qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "sysemu/sysemu.h"
  31#include "sysemu/numa.h"
  32#include "hw/hw.h"
  33#include "qemu/log.h"
  34#include "hw/fw-path-provider.h"
  35#include "elf.h"
  36#include "net/net.h"
  37#include "sysemu/device_tree.h"
  38#include "sysemu/cpus.h"
  39#include "sysemu/hw_accel.h"
  40#include "kvm_ppc.h"
  41#include "migration/misc.h"
  42#include "migration/global_state.h"
  43#include "migration/register.h"
  44#include "mmu-hash64.h"
  45#include "mmu-book3s-v3.h"
  46#include "cpu-models.h"
  47#include "qom/cpu.h"
  48
  49#include "hw/boards.h"
  50#include "hw/ppc/ppc.h"
  51#include "hw/loader.h"
  52
  53#include "hw/ppc/fdt.h"
  54#include "hw/ppc/spapr.h"
  55#include "hw/ppc/spapr_vio.h"
  56#include "hw/pci-host/spapr.h"
  57#include "hw/pci/msi.h"
  58
  59#include "hw/pci/pci.h"
  60#include "hw/scsi/scsi.h"
  61#include "hw/virtio/virtio-scsi.h"
  62#include "hw/virtio/vhost-scsi-common.h"
  63
  64#include "exec/address-spaces.h"
  65#include "exec/ram_addr.h"
  66#include "hw/usb.h"
  67#include "qemu/config-file.h"
  68#include "qemu/error-report.h"
  69#include "trace.h"
  70#include "hw/nmi.h"
  71#include "hw/intc/intc.h"
  72
  73#include "hw/compat.h"
  74#include "qemu/cutils.h"
  75#include "hw/ppc/spapr_cpu_core.h"
  76#include "hw/mem/memory-device.h"
  77
  78#include <libfdt.h>
  79
  80/* SLOF memory layout:
  81 *
  82 * SLOF raw image loaded at 0, copies its romfs right below the flat
  83 * device-tree, then position SLOF itself 31M below that
  84 *
  85 * So we set FW_OVERHEAD to 40MB which should account for all of that
  86 * and more
  87 *
  88 * We load our kernel at 4M, leaving space for SLOF initial image
  89 */
  90#define FDT_MAX_SIZE            0x100000
  91#define RTAS_MAX_SIZE           0x10000
  92#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  93#define FW_MAX_SIZE             0x400000
  94#define FW_FILE_NAME            "slof.bin"
  95#define FW_OVERHEAD             0x2800000
  96#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  97
  98#define MIN_RMA_SLOF            128UL
  99
 100#define PHANDLE_XICP            0x00001111
 101
 102/* These two functions implement the VCPU id numbering: one to compute them
 103 * all and one to identify thread 0 of a VCORE. Any change to the first one
 104 * is likely to have an impact on the second one, so let's keep them close.
 105 */
 106static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
 107{
 108    assert(spapr->vsmt);
 109    return
 110        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 111}
 112static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
 113                                      PowerPCCPU *cpu)
 114{
 115    assert(spapr->vsmt);
 116    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 117}
 118
 119static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 120{
 121    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 122     * and newer QEMUs don't even have them. In both cases, we don't want
 123     * to send anything on the wire.
 124     */
 125    return false;
 126}
 127
 128static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 129    .name = "icp/server",
 130    .version_id = 1,
 131    .minimum_version_id = 1,
 132    .needed = pre_2_10_vmstate_dummy_icp_needed,
 133    .fields = (VMStateField[]) {
 134        VMSTATE_UNUSED(4), /* uint32_t xirr */
 135        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 136        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 137        VMSTATE_END_OF_LIST()
 138    },
 139};
 140
 141static void pre_2_10_vmstate_register_dummy_icp(int i)
 142{
 143    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 144                     (void *)(uintptr_t) i);
 145}
 146
 147static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 148{
 149    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 150                       (void *)(uintptr_t) i);
 151}
 152
 153static int xics_max_server_number(sPAPRMachineState *spapr)
 154{
 155    assert(spapr->vsmt);
 156    return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
 157}
 158
 159static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 160                                  int smt_threads)
 161{
 162    int i, ret = 0;
 163    uint32_t servers_prop[smt_threads];
 164    uint32_t gservers_prop[smt_threads * 2];
 165    int index = spapr_get_vcpu_id(cpu);
 166
 167    if (cpu->compat_pvr) {
 168        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 169        if (ret < 0) {
 170            return ret;
 171        }
 172    }
 173
 174    /* Build interrupt servers and gservers properties */
 175    for (i = 0; i < smt_threads; i++) {
 176        servers_prop[i] = cpu_to_be32(index + i);
 177        /* Hack, direct the group queues back to cpu 0 */
 178        gservers_prop[i*2] = cpu_to_be32(index + i);
 179        gservers_prop[i*2 + 1] = 0;
 180    }
 181    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 182                      servers_prop, sizeof(servers_prop));
 183    if (ret < 0) {
 184        return ret;
 185    }
 186    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 187                      gservers_prop, sizeof(gservers_prop));
 188
 189    return ret;
 190}
 191
 192static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 193{
 194    int index = spapr_get_vcpu_id(cpu);
 195    uint32_t associativity[] = {cpu_to_be32(0x5),
 196                                cpu_to_be32(0x0),
 197                                cpu_to_be32(0x0),
 198                                cpu_to_be32(0x0),
 199                                cpu_to_be32(cpu->node_id),
 200                                cpu_to_be32(index)};
 201
 202    /* Advertise NUMA via ibm,associativity */
 203    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 204                          sizeof(associativity));
 205}
 206
 207/* Populate the "ibm,pa-features" property */
 208static void spapr_populate_pa_features(sPAPRMachineState *spapr,
 209                                       PowerPCCPU *cpu,
 210                                       void *fdt, int offset,
 211                                       bool legacy_guest)
 212{
 213    uint8_t pa_features_206[] = { 6, 0,
 214        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 215    uint8_t pa_features_207[] = { 24, 0,
 216        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 217        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 218        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 219        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 220    uint8_t pa_features_300[] = { 66, 0,
 221        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 222        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 223        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 224        /* 6: DS207 */
 225        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 226        /* 16: Vector */
 227        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 228        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 229        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 230        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 231        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 232        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 233        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 234        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 235        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 236        /* 42: PM, 44: PC RA, 46: SC vec'd */
 237        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 238        /* 48: SIMD, 50: QP BFP, 52: String */
 239        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 240        /* 54: DecFP, 56: DecI, 58: SHA */
 241        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 242        /* 60: NM atomic, 62: RNG */
 243        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 244    };
 245    uint8_t *pa_features = NULL;
 246    size_t pa_size;
 247
 248    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 249        pa_features = pa_features_206;
 250        pa_size = sizeof(pa_features_206);
 251    }
 252    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 253        pa_features = pa_features_207;
 254        pa_size = sizeof(pa_features_207);
 255    }
 256    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 257        pa_features = pa_features_300;
 258        pa_size = sizeof(pa_features_300);
 259    }
 260    if (!pa_features) {
 261        return;
 262    }
 263
 264    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 265        /*
 266         * Note: we keep CI large pages off by default because a 64K capable
 267         * guest provisioned with large pages might otherwise try to map a qemu
 268         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 269         * even if that qemu runs on a 4k host.
