qemu/hw/nvram/fw_cfg.c
<<
>>
Prefs
   1/*
   2 * QEMU Firmware configuration device emulation
   3 *
   4 * Copyright (c) 2008 Gleb Natapov
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "hw/hw.h"
  27#include "sysemu/sysemu.h"
  28#include "sysemu/dma.h"
  29#include "hw/boards.h"
  30#include "hw/isa/isa.h"
  31#include "hw/nvram/fw_cfg.h"
  32#include "hw/sysbus.h"
  33#include "trace.h"
  34#include "qemu/error-report.h"
  35#include "qemu/option.h"
  36#include "qemu/config-file.h"
  37#include "qemu/cutils.h"
  38#include "qapi/error.h"
  39
  40#define FW_CFG_FILE_SLOTS_DFLT 0x20
  41
  42/* FW_CFG_VERSION bits */
  43#define FW_CFG_VERSION      0x01
  44#define FW_CFG_VERSION_DMA  0x02
  45
  46/* FW_CFG_DMA_CONTROL bits */
  47#define FW_CFG_DMA_CTL_ERROR   0x01
  48#define FW_CFG_DMA_CTL_READ    0x02
  49#define FW_CFG_DMA_CTL_SKIP    0x04
  50#define FW_CFG_DMA_CTL_SELECT  0x08
  51#define FW_CFG_DMA_CTL_WRITE   0x10
  52
  53#define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
  54
  55struct FWCfgEntry {
  56    uint32_t len;
  57    bool allow_write;
  58    uint8_t *data;
  59    void *callback_opaque;
  60    FWCfgCallback select_cb;
  61    FWCfgWriteCallback write_cb;
  62};
  63
  64#define JPG_FILE 0
  65#define BMP_FILE 1
  66
  67static char *read_splashfile(char *filename, gsize *file_sizep,
  68                             int *file_typep)
  69{
  70    GError *err = NULL;
  71    gboolean res;
  72    gchar *content;
  73    int file_type;
  74    unsigned int filehead;
  75    int bmp_bpp;
  76
  77    res = g_file_get_contents(filename, &content, file_sizep, &err);
  78    if (res == FALSE) {
  79        error_report("failed to read splash file '%s'", filename);
  80        g_error_free(err);
  81        return NULL;
  82    }
  83
  84    /* check file size */
  85    if (*file_sizep < 30) {
  86        goto error;
  87    }
  88
  89    /* check magic ID */
  90    filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
  91    if (filehead == 0xd8ff) {
  92        file_type = JPG_FILE;
  93    } else if (filehead == 0x4d42) {
  94        file_type = BMP_FILE;
  95    } else {
  96        goto error;
  97    }
  98
  99    /* check BMP bpp */
 100    if (file_type == BMP_FILE) {
 101        bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
 102        if (bmp_bpp != 24) {
 103            goto error;
 104        }
 105    }
 106
 107    /* return values */
 108    *file_typep = file_type;
 109
 110    return content;
 111
 112error:
 113    error_report("splash file '%s' format not recognized; must be JPEG "
 114                 "or 24 bit BMP", filename);
 115    g_free(content);
 116    return NULL;
 117}
 118
 119static void fw_cfg_bootsplash(FWCfgState *s)
 120{
 121    int boot_splash_time = -1;
 122    const char *boot_splash_filename = NULL;
 123    char *p;
 124    char *filename, *file_data;
 125    gsize file_size;
 126    int file_type;
 127    const char *temp;
 128
 129    /* get user configuration */
 130    QemuOptsList *plist = qemu_find_opts("boot-opts");
 131    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 132    if (opts != NULL) {
 133        temp = qemu_opt_get(opts, "splash");
 134        if (temp != NULL) {
 135            boot_splash_filename = temp;
 136        }
 137        temp = qemu_opt_get(opts, "splash-time");
 138        if (temp != NULL) {
 139            p = (char *)temp;
 140            boot_splash_time = strtol(p, &p, 10);
 141        }
 142    }
 143
 144    /* insert splash time if user configurated */
 145    if (boot_splash_time >= 0) {
 146        /* validate the input */
 147        if (boot_splash_time > 0xffff) {
 148            error_report("splash time is big than 65535, force it to 65535.");
 149            boot_splash_time = 0xffff;
 150        }
 151        /* use little endian format */
 152        qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
 153        qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
 154        fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
 155    }
 156
 157    /* insert splash file if user configurated */
