_DIV       = 0x30,
  83#define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
  84#define PLAT_MMCM_DIV_INPUT_SHIFT       8
  85#define PLAT_MMCM_DIV_MUL_SHIFT         16
  86#define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
  87    PLAT_BUILD_CFG      = 0x34,
  88#define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
  89#define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
  90#define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
  91#define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
  92    PLAT_DDR_CFG        = 0x38,
  93#define PLAT_DDR_CFG_SIZE               (0xf << 0)
  94#define PLAT_DDR_CFG_MHZ                (0xfff << 4)
  95    PLAT_NOC_PCIE0_ADDR = 0x3c,
  96    PLAT_NOC_PCIE1_ADDR = 0x40,
  97    PLAT_NOC_PCIE2_ADDR = 0x44,
  98    PLAT_SYS_CTL        = 0x48,
  99};
 100
 101static void boston_lcd_event(void *opaque, int event)
 102{
 103    BostonState *s = opaque;
 104    if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
 105        qemu_chr_fe_printf(&s->lcd_display, "        ");
 106        s->lcd_inited = true;
 107    }
 108}
 109
 110static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
 111                                unsigned size)
 112{
 113    BostonState *s = opaque;
 114    uint64_t val = 0;
 115
 116    switch (size) {
 117    case 8:
 118        val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
 119        val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
 120        val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
 121        val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
 122        /* fall through */
 123    case 4:
 124        val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
 125        val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
 126        /* fall through */
 127    case 2:
 128        val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
 129        /* fall through */
 130    case 1:
 131        val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
 132        break;
 133    }
 134
 135    return val;
 136}
 137
 138static void boston_lcd_write(void *opaque, hwaddr addr,
 139                             uint64_t val, unsigned size)
 140{
 141    BostonState *s = opaque;
 142
 143    switch (size) {
 144    case 8:
 145        s->lcd_content[(addr + 7) & 0x7] = val >> 56;
 146        s->lcd_content[(addr + 6) & 0x7] = val >> 48;
 147        s->lcd_content[(addr + 5) & 0x7] = val >> 40;
 148        s->lcd_content[(addr + 4) & 0x7] = val >> 32;
 149        /* fall through */
 150    case 4:
 151        s->lcd_content[(addr + 3) & 0x7] = val >> 24;
 152        s->lcd_content[(addr + 2) & 0x7] = val >> 16;
 153        /* fall through */
 154    case 2:
 155        s->lcd_content[(addr + 1) & 0x7] = val >> 8;
 156        /* fall through */
 157    case 1:
 158        s->lcd_content[(addr + 0) & 0x7] = val;
 159        break;
 160    }
 161
 162    qemu_chr_fe_printf(&s->lcd_display,
 163                       "\r%-8.8s", s->lcd_content);
 164}
 165
 166static const MemoryRegionOps boston_lcd_ops = {
 167    .read = boston_lcd_read,
 168    .write = boston_lcd_write,
 169    .endianness = DEVICE_NATIVE_ENDIAN,
 170};
 171
 172static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
 173                                    unsigned size)
 174{
 175    BostonState *s = opaque;
 176    uint32_t gic_freq, val;
 177
 178    if (size != 4) {
 179        qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
 180        return 0;
 181    }
 182
 183    switch (addr & 0xffff) {
 184    case PLAT_FPGA_BUILD:
 185    case PLAT_CORE_CL:
 186    case PLAT_WRAPPER_CL:
 187        return 0;
 188    case PLAT_DDR3_STATUS:
 189        return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
 190    case PLAT_MMCM_DIV:
 191        gic_freq = mips_gictimer_get_freq(s->cps->gic.gic_timer) / 1000000;
 192        val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
 193        val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
 194        val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
 195        val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
 196        return val;
 197    case PLAT_BUILD_CFG:
 198        val = PLAT_BUILD_CFG_PCIE0_EN;
 199        val |= PLAT_BUILD_CFG_PCIE1_EN;
 200        val |= PLAT_BUILD_CFG_PCIE2_EN;
 201        return val;
 202    case PLAT_DDR_CFG:
 203        val = s->mach->ram_size / GiB;
 204        assert(!(val & ~PLAT_DDR_CFG_SIZE));
 205        val |= PLAT_DDR_CFG_MHZ;
 206        return val;
 207    default:
 208        qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
 209                      addr & 0xffff);
 210        return 0;
 211    }
 212}
 213
 214static void boston_platreg_write(void *opaque, hwaddr addr,
 215                                 uint64_t val, unsigned size)
 216{
 217    if (size != 4) {
 218        qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
 219        return;
 220    }
 221
 222    switch (addr & 0xffff) {
 223    case PLAT_FPGA_BUILD:
 224    case PLAT_CORE_CL:
 225    case PLAT_WRAPPER_CL:
 226    case PLAT_DDR3_STATUS:
 227    case PLAT_PCIE_STATUS:
 228    case PLAT_MMCM_DIV:
 229    case PLAT_BUILD_CFG:
 230    case PLAT_DDR_CFG:
 231        /* read only */
 232        break;
 233    case PLAT_SOFTRST_CTL:
 234        if (val & PLAT_SOFTRST_CTL_SYSRESET) {
 235            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 236        }
 237        break;
 238    default:
 239        qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
 240                      " = 0x%" PRIx64 "\n", addr & 0xffff, val);
 241        break;
 242    }
 243}
 244
 245static const MemoryRegionOps boston_platreg_ops = {
 246    .read = boston_platreg_read,
 247    .write = boston_platreg_write,
 248    .endianness = DEVICE_NATIVE_ENDIAN,
 249};
 250