 270         * We dd this bit back here if we are confident this is not an issue
 271         */
 272        pa_features[3] |= 0x20;
 273    }
 274    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 275        pa_features[24] |= 0x80;    /* Transactional memory support */
 276    }
 277    if (legacy_guest && pa_size > 40) {
 278        /* Workaround for broken kernels that attempt (guest) radix
 279         * mode when they can't handle it, if they see the radix bit set
 280         * in pa-features. So hide it from them. */
 281        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 282    }
 283
 284    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 285}
 286
 287static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 288{
 289    int ret = 0, offset, cpus_offset;
 290    CPUState *cs;
 291    char cpu_model[32];
 292    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 293
 294    CPU_FOREACH(cs) {
 295        PowerPCCPU *cpu = POWERPC_CPU(cs);
 296        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 297        int index = spapr_get_vcpu_id(cpu);
 298        int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 299
 300        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 301            continue;
 302        }
 303
 304        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 305
 306        cpus_offset = fdt_path_offset(fdt, "/cpus");
 307        if (cpus_offset < 0) {
 308            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 309            if (cpus_offset < 0) {
 310                return cpus_offset;
 311            }
 312        }
 313        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 314        if (offset < 0) {
 315            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 316            if (offset < 0) {
 317                return offset;
 318            }
 319        }
 320
 321        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 322                          pft_size_prop, sizeof(pft_size_prop));
 323        if (ret < 0) {
 324            return ret;
 325        }
 326
 327        if (nb_numa_nodes > 1) {
 328            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 329            if (ret < 0) {
 330                return ret;
 331            }
 332        }
 333
 334        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 335        if (ret < 0) {
 336            return ret;
 337        }
 338
 339        spapr_populate_pa_features(spapr, cpu, fdt, offset,
 340                                   spapr->cas_legacy_guest_workaround);
 341    }
 342    return ret;
 343}
 344
 345static hwaddr spapr_node0_size(MachineState *machine)
 346{
 347    if (nb_numa_nodes) {
 348        int i;
 349        for (i = 0; i < nb_numa_nodes; ++i) {
 350            if (numa_info[i].node_mem) {
 351                return MIN(pow2floor(numa_info[i].node_mem),
 352                           machine->ram_size);
 353            }
 354        }
 355    }
 356    return machine->ram_size;
 357}
 358
 359static void add_str(GString *s, const gchar *s1)
 360{
 361    g_string_append_len(s, s1, strlen(s1) + 1);
 362}
 363
 364static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 365                                       hwaddr size)
 366{
 367    uint32_t associativity[] = {
 368        cpu_to_be32(0x4), /* length */
 369        cpu_to_be32(0x0), cpu_to_be32(0x0),
 370        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 371    };
 372    char mem_name[32];
 373    uint64_t mem_reg_property[2];
 374    int off;
 375
 376    mem_reg_property[0] = cpu_to_be64(start);
 377    mem_reg_property[1] = cpu_to_be64(size);
 378
 379    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 380    off = fdt_add_subnode(fdt, 0, mem_name);
 381    _FDT(off);
 382    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 383    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 384                      sizeof(mem_reg_property))));
 385    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 386                      sizeof(associativity))));
 387    return off;
 388}
 389
 390static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 391{
 392    MachineState *machine = MACHINE(spapr);
 393    hwaddr mem_start, node_size;
 394    int i, nb_nodes = nb_numa_nodes;
 395    NodeInfo *nodes = numa_info;
 396    NodeInfo ramnode;
 397
 398    /* No NUMA nodes, assume there is just one node with whole RAM */
 399    if (!nb_numa_nodes) {
 400        nb_nodes = 1;
 401        ramnode.node_mem = machine->ram_size;
 402        nodes = &ramnode;
 403    }
 404
 405    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 406        if (!nodes[i].node_mem) {
 407            continue;
 408        }
 409        if (mem_start >= machine->ram_size) {
 410            node_size = 0;
 411        } else {
 412            node_size = nodes[i].node_mem;
 413            if (node_size > machine->ram_size - mem_start) {
 414                node_size = machine->ram_size - mem_start;
 415            }
 416        }
 417        if (!mem_start) {
 418            /* spapr_machine_init() checks for rma_size <= node0_size
 419             * already */
 420            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 421            mem_start += spapr->rma_size;
 422            node_size -= spapr->rma_size;
 423        }
 424        for ( ; node_size; ) {
 425            hwaddr sizetmp = pow2floor(node_size);
 426
 427            /* mem_start != 0 here */
 428            if (ctzl(mem_start) < ctzl(sizetmp)) {
 429                sizetmp = 1ULL << ctzl(mem_start);
 430            }
 431
 432            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 433            node_size -= sizetmp;
 434            mem_start += sizetmp;
 435        }
 436    }
 437
 438    return 0;
 439}
 440
 441static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 442                                  sPAPRMachineState *spapr)
 443{
 444    PowerPCCPU *cpu = POWERPC_CPU(cs);
 445    CPUPPCState *env = &cpu->env;
 446    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 447    int index = spapr_get_vcpu_id(cpu);
 448    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 449                       0xffffffff, 0xffffffff};
 450    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 451        : SPAPR_TIMEBASE_FREQ;
 452    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 453    uint32_t page_sizes_prop[64];
 454    size_t page_sizes_prop_size;
 455    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 456    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 457    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 458    sPAPRDRConnector *drc;
 459    int drc_index;
 460    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 461    int i;
 462
 463    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 464    if (drc) {
 465        drc_index = spapr_drc_index(drc);
 466        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 467    }
 468
 469    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 470    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 471
 472    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 473    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 474                           env->dcache_line_size)));
 475    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 476                           env->dcache_line_size)));
 477    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 478                           env->icache_line_size)));
 479    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 480                           env->icache_line_size)));
 481
 482    if (pcc->l1_dcache_size) {
 483        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 484                               pcc->l1_dcache_size)));
 485    } else {
 486        warn_report("Unknown L1 dcache size for cpu");
 487    }
 488    if (pcc->l1_icache_size) {
 489        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 490                               pcc->l1_icache_size)));
 491    } else {
 492        warn_report("Unknown L1 icache size for cpu");
 493    }
 494
 495    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 496    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 497    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 498    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 499    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 500    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 501
 502    if (env->spr_cb[SPR_PURR].oea_read) {
 503        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 504    }
 505
 506    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 507        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 508                          segs, sizeof(segs))));
 509    }
 510
 511    /* Advertise VSX (vector extensions) if available
 512     *   1               == VMX / Altivec available
 513     *   2               == VSX available
 514     *
 515     * Only CPUs for which we create core types in spapr_cpu_core.c
 516     * are possible, and all of those have VMX */
 517    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 518        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 519    } else {
 520        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 521    }
 522
 523    /* Advertise DFP (Decimal Floating Point) if available
 524     *   0 / no property == no DFP
 525     *   1               == DFP available */
 526    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 527        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 528    }
 529
 530    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 531                                                      sizeof(page_sizes_prop));
 532    if (page_sizes_prop_size) {
 533        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 534                          page_sizes_prop, page_sizes_prop_size)));
 535    }
 536
 537    spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
 538
 539    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 540                           cs->cpu_index / vcpus_per_socket)));
 541
 542    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 543                      pft_size_prop, sizeof(pft_size_prop))));
 544
 545    if (nb_numa_nodes > 1) {
 546        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 547    }
 548
 549    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 550
 551    if (pcc->radix_page_info) {
 552        for (i = 0; i < pcc->radix_page_info->count; i++) {
 553            radix_AP_encodings[i] =
 554                cpu_to_be32(pcc->radix_page_info->entries[i]);
 555        }
 556        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 557                          radix_AP_encodings,
 558                          pcc->radix_page_info->count *
 559                          sizeof(radix_AP_encodings[0]))));
 560    }
 561}
 562
 563static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 564{
 565    CPUState **rev;
 566    CPUState *cs;
 567    int n_cpus;
 568    int cpus_offset;
 569    char *nodename;
 570    int i;
 571
 572    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 573    _FDT(cpus_offset);
 574    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 575    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 576
 577    /*
 578     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 579     * created by fdt_add_subnode() end up in the right order in FDT
 580     * for the guest kernel the enumerate the CPUs correctly.