 158    if (boot_splash_filename != NULL) {
 159        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
 160        if (filename == NULL) {
 161            error_report("failed to find file '%s'.", boot_splash_filename);
 162            return;
 163        }
 164
 165        /* loading file data */
 166        file_data = read_splashfile(filename, &file_size, &file_type);
 167        if (file_data == NULL) {
 168            g_free(filename);
 169            return;
 170        }
 171        g_free(boot_splash_filedata);
 172        boot_splash_filedata = (uint8_t *)file_data;
 173        boot_splash_filedata_size = file_size;
 174
 175        /* insert data */
 176        if (file_type == JPG_FILE) {
 177            fw_cfg_add_file(s, "bootsplash.jpg",
 178                    boot_splash_filedata, boot_splash_filedata_size);
 179        } else {
 180            fw_cfg_add_file(s, "bootsplash.bmp",
 181                    boot_splash_filedata, boot_splash_filedata_size);
 182        }
 183        g_free(filename);
 184    }
 185}
 186
 187static void fw_cfg_reboot(FWCfgState *s)
 188{
 189    int reboot_timeout = -1;
 190    char *p;
 191    const char *temp;
 192
 193    /* get user configuration */
 194    QemuOptsList *plist = qemu_find_opts("boot-opts");
 195    QemuOpts *opts = QTAILQ_FIRST(&plist->head);
 196    if (opts != NULL) {
 197        temp = qemu_opt_get(opts, "reboot-timeout");
 198        if (temp != NULL) {
 199            p = (char *)temp;
 200            reboot_timeout = strtol(p, &p, 10);
 201        }
 202    }
 203    /* validate the input */
 204    if (reboot_timeout > 0xffff) {
 205        error_report("reboot timeout is larger than 65535, force it to 65535.");
 206        reboot_timeout = 0xffff;
 207    }
 208    fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
 209}
 210
 211static void fw_cfg_write(FWCfgState *s, uint8_t value)
 212{
 213    /* nothing, write support removed in QEMU v2.4+ */
 214}
 215
 216static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
 217{
 218    return s->file_slots;
 219}
 220
 221/* Note: this function returns an exclusive limit. */
 222static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
 223{
 224    return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
 225}
 226
 227static int fw_cfg_select(FWCfgState *s, uint16_t key)
 228{
 229    int arch, ret;
 230    FWCfgEntry *e;
 231
 232    s->cur_offset = 0;
 233    if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
 234        s->cur_entry = FW_CFG_INVALID;
 235        ret = 0;
 236    } else {
 237        s->cur_entry = key;
 238        ret = 1;
 239        /* entry successfully selected, now run callback if present */
 240        arch = !!(key & FW_CFG_ARCH_LOCAL);
 241        e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
 242        if (e->select_cb) {
 243            e->select_cb(e->callback_opaque);
 244        }
 245    }
 246
 247    trace_fw_cfg_select(s, key, ret);
 248    return ret;
 249}
 250
 251static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
 252{
 253    FWCfgState *s = opaque;
 254    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 255    FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 256                    &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 257    uint64_t value = 0;
 258
 259    assert(size > 0 && size <= sizeof(value));
 260    if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
 261        /* The least significant 'size' bytes of the return value are
 262         * expected to contain a string preserving portion of the item
 263         * data, padded with zeros on the right in case we run out early.
 264         * In technical terms, we're composing the host-endian representation
 265         * of the big endian interpretation of the fw_cfg string.
 266         */
 267        do {
 268            value = (value << 8) | e->data[s->cur_offset++];
 269        } while (--size && s->cur_offset < e->len);
 270        /* If size is still not zero, we *did* run out early, so continue
 271         * left-shifting, to add the appropriate number of padding zeros
 272         * on the right.