 251static const TypeInfo boston_device = {
 252    .name          = TYPE_MIPS_BOSTON,
 253    .parent        = TYPE_SYS_BUS_DEVICE,
 254    .instance_size = sizeof(BostonState),
 255};
 256
 257static void boston_register_types(void)
 258{
 259    type_register_static(&boston_device);
 260}
 261type_init(boston_register_types)
 262
 263static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
 264                         bool is_64b)
 265{
 266    const uint32_t cm_base = 0x16100000;
 267    const uint32_t gic_base = 0x16120000;
 268    const uint32_t cpc_base = 0x16200000;
 269
 270    /* Move CM GCRs */
 271    if (is_64b) {
 272        stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
 273        stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
 274    } else {
 275        stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
 276        stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
 277    }
 278    stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
 279    stl_p(p++, 0x01094025);                     /* or   $8, $9 */
 280    stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
 281    if (is_64b) {
 282        stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
 283    } else {
 284        stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
 285    }
 286    stl_p(p++, 0x012a4025);                     /* or   $8, $10 */
 287
 288    /* Move & enable GIC GCRs */
 289    stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
 290    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
 291    if (is_64b) {
 292        stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
 293    } else {
 294        stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
 295    }
 296
 297    /* Move & enable CPC GCRs */
 298    stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
 299    stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
 300    if (is_64b) {
 301        stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
 302    } else {
 303        stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
 304    }
 305
 306    /*
 307     * Setup argument registers to follow the UHI boot protocol:
 308     *
 309     * a0/$4 = -2
 310     * a1/$5 = virtual address of FDT
 311     * a2/$6 = 0
 312     * a3/$7 = 0
 313     */
 314    stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
 315                                                /* lui  $5, hi(fdt_addr) */
 316    stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
 317    if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
 318        stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
 319    }
 320    stl_p(p++, 0x34060000);                     /* li   $6, 0 */
 321    stl_p(p++, 0x34070000);                     /* li   $7, 0 */
 322
 323    /* Load kernel entry address & jump to it */
 324                                                /* lui  $25, hi(kernel_entry) */
 325    stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
 326                                                /* ori  $25, lo(kernel_entry) */
 327    stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
 328    stl_p(p++, 0x03200009);                     /* jr   $25 */
 329}
 330
 331static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
 332                                     const void *match_data, hwaddr *load_addr)
 333{
 334    BostonState *s = BOSTON(opaque);
 335    MachineState *machine = s->mach;
 336    const char *cmdline;
 337    int err;
 338    void *fdt;
 339    size_t fdt_sz, ram_low_sz, ram_high_sz;
 340
 341    fdt_sz = fdt_totalsize(fdt_orig) * 2;
 342    fdt = g_malloc0(fdt_sz);
 343
 344    err = fdt_open_into(fdt_orig, fdt, fdt_sz);
 345    if (err) {
 346        fprintf(stderr, "unable to open FDT\n");
 347        return NULL;
 348    }
 349
 350    cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
 351            ? machine->kernel_cmdline : " ";
 352    err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
 353    if (err < 0) {
 354        fprintf(stderr, "couldn't set /chosen/bootargs\n");
 355        return NULL;
 356    }
 357
 358    ram_low_sz = MIN(256 * MiB, machine->ram_size);
 359    ram_high_sz = machine->ram_size - ram_low_sz;
 360    qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
 361                                 1, 0x00000000, 1, ram_low_sz,
 362                                 1, 0x90000000, 1, ram_high_sz);
 363
 364    fdt = g_realloc(fdt, fdt_totalsize(fdt));
 365    qemu_fdt_dumpdtb(fdt, fdt_sz);
 366
 367    s->fdt_base = *load_addr;
 368
 369    return fdt;
 370}
 371
 372static const void *boston_kernel_filter(void *opaque, const void *kernel,
 373                                        hwaddr *load_addr, hwaddr *entry_addr)
 374{
 375    BostonState *s = BOSTON(opaque);
 376
 377    s->kernel_entry = *entry_addr;
 378
 379    return kernel;
 380}
 381
 382static const struct fit_loader_match boston_matches[] = {
 383    { "img,boston" },
 384    { NULL },
 385};
 386
 387static const struct fit_loader boston_fit_loader = {
 388    .matches = boston_matches,
 389    .addr_to_phys = cpu_mips_kseg0_to_phys,
 390    .fdt_filter = boston_fdt_filter,
 391    .kernel_filter = boston_kernel_filter,
 392};
 393
 394static inline XilinxPCIEHost *
 395xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
 396                 hwaddr cfg_base, uint64_t cfg_size,
 397                 hwaddr mmio_base, uint64_t mmio_size,
 398                 qemu_irq irq, bool link_up)
 399{
 400    DeviceState *dev;
 401    MemoryRegion *cfg, *mmio;
 402
 403    dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
 404
 405    qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
 406    qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
 407    qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
 408    qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