 581     *
 582     * The CPU list cannot be traversed in reverse order, so we need
 583     * to do extra work.
 584     */
 585    n_cpus = 0;
 586    rev = NULL;
 587    CPU_FOREACH(cs) {
 588        rev = g_renew(CPUState *, rev, n_cpus + 1);
 589        rev[n_cpus++] = cs;
 590    }
 591
 592    for (i = n_cpus - 1; i >= 0; i--) {
 593        CPUState *cs = rev[i];
 594        PowerPCCPU *cpu = POWERPC_CPU(cs);
 595        int index = spapr_get_vcpu_id(cpu);
 596        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 597        int offset;
 598
 599        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 600            continue;
 601        }
 602
 603        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 604        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 605        g_free(nodename);
 606        _FDT(offset);
 607        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 608    }
 609
 610    g_free(rev);
 611}
 612
 613static int spapr_rng_populate_dt(void *fdt)
 614{
 615    int node;
 616    int ret;
 617
 618    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 619    if (node <= 0) {
 620        return -1;
 621    }
 622    ret = fdt_setprop_string(fdt, node, "device_type",
 623                             "ibm,platform-facilities");
 624    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 625    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 626
 627    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 628    if (node <= 0) {
 629        return -1;
 630    }
 631    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 632
 633    return ret ? -1 : 0;
 634}
 635
 636static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 637{
 638    MemoryDeviceInfoList *info;
 639
 640    for (info = list; info; info = info->next) {
 641        MemoryDeviceInfo *value = info->value;
 642
 643        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 644            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 645
 646            if (addr >= pcdimm_info->addr &&
 647                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 648                return pcdimm_info->node;
 649            }
 650        }
 651    }
 652
 653    return -1;
 654}
 655
 656struct sPAPRDrconfCellV2 {
 657     uint32_t seq_lmbs;
 658     uint64_t base_addr;
 659     uint32_t drc_index;
 660     uint32_t aa_index;
 661     uint32_t flags;
 662} QEMU_PACKED;
 663
 664typedef struct DrconfCellQueue {
 665    struct sPAPRDrconfCellV2 cell;
 666    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 667} DrconfCellQueue;
 668
 669static DrconfCellQueue *
 670spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 671                      uint32_t drc_index, uint32_t aa_index,
 672                      uint32_t flags)
 673{
 674    DrconfCellQueue *elem;
 675
 676    elem = g_malloc0(sizeof(*elem));
 677    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 678    elem->cell.base_addr = cpu_to_be64(base_addr);
 679    elem->cell.drc_index = cpu_to_be32(drc_index);
 680    elem->cell.aa_index = cpu_to_be32(aa_index);
 681    elem->cell.flags = cpu_to_be32(flags);
 682
 683    return elem;
 684}
 685
 686/* ibm,dynamic-memory-v2 */
 687static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
 688                                   int offset, MemoryDeviceInfoList *dimms)
 689{
 690    MachineState *machine = MACHINE(spapr);
 691    uint8_t *int_buf, *cur_index, buf_len;
 692    int ret;
 693    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 694    uint64_t addr, cur_addr, size;
 695    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 696    uint64_t mem_end = machine->device_memory->base +
 697                       memory_region_size(&machine->device_memory->mr);
 698    uint32_t node, nr_entries = 0;
 699    sPAPRDRConnector *drc;
 700    DrconfCellQueue *elem, *next;
 701    MemoryDeviceInfoList *info;
 702    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 703        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 704
 705    /* Entry to cover RAM and the gap area */
 706    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 707                                 SPAPR_LMB_FLAGS_RESERVED |
 708                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 709    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 710    nr_entries++;
 711
 712    cur_addr = machine->device_memory->base;
 713    for (info = dimms; info; info = info->next) {
 714        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 715
 716        addr = di->addr;
 717        size = di->size;
 718        node = di->node;
 719
 720        /* Entry for hot-pluggable area */
 721        if (cur_addr < addr) {
 722            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 723            g_assert(drc);
 724            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 725                                         cur_addr, spapr_drc_index(drc), -1, 0);
 726            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 727            nr_entries++;
 728        }
 729
 730        /* Entry for DIMM */
 731        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 732        g_assert(drc);
 733        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 734                                     spapr_drc_index(drc), node,
 735                                     SPAPR_LMB_FLAGS_ASSIGNED);
 736        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 737        nr_entries++;
 738        cur_addr = addr + size;
 739    }
 740
 741    /* Entry for remaining hotpluggable area */
 742    if (cur_addr < mem_end) {
 743        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 744        g_assert(drc);
 745        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 746                                     cur_addr, spapr_drc_index(drc), -1, 0);
 747        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 748        nr_entries++;
 749    }
 750
 751    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 752    int_buf = cur_index = g_malloc0(buf_len);
 753    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 754    cur_index += sizeof(nr_entries);
 755
 756    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 757        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 758        cur_index += sizeof(elem->cell);
 759        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 760        g_free(elem);
 761    }
 762
 763    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 764    g_free(int_buf);
 765    if (ret < 0) {
 766        return -1;
 767    }
 768    return 0;
 769}
 770
 771/* ibm,dynamic-memory */
 772static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
 773                                   int offset, MemoryDeviceInfoList *dimms)
 774{
 775    MachineState *machine = MACHINE(spapr);
 776    int i, ret;
 777    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 778    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 779    uint32_t nr_lmbs = (machine->device_memory->base +
 780                       memory_region_size(&machine->device_memory->mr)) /
 781                       lmb_size;
 782    uint32_t *int_buf, *cur_index, buf_len;
 783
 784    /*
 785     * Allocate enough buffer size to fit in ibm,dynamic-memory
 786     */
 787    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 788    cur_index = int_buf = g_malloc0(buf_len);
 789    int_buf[0] = cpu_to_be32(nr_lmbs);
 790    cur_index++;
 791    for (i = 0; i < nr_lmbs; i++) {
 792        uint64_t addr = i * lmb_size;
 793        uint32_t *dynamic_memory = cur_index;
 794
 795        if (i >= device_lmb_start) {
 796            sPAPRDRConnector *drc;
 797
 798            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 799            g_assert(drc);
 800
 801            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 802            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 803            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 804            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 805            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 806            if (memory_region_present(get_system_memory(), addr)) {
 807                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 808            } else {
 809                dynamic_memory[5] = cpu_to_be32(0);
 810            }
 811        } else {
 812            /*
 813             * LMB information for RMA, boot time RAM and gap b/n RAM and
 814             * device memory region -- all these are marked as reserved
 815             * and as having no valid DRC.