 273         */
 274        value <<= 8 * size;
 275    }
 276
 277    trace_fw_cfg_read(s, value);
 278    return value;
 279}
 280
 281static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
 282                                  uint64_t value, unsigned size)
 283{
 284    FWCfgState *s = opaque;
 285    unsigned i = size;
 286
 287    do {
 288        fw_cfg_write(s, value >> (8 * --i));
 289    } while (i);
 290}
 291
 292static void fw_cfg_dma_transfer(FWCfgState *s)
 293{
 294    dma_addr_t len;
 295    FWCfgDmaAccess dma;
 296    int arch;
 297    FWCfgEntry *e;
 298    int read = 0, write = 0;
 299    dma_addr_t dma_addr;
 300
 301    /* Reset the address before the next access */
 302    dma_addr = s->dma_addr;
 303    s->dma_addr = 0;
 304
 305    if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
 306        stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 307                   FW_CFG_DMA_CTL_ERROR);
 308        return;
 309    }
 310
 311    dma.address = be64_to_cpu(dma.address);
 312    dma.length = be32_to_cpu(dma.length);
 313    dma.control = be32_to_cpu(dma.control);
 314
 315    if (dma.control & FW_CFG_DMA_CTL_SELECT) {
 316        fw_cfg_select(s, dma.control >> 16);
 317    }
 318
 319    arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
 320    e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
 321        &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
 322
 323    if (dma.control & FW_CFG_DMA_CTL_READ) {
 324        read = 1;
 325        write = 0;
 326    } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
 327        read = 0;
 328        write = 1;
 329    } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
 330        read = 0;
 331        write = 0;
 332    } else {
 333        dma.length = 0;
 334    }
 335
 336    dma.control = 0;
 337
 338    while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
 339        if (s->cur_entry == FW_CFG_INVALID || !e->data ||
 340                                s->cur_offset >= e->len) {
 341            len = dma.length;
 342
 343            /* If the access is not a read access, it will be a skip access,
 344             * tested before.
 345             */
 346            if (read) {
 347                if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
 348                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 349                }
 350            }
 351            if (write) {
 352                dma.control |= FW_CFG_DMA_CTL_ERROR;
 353            }
 354        } else {
 355            if (dma.length <= (e->len - s->cur_offset)) {
 356                len = dma.length;
 357            } else {
 358                len = (e->len - s->cur_offset);
 359            }
 360
 361            /* If the access is not a read access, it will be a skip access,
 362             * tested before.
 363             */
 364            if (read) {
 365                if (dma_memory_write(s->dma_as, dma.address,
 366                                    &e->data[s->cur_offset], len)) {
 367                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 368                }
 369            }
 370            if (write) {
 371                if (!e->allow_write ||
 372                    len != dma.length ||
 373                    dma_memory_read(s->dma_as, dma.address,
 374                                    &e->data[s->cur_offset], len)) {
 375                    dma.control |= FW_CFG_DMA_CTL_ERROR;
 376                } else if (e->write_cb) {
 377                    e->write_cb(e->callback_opaque, s->cur_offset, len);
 378                }
 379            }
 380
 381            s->cur_offset += len;
 382        }
 383
 384        dma.address += len;
 385        dma.length  -= len;
 386
 387    }
 388
 389    stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
 390                dma.control);
 391
 392    trace_fw_cfg_read(s, 0);
 393}
 394
 395static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
 396                                    unsigned size)
 397{
 398    /* Return a signature value (and handle various read sizes) */
 399    return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
 400}
 401
 402static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
 403                                 uint64_t value, unsigned size)
 404{
 405    FWCfgState *s = opaque;
 406
 407    if (size == 4) {
 408        if (addr == 0) {
 409            /* FWCfgDmaAccess high address */
 410            s->dma_addr = value << 32;
 411        } else if (addr == 4) {
 412            /* FWCfgDmaAccess low address */