 409    qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
 410    qdev_prop_set_bit(dev, "link_up", link_up);
 411
 412    qdev_init_nofail(dev);
 413
 414    cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 415    memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
 416
 417    mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 418    memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
 419
 420    qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
 421
 422    return XILINX_PCIE_HOST(dev);
 423}
 424
 425static void boston_mach_init(MachineState *machine)
 426{
 427    DeviceState *dev;
 428    BostonState *s;
 429    Error *err = NULL;
 430    MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
 431    MemoryRegion *sys_mem = get_system_memory();
 432    XilinxPCIEHost *pcie2;
 433    PCIDevice *ahci;
 434    DriveInfo *hd[6];
 435    Chardev *chr;
 436    int fw_size, fit_err;
 437    bool is_64b;
 438
 439    if ((machine->ram_size % GiB) ||
 440        (machine->ram_size > (2 * GiB))) {
 441        error_report("Memory size must be 1GB or 2GB");
 442        exit(1);
 443    }
 444
 445    dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
 446    qdev_init_nofail(dev);
 447
 448    s = BOSTON(dev);
 449    s->mach = machine;
 450
 451    if (!cpu_supports_cps_smp(machine->cpu_type)) {
 452        error_report("Boston requires CPUs which support CPS");
 453        exit(1);
 454    }
 455
 456    is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
 457
 458    s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
 459    qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
 460
 461    object_property_set_str(OBJECT(s->cps), machine->cpu_type, "cpu-type",
 462                            &err);
 463    object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
 464    object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
 465
 466    if (err != NULL) {
 467        error_report("%s", error_get_pretty(err));
 468        exit(1);
 469    }
 470
 471    sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
 472
 473    flash =  g_new(MemoryRegion, 1);
 474    memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
 475    memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
 476
 477    ddr = g_new(MemoryRegion, 1);
 478    memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
 479                                         machine->ram_size);
 480    memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
 481
 482    ddr_low_alias = g_new(MemoryRegion, 1);
 483    memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
 484                             ddr, 0, MIN(machine->ram_size, (256 * MiB)));
 485    memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
 486
 487    xilinx_pcie_init(sys_mem, 0,
 488                     0x10000000, 32 * MiB,
 489                     0x40000000, 1 * GiB,
 490                     get_cps_irq(s->cps, 2), false);
 491
 492    xilinx_pcie_init(sys_mem, 1,
 493                     0x12000000, 32 * MiB,
 494                     0x20000000, 512 * MiB,
 495                     get_cps_irq(s->cps, 1), false);
 496
 497    pcie2 = xilinx_pcie_init(sys_mem, 2,
 498                             0x14000000, 32 * MiB,
 499                             0x16000000, 1 * MiB,
 500                             get_cps_irq(s->cps, 0), true);
 501
 502    platreg = g_new(MemoryRegion, 1);
 503    memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
 504                          "boston-platregs", 0x1000);
 505    memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
 506
 507    s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
 508                             get_cps_irq(s->cps, 3), 10000000,
 509                             serial_hd(0), DEVICE_NATIVE_ENDIAN);
 510
 511    lcd = g_new(MemoryRegion, 1);
 512    memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
 513    memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
 514
 515    chr = qemu_chr_new("lcd", "vc:320x240");
 516    qemu_chr_fe_init(&s->lcd_display, chr, NULL);
 517    qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
 518                             boston_lcd_event, NULL, s, NULL, true);
 519
 520    ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
 521                                           PCI_DEVFN(0, 0),
 522                                           true, TYPE_ICH9_AHCI);
 523    g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
 524    ide_drive_get(hd, ahci_get_num_ports(ahci));
 525    ahci_ide_create_devs(ahci, hd);
 526
 527    if (machine->firmware) {
 528        fw_size = load_image_targphys(machine->firmware,
 529                                      0x1fc00000, 4 * MiB);
 530        if (fw_size == -1) {
 531            error_printf("unable to load firmware image '%s'\n",
 532                          machine->firmware);
 533            exit(1);
 534        }
 535    } else if (machine->kernel_filename) {
 536        fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
 537        if (fit_err) {
 538            error_printf("unable to load FIT image\n");
 539            exit(1);
 540        }
 541
 542        gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
 543                     s->kernel_entry, s->fdt_base, is_64b);
 544    } else if (!qtest_enabled()) {
 545        error_printf("Please provide either a -kernel or -bios argument\n");
 546        exit(1);
 547    }
 548}
 549
 550static void boston_mach_class_init(MachineClass *mc)
 551{
 552    mc->desc = "MIPS Boston";
 553    mc->init = boston_mach_init;
 554    mc->block_default_type = IF_IDE;
 555    mc->default_ram_size = 1 * GiB;
 556    mc->max_cpus = 16;
 557    mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
 558}
 559
 560DEFINE_MACHINE("boston", boston_mach_class_init)
 561