 816             */
 817            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 818            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 819            dynamic_memory[2] = cpu_to_be32(0);
 820            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 821            dynamic_memory[4] = cpu_to_be32(-1);
 822            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 823                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 824        }
 825
 826        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 827    }
 828    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 829    g_free(int_buf);
 830    if (ret < 0) {
 831        return -1;
 832    }
 833    return 0;
 834}
 835
 836/*
 837 * Adds ibm,dynamic-reconfiguration-memory node.
 838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 839 * of this device tree node.
 840 */
 841static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 842{
 843    MachineState *machine = MACHINE(spapr);
 844    int ret, i, offset;
 845    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 846    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 847    uint32_t *int_buf, *cur_index, buf_len;
 848    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 849    MemoryDeviceInfoList *dimms = NULL;
 850
 851    /*
 852     * Don't create the node if there is no device memory
 853     */
 854    if (machine->ram_size == machine->maxram_size) {
 855        return 0;
 856    }
 857
 858    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 859
 860    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 861                    sizeof(prop_lmb_size));
 862    if (ret < 0) {
 863        return ret;
 864    }
 865
 866    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 867    if (ret < 0) {
 868        return ret;
 869    }
 870
 871    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 872    if (ret < 0) {
 873        return ret;
 874    }
 875
 876    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 877    dimms = qmp_memory_device_list();
 878    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 879        ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
 880    } else {
 881        ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
 882    }
 883    qapi_free_MemoryDeviceInfoList(dimms);
 884
 885    if (ret < 0) {
 886        return ret;
 887    }
 888
 889    /* ibm,associativity-lookup-arrays */
 890    buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
 891    cur_index = int_buf = g_malloc0(buf_len);
 892
 893    cur_index = int_buf;
 894    int_buf[0] = cpu_to_be32(nr_nodes);
 895    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 896    cur_index += 2;
 897    for (i = 0; i < nr_nodes; i++) {
 898        uint32_t associativity[] = {
 899            cpu_to_be32(0x0),
 900            cpu_to_be32(0x0),
 901            cpu_to_be32(0x0),
 902            cpu_to_be32(i)
 903        };
 904        memcpy(cur_index, associativity, sizeof(associativity));
 905        cur_index += 4;
 906    }
 907    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 908            (cur_index - int_buf) * sizeof(uint32_t));
 909    g_free(int_buf);
 910
 911    return ret;
 912}
 913
 914static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 915                                sPAPROptionVector *ov5_updates)
 916{
 917    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 918    int ret = 0, offset;
 919
 920    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 921    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 922        g_assert(smc->dr_lmb_enabled);
 923        ret = spapr_populate_drconf_memory(spapr, fdt);
 924        if (ret) {
 925            goto out;
 926        }
 927    }
 928
 929    offset = fdt_path_offset(fdt, "/chosen");
 930    if (offset < 0) {
 931        offset = fdt_add_subnode(fdt, 0, "chosen");
 932        if (offset < 0) {
 933            return offset;
 934        }
 935    }
 936    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 937                                 "ibm,architecture-vec-5");
 938
 939out:
 940    return ret;
 941}
 942
 943static bool spapr_hotplugged_dev_before_cas(void)
 944{
 945    Object *drc_container, *obj;
 946    ObjectProperty *prop;
 947    ObjectPropertyIterator iter;
 948
 949    drc_container = container_get(object_get_root(), "/dr-connector");
 950    object_property_iter_init(&iter, drc_container);
 951    while ((prop = object_property_iter_next(&iter))) {
 952        if (!strstart(prop->type, "link<", NULL)) {
 953            continue;
 954        }
 955        obj = object_property_get_link(drc_container, prop->name, NULL);
 956        if (spapr_drc_needed(obj)) {
 957            return true;
 958        }
 959    }
 960    return false;
 961}
 962
 963int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 964                                 target_ulong addr, target_ulong size,
 965                                 sPAPROptionVector *ov5_updates)
 966{
 967    void *fdt, *fdt_skel;
 968    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 969
 970    if (spapr_hotplugged_dev_before_cas()) {
 971        return 1;
 972    }
 973
 974    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 975        error_report("SLOF provided an unexpected CAS buffer size "
 976                     TARGET_FMT_lu " (min: %zu, max: %u)",
 977                     size, sizeof(hdr), FW_MAX_SIZE);
 978        exit(EXIT_FAILURE);
 979    }
 980
 981    size -= sizeof(hdr);
 982
 983    /* Create skeleton */
 984    fdt_skel = g_malloc0(size);
 985    _FDT((fdt_create(fdt_skel, size)));
 986    _FDT((fdt_finish_reservemap(fdt_skel)));
 987    _FDT((fdt_begin_node(fdt_skel, "")));
 988    _FDT((fdt_end_node(fdt_skel)));
 989    _FDT((fdt_finish(fdt_skel)));
 990    fdt = g_malloc0(size);
 991    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 992    g_free(fdt_skel);
 993
 994    /* Fixup cpu nodes */
 995    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 996
 997    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 998        return -1;
 999    }
1000
1001    /* Pack resulting tree */
1002    _FDT((fdt_pack(fdt)));
1003
1004    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1005        trace_spapr_cas_failed(size);
1006        return -1;
1007    }
1008
1009    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1010    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1011    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1012    g_free(fdt);
1013
1014    return 0;
1015}
1016
1017static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1018{
1019    int rtas;
1020    GString *hypertas = g_string_sized_new(256);
1021    GString *qemu_hypertas = g_string_sized_new(256);
1022    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1023    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1024        memory_region_size(&MACHINE(spapr)->device_memory->mr);
1025    uint32_t lrdr_capacity[] = {
1026        cpu_to_be32(max_device_addr >> 32),
1027        cpu_to_be32(max_device_addr & 0xffffffff),
1028        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1029        cpu_to_be32(max_cpus / smp_threads),
1030    };
1031    uint32_t maxdomains[] = {
1032        cpu_to_be32(4),
1033        cpu_to_be32(0),
1034        cpu_to_be32(0),
1035        cpu_to_be32(0),
1036        cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1037    };
1038
1039    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1040
1041    /* hypertas */
1042    add_str(hypertas, "hcall-pft");
1043    add_str(hypertas, "hcall-term");
1044    add_str(hypertas, "hcall-dabr");
1045    add_str(hypertas, "hcall-interrupt");
1046    add_str(hypertas, "hcall-tce");
1047    add_str(hypertas, "hcall-vio");
1048    add_str(hypertas, "hcall-splpar");
1049    add_str(hypertas, "hcall-bulk");
1050    add_str(hypertas, "hcall-set-mode");
1051    add_str(hypertas, "hcall-sprg0");
1052    add_str(hypertas, "hcall-copy");
1053    add_str(hypertas, "hcall-debug");
1054    add_str(qemu_hypertas, "hcall-memop1");
1055
1056    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1057        add_str(hypertas, "hcall-multi-tce");
1058    }
1059
1060    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1061        add_str(hypertas, "hcall-hpt-resize");
1062    }
1063
1064    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1065                     hypertas->str, hypertas->len));
1066    g_string_free(hypertas, TRUE);
1067    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1068                     qemu_hypertas->str, qemu_hypertas->len));
1069    g_string_free(qemu_hypertas, TRUE);
1070
1071    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1072                     refpoints, sizeof(refpoints)));
1073
1074    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1075                     maxdomains, sizeof(maxdomains)));
1076
1077    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1078                          RTAS_ERROR_LOG_MAX));
1079    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1080                          RTAS_EVENT_SCAN_RATE));
1081
1082    g_assert(msi_nonbroken);
1083    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1084
1085    /*
1086     * According to PAPR, rtas ibm,os-term does not guarantee a return
1087     * back to the guest cpu.