 413            s->dma_addr |= value;
 414            fw_cfg_dma_transfer(s);
 415        }
 416    } else if (size == 8 && addr == 0) {
 417        s->dma_addr = value;
 418        fw_cfg_dma_transfer(s);
 419    }
 420}
 421
 422static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
 423                                 unsigned size, bool is_write,
 424                                 MemTxAttrs attrs)
 425{
 426    return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
 427                         (size == 8 && addr == 0));
 428}
 429
 430static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
 431                                  unsigned size, bool is_write,
 432                                  MemTxAttrs attrs)
 433{
 434    return addr == 0;
 435}
 436
 437static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
 438{
 439    return 0;
 440}
 441
 442static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
 443                                 uint64_t value, unsigned size)
 444{
 445    fw_cfg_select(opaque, (uint16_t)value);
 446}
 447
 448static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
 449                                 unsigned size, bool is_write,
 450                                 MemTxAttrs attrs)
 451{
 452    return is_write && size == 2;
 453}
 454
 455static void fw_cfg_comb_write(void *opaque, hwaddr addr,
 456                              uint64_t value, unsigned size)
 457{
 458    switch (size) {
 459    case 1:
 460        fw_cfg_write(opaque, (uint8_t)value);
 461        break;
 462    case 2:
 463        fw_cfg_select(opaque, (uint16_t)value);
 464        break;
 465    }
 466}
 467
 468static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
 469                              unsigned size, bool is_write,
 470                              MemTxAttrs attrs)
 471{
 472    return (size == 1) || (is_write && size == 2);
 473}
 474
 475static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
 476    .read = fw_cfg_ctl_mem_read,
 477    .write = fw_cfg_ctl_mem_write,
 478    .endianness = DEVICE_BIG_ENDIAN,
 479    .valid.accepts = fw_cfg_ctl_mem_valid,
 480};
 481
 482static const MemoryRegionOps fw_cfg_data_mem_ops = {
 483    .read = fw_cfg_data_read,
 484    .write = fw_cfg_data_mem_write,
 485    .endianness = DEVICE_BIG_ENDIAN,
 486    .valid = {
 487        .min_access_size = 1,
 488        .max_access_size = 1,
 489        .accepts = fw_cfg_data_mem_valid,
 490    },
 491};
 492
 493static const MemoryRegionOps fw_cfg_comb_mem_ops = {
 494    .read = fw_cfg_data_read,
 495    .write = fw_cfg_comb_write,
 496    .endianness = DEVICE_LITTLE_ENDIAN,
 497    .valid.accepts = fw_cfg_comb_valid,
 498};
 499
 500static const MemoryRegionOps fw_cfg_dma_mem_ops = {
 501    .read = fw_cfg_dma_mem_read,
 502    .write = fw_cfg_dma_mem_write,
 503    .endianness = DEVICE_BIG_ENDIAN,
 504    .valid.accepts = fw_cfg_dma_mem_valid,
 505    .valid.max_access_size = 8,
 506    .impl.max_access_size = 8,
 507};
 508
 509static void fw_cfg_reset(DeviceState *d)
 510{
 511    FWCfgState *s = FW_CFG(d);
 512
 513    /* we never register a read callback for FW_CFG_SIGNATURE */
 514    fw_cfg_select(s, FW_CFG_SIGNATURE);
 515}
 516
 517/* Save restore 32 bit int as uint16_t
 518   This is a Big hack, but it is how the old state did it.
 519   Or we broke compatibility in the state, or we can't use struct tm
 520 */
 521
 522static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
 523                                const VMStateField *field)
 524{
 525    uint32_t *v = pv;
 526    *v = qemu_get_be16(f);
 527    return 0;
 528}
 529
 530static int put_unused(QEMUFile *f, void *pv, size_t size,
 531                      const VMStateField *field, QJSON *vmdesc)
 532{
 533    fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
 534    fprintf(stderr, "This functions shouldn't be called.\n");
 535
 536    return 0;
 537}
 538
 539static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
 540    .name = "int32_as_uint16",
 541    .get  = get_uint32_as_uint16,
 542    .put  = put_unused,
 543};
 544
 545#define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
 546    VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
 547
 548
 549static bool is_version_1(void *opaque, int version_id)
 550{
 551    return version_id == 1;
 552}
 553
 554bool fw_cfg_dma_enabled(void *opaque)
 555{
 556    FWCfgState *s = opaque;
 557
 558    return s->dma_enabled;
 559}
 560
 561static const VMStateDescription vmstate_fw_cfg_dma = {
 562    .name = "fw_cfg/dma",
 563    .needed = fw_cfg_dma_enabled,
 564    .fields = (VMStateField[]) {
 565        VMSTATE_UINT64(dma_addr, FWCfgState),
 566        VMSTATE_END_OF_LIST()
 567    },
 568};
 569
 570static const VMStateDescription vmstate_fw_cfg = {
 571    .name = "fw_cfg",
 572    .version_id = 2,
 573    .minimum_version_id = 1,
 574    .fields = (VMStateField[]) {
 575        VMSTATE_UINT16(cur_entry, FWCfgState),
 576        VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
 577        VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
 578        VMSTATE_END_OF_LIST()
 579    },
 580    .subsections = (const VMStateDescription*[]) {
 581        &vmstate_fw_cfg_dma,
 582        NULL,
 583    }
 584};
 585
 586static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
 587                                      FWCfgCallback select_cb,
 588                                      FWCfgWriteCallback write_cb,
 589                                      void *callback_opaque,
 590                                      void *data, size_t len,
 591                                      bool read_only)
 592{
 593    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 594
 595    key &= FW_CFG_ENTRY_MASK;
 596
 597    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 598    assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
 599
 600    s->entries[arch][key].data = data;
 601    s->entries[arch][key].len = (uint32_t)len;
 602    s->entries[arch][key].select_cb = select_cb;
 603    s->entries[arch][key].write_cb = write_cb;
 604    s->entries[arch][key].callback_opaque = callback_opaque;
 605    s->entries[arch][key].allow_write = !read_only;
 606}
 607
 608static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
 609                                              void *data, size_t len)
 610{
 611    void *ptr;
 612    int arch = !!(key & FW_CFG_ARCH_LOCAL);
 613
 614    key &= FW_CFG_ENTRY_MASK;
 615
 616    assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
 617
 618    /* return the old data to the function caller, avoid memory leak */
 619    ptr = s->entries[arch][key].data;
 620    s->entries[arch][key].data = data;
 621    s->entries[arch][key].len = len;
 622    s->entries[arch][key].callback_opaque = NULL;
 623    s->entries[arch][key].allow_write = false;
 624
 625    return ptr;
 626}
 627
 628void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
 629{
 630    fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
 631}
 632
 633void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
 634{
 635    size_t sz = strlen(value) + 1;
 636
 637    fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
 638}
 639
 640void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
 641{
 642    uint16_t *copy;
 643
 644    copy = g_malloc(sizeof(value));
 645    *copy = cpu_to_le16(value);
 646    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 647}
 648
 649void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
 650{
 651    uint16_t *copy, *old;
 652
 653    copy = g_malloc(sizeof(value));
 654    *copy = cpu_to_le16(value);
 655    old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
 656    g_free(old);
 657}
 658
 659void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
 660{
 661    uint32_t *copy;
 662
 663    copy = g_malloc(sizeof(value));
 664    *copy = cpu_to_le32(value);
 665    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 666}
 667
 668void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
 669{
 670    uint64_t *copy;
 671
 672    copy = g_malloc(sizeof(value));
 673    *copy = cpu_to_le64(value);
 674    fw_cfg_add_bytes(s, key, copy, sizeof(value));
 675}
 676
 677void fw_cfg_set_order_override(FWCfgState *s, int order)
 678{
 679    assert(s->fw_cfg_order_override == 0);
 680    s->fw_cfg_order_override = order;
 681}
 682
 683void fw_cfg_reset_order_override(FWCfgState *s)
 684{
 685    assert(s->fw_cfg_order_override != 0);
 686    s->fw_cfg_order_override = 0;
 687}
 688
 689/*
 690 * This is the legacy order list.  For legacy systems, files are in
 691 * the fw_cfg in the order defined below, by the "order" value.  Note
 692 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
 693 * specific area, but there may be more than one and they occur in the
 694 * order that the user specifies them on the command line.  Those are
 695 * handled in a special manner, using the order override above.
 696 *
 697 * For non-legacy, the files are sorted by filename to avoid this kind
 698 * of complexity in the future.
 699 *
 700 * This is only for x86, other arches don't implement versioning so
 701 * they won't set legacy mode.