1088     *
1089     * While an additional ibm,extended-os-term property indicates
1090     * that rtas call return will always occur. Set this property.
1091     */
1092    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1093
1094    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1095                     lrdr_capacity, sizeof(lrdr_capacity)));
1096
1097    spapr_dt_rtas_tokens(fdt, rtas);
1098}
1099
1100/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1101 * that the guest may request and thus the valid values for bytes 24..26 of
1102 * option vector 5: */
1103static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1104{
1105    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1106
1107    char val[2 * 4] = {
1108        23, 0x00, /* Xive mode, filled in below. */
1109        24, 0x00, /* Hash/Radix, filled in below. */
1110        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1111        26, 0x40, /* Radix options: GTSE == yes. */
1112    };
1113
1114    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1115                          first_ppc_cpu->compat_pvr)) {
1116        /* If we're in a pre POWER9 compat mode then the guest should do hash */
1117        val[3] = 0x00; /* Hash */
1118    } else if (kvm_enabled()) {
1119        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1120            val[3] = 0x80; /* OV5_MMU_BOTH */
1121        } else if (kvmppc_has_cap_mmu_radix()) {
1122            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1123        } else {
1124            val[3] = 0x00; /* Hash */
1125        }
1126    } else {
1127        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1128        val[3] = 0xC0;
1129    }
1130    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1131                     val, sizeof(val)));
1132}
1133
1134static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1135{
1136    MachineState *machine = MACHINE(spapr);
1137    int chosen;
1138    const char *boot_device = machine->boot_order;
1139    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1140    size_t cb = 0;
1141    char *bootlist = get_boot_devices_list(&cb);
1142
1143    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1144
1145    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1146    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1147                          spapr->initrd_base));
1148    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1149                          spapr->initrd_base + spapr->initrd_size));
1150
1151    if (spapr->kernel_size) {
1152        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1153                              cpu_to_be64(spapr->kernel_size) };
1154
1155        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1156                         &kprop, sizeof(kprop)));
1157        if (spapr->kernel_le) {
1158            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1159        }
1160    }
1161    if (boot_menu) {
1162        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1163    }
1164    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1165    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1166    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1167
1168    if (cb && bootlist) {
1169        int i;
1170
1171        for (i = 0; i < cb; i++) {
1172            if (bootlist[i] == '\n') {
1173                bootlist[i] = ' ';
1174            }
1175        }
1176        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1177    }
1178
1179    if (boot_device && strlen(boot_device)) {
1180        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1181    }
1182
1183    if (!spapr->has_graphics && stdout_path) {
1184        /*
1185         * "linux,stdout-path" and "stdout" properties are deprecated by linux
1186         * kernel. New platforms should only use the "stdout-path" property. Set
1187         * the new property and continue using older property to remain
1188         * compatible with the existing firmware.
1189         */
1190        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1191        _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1192    }
1193
1194    spapr_dt_ov5_platform_support(fdt, chosen);
1195
1196    g_free(stdout_path);
1197    g_free(bootlist);
1198}
1199
1200static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1201{
1202    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1203     * KVM to work under pHyp with some guest co-operation */
1204    int hypervisor;
1205    uint8_t hypercall[16];
1206
1207    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1208    /* indicate KVM hypercall interface */
1209    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1210    if (kvmppc_has_cap_fixup_hcalls()) {
1211        /*
1212         * Older KVM versions with older guest kernels were broken
1213         * with the magic page, don't allow the guest to map it.
1214         */
1215        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1216                                  sizeof(hypercall))) {
1217            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1218                             hypercall, sizeof(hypercall)));
1219        }
1220    }
1221}
1222
1223static void *spapr_build_fdt(sPAPRMachineState *spapr,
1224                             hwaddr rtas_addr,
1225                             hwaddr rtas_size)
1226{
1227    MachineState *machine = MACHINE(spapr);
1228    MachineClass *mc = MACHINE_GET_CLASS(machine);
1229    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1230    int ret;
1231    void *fdt;
1232    sPAPRPHBState *phb;
1233    char *buf;
1234
1235    fdt = g_malloc0(FDT_MAX_SIZE);
1236    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1237
1238    /* Root node */
1239    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1240    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1241    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1242
1243    /*
1244     * Add info to guest to indentify which host is it being run on
1245     * and what is the uuid of the guest
1246     */
1247    if (kvmppc_get_host_model(&buf)) {
1248        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1249        g_free(buf);
1250    }
1251    if (kvmppc_get_host_serial(&buf)) {
1252        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1253        g_free(buf);
1254    }
1255
1256    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1257
1258    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1259    if (qemu_uuid_set) {
1260        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1261    }
1262    g_free(buf);
1263
1264    if (qemu_get_vm_name()) {
1265        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1266                                qemu_get_vm_name()));
1267    }
1268
1269    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1270    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1271
1272    /* /interrupt controller */
1273    spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1274
1275    ret = spapr_populate_memory(spapr, fdt);
1276    if (ret < 0) {
1277        error_report("couldn't setup memory nodes in fdt");
1278        exit(1);
1279    }
1280
1281    /* /vdevice */
1282    spapr_dt_vdevice(spapr->vio_bus, fdt);
1283
1284    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1285        ret = spapr_rng_populate_dt(fdt);
1286        if (ret < 0) {
1287            error_report("could not set up rng device in the fdt");
1288            exit(1);
1289        }
1290    }
1291
1292    QLIST_FOREACH(phb, &spapr->phbs, list) {
1293        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis);
1294        if (ret < 0) {
1295            error_report("couldn't setup PCI devices in fdt");
1296            exit(1);
1297        }
1298    }
1299
1300    /* cpus */
1301    spapr_populate_cpus_dt_node(fdt, spapr);
1302
1303    if (smc->dr_lmb_enabled) {
1304        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1305    }
1306
1307    if (mc->has_hotpluggable_cpus) {
1308        int offset = fdt_path_offset(fdt, "/cpus");
1309        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1310                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1311        if (ret < 0) {
1312            error_report("Couldn't set up CPU DR device tree properties");
1313            exit(1);
1314        }
1315    }
1316
1317    /* /event-sources */
1318    spapr_dt_events(spapr, fdt);
1319
1320    /* /rtas */
1321    spapr_dt_rtas(spapr, fdt);
1322
1323    /* /chosen */
1324    spapr_dt_chosen(spapr, fdt);
1325
1326    /* /hypervisor */
1327    if (kvm_enabled()) {
1328        spapr_dt_hypervisor(spapr, fdt);
1329    }
1330
1331    /* Build memory reserve map */
1332    if (spapr->kernel_size) {
1333        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1334    }
1335    if (spapr->initrd_size) {
1336        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1337    }
1338
1339    /* ibm,client-architecture-support updates */
1340    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1341    if (ret < 0) {
1342        error_report("couldn't setup CAS properties fdt");
1343        exit(1);
1344    }
1345
1346    return fdt;
1347}
1348
1349static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1350{
1351    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1352}
1353
1354static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1355                                    PowerPCCPU *cpu)
1356{
1357    CPUPPCState *env = &cpu->env;
1358
1359    /* The TCG path should also be holding the BQL at this point */
1360    g_assert(qemu_mutex_iothread_locked());
1361
1362    if (msr_pr) {
1363        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1364        env->gpr[3] = H_PRIVILEGE;
1365    } else {
1366        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1367    }
1368}
1369
1370static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1371{
1372    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1373
1374    return spapr->patb_entry;
1375}
1376
1377#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1378#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1379#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1380#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1381#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1382
1383/*
1384 * Get the fd to access the kernel htab, re-opening it if necessary
1385 */
1386static int get_htab_fd(sPAPRMachineState *spapr)
1387{
1388    Error *local_err = NULL;
1389
1390    if (spapr->htab_fd >= 0) {
1391        return spapr->htab_fd;
1392    }
1393
1394    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1395    if (spapr->htab_fd < 0) {
1396        error_report_err(local_err);
1397    }
1398
1399    return spapr->htab_fd;
1400}
1401
1402void close_htab_fd(sPAPRMachineState *spapr)
1403{
1404    if (spapr->htab_fd >= 0) {
1405        close(spapr->htab_fd);
1406    }
1407    spapr->htab_fd = -1;
1408}
1409
1410static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1411{
1412    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1413
1414    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1415}
1416
1417static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1418{
1419    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1420
1421    assert(kvm_enabled());
1422
1423    if (!spapr->htab) {
1424        return 0;
1425    }
1426
1427    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1428}
1429
1430static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1431                                                hwaddr ptex, int n)
1432{
1433    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1434    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1435
1436    if (!spapr->htab) {
1437        /*
1438         * HTAB is controlled by KVM. Fetch into temporary buffer
1439         */
1440        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1441        kvmppc_read_hptes(hptes, ptex, n);
1442        return hptes;
1443    }
1444
1445    /*
1446     * HTAB is controlled by QEMU. Just point to the internally
1447     * accessible PTEG.
1448     */
1449    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1450}
1451
1452static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1453                              const ppc_hash_pte64_t *hptes,
1454                              hwaddr ptex, int n)
1455{
1456    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1457
1458    if (!spapr->htab) {
1459        g_free((void *)hptes);
1460    }
1461
1462    /* Nothing to do for qemu managed HPT */
1463}
1464
1465static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1466                             uint64_t pte0, uint64_t pte1)
1467{
1468    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1469    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1470
1471    if (!spapr->htab) {
1472        kvmppc_write_hpte(ptex, pte0, pte1);
1473    } else {
1474        stq_p(spapr->htab + offset, pte0);
1475        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1476    }
1477}
1478
1479int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1480{
1481    int shift;
1482
1483    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1484     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1485     * that's much more than is needed for Linux guests */
1486    shift = ctz64(pow2ceil(ramsize)) - 7;
1487    shift = MAX(shift, 18); /* Minimum architected size */
1488    shift = MIN(shift, 46); /* Maximum architected size */
1489    return shift;
1490}
1491
1492void spapr_free_hpt(sPAPRMachineState *spapr)
1493{
1494    g_free(spapr->htab);
1495    spapr->htab = NULL;
1496    spapr->htab_shift = 0;
1497    close_htab_fd(spapr);
1498}
1499
1500void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1501                          Error **errp)
1502{
1503    long rc;
1504
1505    /* Clean up any HPT info from a previous boot */
1506    spapr_free_hpt(spapr);
1507
1508    rc = kvmppc_reset_htab(shift);
1509    if (rc < 0) {
1510        /* kernel-side HPT needed, but couldn't allocate one */
1511        error_setg_errno(errp, errno,
1512                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1513                         shift);
1514        /* This is almost certainly fatal, but if the caller really
1515         * wants to carry on with shift == 0, it's welcome to try */
1516    } else if (rc > 0) {
1517        /* kernel-side HPT allocated */
1518        if (rc != shift) {
1519            error_setg(errp,
1520                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1521                       shift, rc);
1522        }
1523
1524        spapr->htab_shift = shift;
1525        spapr->htab = NULL;
1526    } else {
1527        /* kernel-side HPT not needed, allocate in userspace instead */
1528        size_t size = 1ULL << shift;
1529        int i;
1530
1531        spapr->htab = qemu_memalign(size, size);
1532        if (!spapr->htab) {
1533            error_setg_errno(errp, errno,
1534                             "Could not allocate HPT of order %d", shift);
1535            return;
1536        }
1537
1538        memset(spapr->htab, 0, size);
1539        spapr->htab_shift = shift;
1540
1541        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1542            DIRTY_HPTE(HPTE(spapr->htab, i));
1543        }
1544    }
1545    /* We're setting up a hash table, so that means we're not radix */
1546    spapr->patb_entry = 0;
1547}
1548
1549void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1550{
1551    int hpt_shift;
1552
1553    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1554        || (spapr->cas_reboot
1555            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1556        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1557    } else {
1558        uint64_t current_ram_size;
1559
1560        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1561        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1562    }
1563    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1564
1565    if (spapr->vrma_adjust) {
1566        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1567                                          spapr->htab_shift);
1568    }
1569}
1570
1571static int spapr_reset_drcs(Object *child, void *opaque)
1572{
1573    sPAPRDRConnector *drc =
1574        (sPAPRDRConnector *) object_dynamic_cast(child,
1575                                                 TYPE_SPAPR_DR_CONNECTOR);
1576
1577    if (drc) {
1578        spapr_drc_reset(drc);
1579    }
1580
1581    return 0;
1582}
1583
1584static void spapr_machine_reset(void)
1585{
1586    MachineState *machine = MACHINE(qdev_get_machine());
1587    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1588    PowerPCCPU *first_ppc_cpu;
1589    uint32_t rtas_limit;
1590    hwaddr rtas_addr, fdt_addr;
1591    void *fdt;
1592    int rc;
1593
1594    spapr_caps_apply(spapr);
1595
1596    first_ppc_cpu = POWERPC_CPU(first_cpu);
1597    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1598        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1599                              spapr->max_compat_pvr)) {
1600        /* If using KVM with radix mode available, VCPUs can be started
1601         * without a HPT because KVM will start them in radix mode.