 702 */
 703static struct {
 704    const char *name;
 705    int order;
 706} fw_cfg_order[] = {
 707    { "etc/boot-menu-wait", 10 },
 708    { "bootsplash.jpg", 11 },
 709    { "bootsplash.bmp", 12 },
 710    { "etc/boot-fail-wait", 15 },
 711    { "etc/smbios/smbios-tables", 20 },
 712    { "etc/smbios/smbios-anchor", 30 },
 713    { "etc/e820", 40 },
 714    { "etc/reserved-memory-end", 50 },
 715    { "genroms/kvmvapic.bin", 55 },
 716    { "genroms/linuxboot.bin", 60 },
 717    { }, /* VGA ROMs from pc_vga_init come here, 70. */
 718    { }, /* NIC option ROMs from pc_nic_init come here, 80. */
 719    { "etc/system-states", 90 },
 720    { }, /* User ROMs come here, 100. */
 721    { }, /* Device FW comes here, 110. */
 722    { "etc/extra-pci-roots", 120 },
 723    { "etc/acpi/tables", 130 },
 724    { "etc/table-loader", 140 },
 725    { "etc/tpm/log", 150 },
 726    { "etc/acpi/rsdp", 160 },
 727    { "bootorder", 170 },
 728
 729#define FW_CFG_ORDER_OVERRIDE_LAST 200
 730};
 731
 732static int get_fw_cfg_order(FWCfgState *s, const char *name)
 733{
 734    int i;
 735
 736    if (s->fw_cfg_order_override > 0) {
 737        return s->fw_cfg_order_override;
 738    }
 739
 740    for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
 741        if (fw_cfg_order[i].name == NULL) {
 742            continue;
 743        }
 744
 745        if (strcmp(name, fw_cfg_order[i].name) == 0) {
 746            return fw_cfg_order[i].order;
 747        }
 748    }
 749
 750    /* Stick unknown stuff at the end. */
 751    warn_report("Unknown firmware file in legacy mode: %s", name);
 752    return FW_CFG_ORDER_OVERRIDE_LAST;
 753}
 754
 755void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
 756                              FWCfgCallback select_cb,
 757                              FWCfgWriteCallback write_cb,
 758                              void *callback_opaque,
 759                              void *data, size_t len, bool read_only)
 760{
 761    int i, index, count;
 762    size_t dsize;
 763    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
 764    int order = 0;
 765
 766    if (!s->files) {
 767        dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
 768        s->files = g_malloc0(dsize);
 769        fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
 770    }
 771
 772    count = be32_to_cpu(s->files->count);
 773    assert(count < fw_cfg_file_slots(s));
 774
 775    /* Find the insertion point. */
 776    if (mc->legacy_fw_cfg_order) {
 777        /*
 778         * Sort by order. For files with the same order, we keep them
 779         * in the sequence in which they were added.
 780         */
 781        order = get_fw_cfg_order(s, filename);
 782        for (index = count;
 783             index > 0 && order < s->entry_order[index - 1];
 784             index--);
 785    } else {
 786        /* Sort by file name. */
 787        for (index = count;
 788             index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
 789             index--);
 790    }
 791
 792    /*
 793     * Move all the entries from the index point and after down one
 794     * to create a slot for the new entry.  Because calculations are
 795     * being done with the index, make it so that "i" is the current
 796     * index and "i - 1" is the one being copied from, thus the
 797     * unusual start and end in the for statement.
 798     */
 799    for (i = count; i > index; i--) {
 800        s->files->f[i] = s->files->f[i - 1];
 801        s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
 802        s->entries[0][FW_CFG_FILE_FIRST + i] =
 803            s->entries[0][FW_CFG_FILE_FIRST + i - 1];
 804        s->entry_order[i] = s->entry_order[i - 1];
 805    }
 806
 807    memset(&s->files->f[index], 0, sizeof(FWCfgFile));
 808    memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
 809
 810    pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
 811    for (i = 0; i <= count; i++) {
 812        if (i != index &&
 813            strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
 814            error_report("duplicate fw_cfg file name: %s",
 815                         s->files->f[index].name);
 816            exit(1);
 817        }
 818    }
 819
 820    fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
 821                              select_cb, write_cb,
 822                              callback_opaque, data, len,
 823                              read_only);
 824
 825    s->files->f[index].size   = cpu_to_be32(len);
 826    s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
 827    s->entry_order[index] = order;
 828    trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
 829
 830    s->files->count = cpu_to_be32(count+1);
 831}
 832
 833void fw_cfg_add_file(FWCfgState *s,  const char *filename,
 834                     void *data, size_t len)
 835{
 836    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 837}
 838
 839void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
 840                        void *data, size_t len)
 841{
 842    int i, index;
 843    void *ptr = NULL;
 844
 845    assert(s->files);
 846