1602         * Set the GR bit in PATB so that we know there is no HPT. */
1603        spapr->patb_entry = PATBE1_GR;
1604    } else {
1605        spapr_setup_hpt_and_vrma(spapr);
1606    }
1607
1608    /* if this reset wasn't generated by CAS, we should reset our
1609     * negotiated options and start from scratch */
1610    if (!spapr->cas_reboot) {
1611        spapr_ovec_cleanup(spapr->ov5_cas);
1612        spapr->ov5_cas = spapr_ovec_new();
1613
1614        ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1615    }
1616
1617    if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1618        spapr_irq_msi_reset(spapr);
1619    }
1620
1621    qemu_devices_reset();
1622
1623    /* DRC reset may cause a device to be unplugged. This will cause troubles
1624     * if this device is used by another device (eg, a running vhost backend
1625     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1626     * situations, we reset DRCs after all devices have been reset.
1627     */
1628    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1629
1630    spapr_clear_pending_events(spapr);
1631
1632    /*
1633     * We place the device tree and RTAS just below either the top of the RMA,
1634     * or just below 2GB, whichever is lowere, so that it can be
1635     * processed with 32-bit real mode code if necessary
1636     */
1637    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1638    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1639    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1640
1641    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1642
1643    spapr_load_rtas(spapr, fdt, rtas_addr);
1644
1645    rc = fdt_pack(fdt);
1646
1647    /* Should only fail if we've built a corrupted tree */
1648    assert(rc == 0);
1649
1650    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1651        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1652                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1653        exit(1);
1654    }
1655
1656    /* Load the fdt */
1657    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1658    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1659    g_free(fdt);
1660
1661    /* Set up the entry state */
1662    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1663    first_ppc_cpu->env.gpr[5] = 0;
1664
1665    spapr->cas_reboot = false;
1666}
1667
1668static void spapr_create_nvram(sPAPRMachineState *spapr)
1669{
1670    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1671    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1672
1673    if (dinfo) {
1674        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1675                            &error_fatal);
1676    }
1677
1678    qdev_init_nofail(dev);
1679
1680    spapr->nvram = (struct sPAPRNVRAM *)dev;
1681}
1682
1683static void spapr_rtc_create(sPAPRMachineState *spapr)
1684{
1685    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1686    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1687                              &error_fatal);
1688    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1689                              &error_fatal);
1690    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1691                              "date", &error_fatal);
1692}
1693
1694/* Returns whether we want to use VGA or not */
1695static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1696{
1697    switch (vga_interface_type) {
1698    case VGA_NONE:
1699        return false;
1700    case VGA_DEVICE:
1701        return true;
1702    case VGA_STD:
1703    case VGA_VIRTIO:
1704        return pci_vga_init(pci_bus) != NULL;
1705    default:
1706        error_setg(errp,
1707                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1708        return false;
1709    }
1710}
1711
1712static int spapr_pre_load(void *opaque)
1713{
1714    int rc;
1715
1716    rc = spapr_caps_pre_load(opaque);
1717    if (rc) {
1718        return rc;
1719    }
1720
1721    return 0;
1722}
1723
1724static int spapr_post_load(void *opaque, int version_id)
1725{
1726    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1727    int err = 0;
1728
1729    err = spapr_caps_post_migration(spapr);
1730    if (err) {
1731        return err;
1732    }
1733
1734    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1735        CPUState *cs;
1736        CPU_FOREACH(cs) {
1737            PowerPCCPU *cpu = POWERPC_CPU(cs);
1738            icp_resend(ICP(cpu->intc));
1739        }
1740    }
1741
1742    /* In earlier versions, there was no separate qdev for the PAPR
1743     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1744     * So when migrating from those versions, poke the incoming offset
1745     * value into the RTC device */
1746    if (version_id < 3) {
1747        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1748    }
1749
1750    if (kvm_enabled() && spapr->patb_entry) {
1751        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1752        bool radix = !!(spapr->patb_entry & PATBE1_GR);
1753        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1754
1755        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1756        if (err) {
1757            error_report("Process table config unsupported by the host");
1758            return -EINVAL;
1759        }
1760    }
1761
1762    return err;
1763}
1764
1765static int spapr_pre_save(void *opaque)
1766{
1767    int rc;
1768
1769    rc = spapr_caps_pre_save(opaque);
1770    if (rc) {
1771        return rc;
1772    }
1773
1774    return 0;
1775}
1776
1777static bool version_before_3(void *opaque, int version_id)
1778{
1779    return version_id < 3;
1780}
1781
1782static bool spapr_pending_events_needed(void *opaque)
1783{
1784    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1785    return !QTAILQ_EMPTY(&spapr->pending_events);
1786}
1787
1788static const VMStateDescription vmstate_spapr_event_entry = {
1789    .name = "spapr_event_log_entry",
1790    .version_id = 1,
1791    .minimum_version_id = 1,
1792    .fields = (VMStateField[]) {
1793        VMSTATE_UINT32(summary, sPAPREventLogEntry),
1794        VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1795        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1796                                     NULL, extended_length),
1797        VMSTATE_END_OF_LIST()
1798    },
1799};
1800
1801static const VMStateDescription vmstate_spapr_pending_events = {
1802    .name = "spapr_pending_events",
1803    .version_id = 1,
1804    .minimum_version_id = 1,
1805    .needed = spapr_pending_events_needed,
1806    .fields = (VMStateField[]) {
1807        VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1808                         vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1809        VMSTATE_END_OF_LIST()
1810    },
1811};
1812
1813static bool spapr_ov5_cas_needed(void *opaque)
1814{
1815    sPAPRMachineState *spapr = opaque;
1816    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1817    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1818    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1819    bool cas_needed;
1820
1821    /* Prior to the introduction of sPAPROptionVector, we had two option
1822     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1823     * Both of these options encode machine topology into the device-tree
1824     * in such a way that the now-booted OS should still be able to interact
1825     * appropriately with QEMU regardless of what options were actually
1826     * negotiatied on the source side.
1827     *
1828     * As such, we can avoid migrating the CAS-negotiated options if these
1829     * are the only options available on the current machine/platform.