 847    index = be32_to_cpu(s->files->count);
 848
 849    for (i = 0; i < index; i++) {
 850        if (strcmp(filename, s->files->f[i].name) == 0) {
 851            ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
 852                                           data, len);
 853            s->files->f[i].size   = cpu_to_be32(len);
 854            return ptr;
 855        }
 856    }
 857
 858    assert(index < fw_cfg_file_slots(s));
 859
 860    /* add new one */
 861    fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
 862    return NULL;
 863}
 864
 865static void fw_cfg_machine_reset(void *opaque)
 866{
 867    void *ptr;
 868    size_t len;
 869    FWCfgState *s = opaque;
 870    char *bootindex = get_boot_devices_list(&len);
 871
 872    ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
 873    g_free(ptr);
 874}
 875
 876static void fw_cfg_machine_ready(struct Notifier *n, void *data)
 877{
 878    FWCfgState *s = container_of(n, FWCfgState, machine_ready);
 879    qemu_register_reset(fw_cfg_machine_reset, s);
 880}
 881
 882
 883
 884static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
 885{
 886    FWCfgState *s = FW_CFG(dev);
 887    MachineState *machine = MACHINE(qdev_get_machine());
 888    uint32_t version = FW_CFG_VERSION;
 889
 890    if (!fw_cfg_find()) {
 891        error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
 892        return;
 893    }
 894
 895    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
 896    fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
 897    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
 898    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
 899    fw_cfg_bootsplash(s);
 900    fw_cfg_reboot(s);
 901
 902    if (s->dma_enabled) {
 903        version |= FW_CFG_VERSION_DMA;
 904    }
 905
 906    fw_cfg_add_i32(s, FW_CFG_ID, version);
 907
 908    s->machine_ready.notify = fw_cfg_machine_ready;
 909    qemu_add_machine_init_done_notifier(&s->machine_ready);
 910}
 911
 912FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
 913                                AddressSpace *dma_as)
 914{
 915    DeviceState *dev;
 916    SysBusDevice *sbd;
 917    FWCfgIoState *ios;
 918    FWCfgState *s;
 919    bool dma_requested = dma_iobase && dma_as;
 920
 921    dev = qdev_create(NULL, TYPE_FW_CFG_IO);
 922    if (!dma_requested) {
 923        qdev_prop_set_bit(dev, "dma_enabled", false);
 924    }
 925
 926    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 927                              OBJECT(dev), NULL);
 928    qdev_init_nofail(dev);
 929
 930    sbd = SYS_BUS_DEVICE(dev);
 931    ios = FW_CFG_IO(dev);
 932    sysbus_add_io(sbd, iobase, &ios->comb_iomem);
 933
 934    s = FW_CFG(dev);
 935
 936    if (s->dma_enabled) {
 937        /* 64 bits for the address field */
 938        s->dma_as = dma_as;
 939        s->dma_addr = 0;
 940        sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
 941    }
 942
 943    return s;
 944}
 945
 946FWCfgState *fw_cfg_init_io(uint32_t iobase)
 947{
 948    return fw_cfg_init_io_dma(iobase, 0, NULL);
 949}
 950
 951FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
 952                                 hwaddr data_addr, uint32_t data_width,
 953                                 hwaddr dma_addr, AddressSpace *dma_as)
 954{
 955    DeviceState *dev;
 956    SysBusDevice *sbd;
 957    FWCfgState *s;
 958    bool dma_requested = dma_addr && dma_as;
 959
 960    dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
 961    qdev_prop_set_uint32(dev, "data_width", data_width);
 962    if (!dma_requested) {
 963        qdev_prop_set_bit(dev, "dma_enabled", false);
 964    }
 965
 966    object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
 967                              OBJECT(dev), NULL);
 968    qdev_init_nofail(dev);
 969
 970    sbd = SYS_BUS_DEVICE(dev);
 971    sysbus_mmio_map(sbd, 0, ctl_addr);
 972    sysbus_mmio_map(sbd, 1, data_addr);
 973
 974    s = FW_CFG(dev);
 975
 976    if (s->dma_enabled) {
 977        s->dma_as = dma_as;
 978        s->dma_addr = 0;
 979        sysbus_mmio_map(sbd, 2, dma_addr);
 980    }
 981
 982    return s;
 983}
 984
 985FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
 986{
 987    return fw_cfg_init_mem_wide(ctl_addr, data_addr,
 988                                fw_cfg_data_mem_ops.valid.max_access_size,
 989                                0, NULL);
 990}
 991
 992
 993FWCfgState *fw_cfg_find(void)
 994{
 995    /* Returns NULL unless there is exactly one fw_cfg device */
 996    return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
 997}
 998
 999
1000static void fw_cfg_class_init(ObjectClass *klass, void *data)
1001{
1002    DeviceClass *dc = DEVICE_CLASS(klass);
1003
1004    dc->reset = fw_cfg_reset;
1005    dc->vmsd = &vmstate_fw_cfg;
1006}
1007
1008static const TypeInfo fw_cfg_info = {
1009    .name          = TYPE_FW_CFG,
1010    .parent        = TYPE_SYS_BUS_DEVICE,
1011    .abstract      = true,
1012    .instance_size = sizeof(FWCfgState),
1013    .class_init    = fw_cfg_class_init,
1014};
1015
1016static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1017{
1018    uint16_t file_slots_max;
1019
1020    if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1021        error_setg(errp, "\"file_slots\" must be at least 0x%x",
1022                   FW_CFG_FILE_SLOTS_MIN);
1023        return;
1024    }
1025
1026    /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1027     * that we permit. The actual (exclusive) value coming from the
1028     * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1029    file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1030    if (fw_cfg_file_slots(s) > file_slots_max) {
1031        error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1032                   file_slots_max);
1033        return;
1034    }
1035
1036    s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1037    s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1038    s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1039}
1040
1041static Property fw_cfg_io_properties[] = {
1042    DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1043                     true),
1044    DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1045                       FW_CFG_FILE_SLOTS_DFLT),
1046    DEFINE_PROP_END_OF_LIST(),
1047};
1048
1049static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1050{
1051    FWCfgIoState *s = FW_CFG_IO(dev);
1052    Error *local_err = NULL;
1053
1054    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1055    if (local_err) {
1056        error_propagate(errp, local_err);
1057        return;
1058    }
1059
1060    /* when using port i/o, the 8-bit data register ALWAYS overlaps
1061     * with half of the 16-bit control register. Hence, the total size
1062     * of the i/o region used is FW_CFG_CTL_SIZE */
1063    memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1064                          FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1065
1066    if (FW_CFG(s)->dma_enabled) {
1067        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1068                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1069                              sizeof(dma_addr_t));
1070    }
1071
1072    fw_cfg_common_realize(dev, errp);
1073}
1074
1075static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1076{
1077    DeviceClass *dc = DEVICE_CLASS(klass);
1078
1079    dc->realize = fw_cfg_io_realize;
1080    dc->props = fw_cfg_io_properties;
1081}
1082
1083static const TypeInfo fw_cfg_io_info = {
1084    .name          = TYPE_FW_CFG_IO,
1085    .parent        = TYPE_FW_CFG,
1086    .instance_size = sizeof(FWCfgIoState),
1087    .class_init    = fw_cfg_io_class_init,
1088};
1089
1090
1091static Property fw_cfg_mem_properties[] = {
1092    DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1093    DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1094                     true),
1095    DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1096                       FW_CFG_FILE_SLOTS_DFLT),
1097    DEFINE_PROP_END_OF_LIST(),
1098};
1099
1100static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1101{
1102    FWCfgMemState *s = FW_CFG_MEM(dev);
1103    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1104    const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1105    Error *local_err = NULL;
1106
1107    fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1108    if (local_err) {
1109        error_propagate(errp, local_err);
1110        return;
1111    }
1112
1113    memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1114                          FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1115    sysbus_init_mmio(sbd, &s->ctl_iomem);
1116
1117    if (s->data_width > data_ops->valid.max_access_size) {
1118        s->wide_data_ops = *data_ops;
1119
1120        s->wide_data_ops.valid.max_access_size = s->data_width;
1121        s->wide_data_ops.impl.max_access_size  = s->data_width;
1122        data_ops = &s->wide_data_ops;
1123    }
1124    memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1125                          "fwcfg.data", data_ops->valid.max_access_size);
1126    sysbus_init_mmio(sbd, &s->data_iomem);
1127
1128    if (FW_CFG(s)->dma_enabled) {
1129        memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1130                              &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1131                              sizeof(dma_addr_t));
1132        sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1133    }
1134
1135    fw_cfg_common_realize(dev, errp);
1136}
1137
1138static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1139{
1140    DeviceClass *dc = DEVICE_CLASS(klass);
1141
1142    dc->realize = fw_cfg_mem_realize;
1143    dc->props = fw_cfg_mem_properties;
1144}
1145
1146static const TypeInfo fw_cfg_mem_info = {
1147    .name          = TYPE_FW_CFG_MEM,
1148    .parent        = TYPE_FW_CFG,
1149    .instance_size = sizeof(FWCfgMemState),
1150    .class_init    = fw_cfg_mem_class_init,
1151};
1152
1153
1154static void fw_cfg_register_types(void)
1155{
1156    type_register_static(&fw_cfg_info);
1157    type_register_static(&fw_cfg_io_info);
1158    type_register_static(&fw_cfg_mem_info);
1159}
1160
1161type_init(fw_cfg_register_types)
1162