1830     * Since these are the only options available for pseries-2.7 and
1831     * earlier, this allows us to maintain old->new/new->old migration
1832     * compatibility.
1833     *
1834     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1835     * via default pseries-2.8 machines and explicit command-line parameters.
1836     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1837     * of the actual CAS-negotiated values to continue working properly. For
1838     * example, availability of memory unplug depends on knowing whether
1839     * OV5_HP_EVT was negotiated via CAS.
1840     *
1841     * Thus, for any cases where the set of available CAS-negotiatable
1842     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1843     * include the CAS-negotiated options in the migration stream, unless
1844     * if they affect boot time behaviour only.
1845     */
1846    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1847    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1848    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1849
1850    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1851     * the mask itself since in the future it's possible "legacy" bits may be
1852     * removed via machine options, which could generate a false positive
1853     * that breaks migration.
1854     */
1855    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1856    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1857
1858    spapr_ovec_cleanup(ov5_mask);
1859    spapr_ovec_cleanup(ov5_legacy);
1860    spapr_ovec_cleanup(ov5_removed);
1861
1862    return cas_needed;
1863}
1864
1865static const VMStateDescription vmstate_spapr_ov5_cas = {
1866    .name = "spapr_option_vector_ov5_cas",
1867    .version_id = 1,
1868    .minimum_version_id = 1,
1869    .needed = spapr_ov5_cas_needed,
1870    .fields = (VMStateField[]) {
1871        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1872                                 vmstate_spapr_ovec, sPAPROptionVector),
1873        VMSTATE_END_OF_LIST()
1874    },
1875};
1876
1877static bool spapr_patb_entry_needed(void *opaque)
1878{
1879    sPAPRMachineState *spapr = opaque;
1880
1881    return !!spapr->patb_entry;
1882}
1883
1884static const VMStateDescription vmstate_spapr_patb_entry = {
1885    .name = "spapr_patb_entry",
1886    .version_id = 1,
1887    .minimum_version_id = 1,
1888    .needed = spapr_patb_entry_needed,
1889    .fields = (VMStateField[]) {
1890        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1891        VMSTATE_END_OF_LIST()
1892    },
1893};
1894
1895static bool spapr_irq_map_needed(void *opaque)
1896{
1897    sPAPRMachineState *spapr = opaque;
1898
1899    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1900}
1901
1902static const VMStateDescription vmstate_spapr_irq_map = {
1903    .name = "spapr_irq_map",
1904    .version_id = 1,
1905    .minimum_version_id = 1,
1906    .needed = spapr_irq_map_needed,
1907    .fields = (VMStateField[]) {
1908        VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1909        VMSTATE_END_OF_LIST()
1910    },
1911};
1912
1913static const VMStateDescription vmstate_spapr = {
1914    .name = "spapr",
1915    .version_id = 3,
1916    .minimum_version_id = 1,
1917    .pre_load = spapr_pre_load,
1918    .post_load = spapr_post_load,
1919    .pre_save = spapr_pre_save,
1920    .fields = (VMStateField[]) {
1921        /* used to be @next_irq */
1922        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1923
1924        /* RTC offset */
1925        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1926
1927        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1928        VMSTATE_END_OF_LIST()
1929    },
1930    .subsections = (const VMStateDescription*[]) {
1931        &vmstate_spapr_ov5_cas,
1932        &vmstate_spapr_patb_entry,
1933        &vmstate_spapr_pending_events,
1934        &vmstate_spapr_cap_htm,
1935        &vmstate_spapr_cap_vsx,
1936        &vmstate_spapr_cap_dfp,
1937        &vmstate_spapr_cap_cfpc,
1938        &vmstate_spapr_cap_sbbc,
1939        &vmstate_spapr_cap_ibs,
1940        &vmstate_spapr_irq_map,
1941        &vmstate_spapr_cap_nested_kvm_hv,
1942        NULL
1943    }
1944};
1945
1946static int htab_save_setup(QEMUFile *f, void *opaque)
1947{
1948    sPAPRMachineState *spapr = opaque;
1949
1950    /* "Iteration" header */
1951    if (!spapr->htab_shift) {
1952        qemu_put_be32(f, -1);
1953    } else {
1954        qemu_put_be32(f, spapr->htab_shift);
1955    }
1956
1957    if (spapr->htab) {
1958        spapr->htab_save_index = 0;
1959        spapr->htab_first_pass = true;
1960    } else {
1961        if (spapr->htab_shift) {
1962            assert(kvm_enabled());
1963        }
1964    }
1965
1966
1967    return 0;
1968}
1969
1970static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1971                            int chunkstart, int n_valid, int n_invalid)
1972{
1973    qemu_put_be32(f, chunkstart);
1974    qemu_put_be16(f, n_valid);
1975    qemu_put_be16(f, n_invalid);
1976    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1977                    HASH_PTE_SIZE_64 * n_valid);
1978}
1979
1980static void htab_save_end_marker(QEMUFile *f)
1981{
1982    qemu_put_be32(f, 0);
1983    qemu_put_be16(f, 0);
1984    qemu_put_be16(f, 0);
1985}
1986
1987static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1988                                 int64_t max_ns)
1989{
1990    bool has_timeout = max_ns != -1;
1991    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1992    int index = spapr->htab_save_index;
1993    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1994
1995    assert(spapr->htab_first_pass);
1996
1997    do {
1998        int chunkstart;
1999
2000        /* Consume invalid HPTEs */
2001        while ((index < htabslots)
2002               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2003            CLEAN_HPTE(HPTE(spapr->htab, index));
2004            index++;
2005        }
2006
2007        /* Consume valid HPTEs */
2008        chunkstart = index;
2009        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2010               && HPTE_VALID(HPTE(spapr->htab, index))) {
2011            CLEAN_HPTE(HPTE(spapr->htab, index));
2012            index++;
2013        }
2014
2015        if (index > chunkstart) {
2016            int n_valid = index - chunkstart;
2017
2018            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2019
2020            if (has_timeout &&
2021                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2022                break;
2023            }
2024        }
2025    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2026
2027    if (index >= htabslots) {
2028        assert(index == htabslots);
2029        index = 0;
2030        spapr->htab_first_pass = false;
2031    }
2032    spapr->htab_save_index = index;
2033}
2034
2035static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2036                                int64_t max_ns)
2037{
2038    bool final = max_ns < 0;
2039    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2040    int examined = 0, sent = 0;
2041    int index = spapr->htab_save_index;
2042    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2043
2044    assert(!spapr->htab_first_pass);
2045
2046    do {
2047        int chunkstart, invalidstart;
2048
2049        /* Consume non-dirty HPTEs */
2050        while ((index < htabslots)
2051               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2052            index++;
2053            examined++;
2054        }
2055
2056        chunkstart = index;
2057        /* Consume valid dirty HPTEs */
2058        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2059               && HPTE_DIRTY(HPTE(spapr->htab, index))
2060               && HPTE_VALID(HPTE(spapr->htab, index))) {
2061            CLEAN_HPTE(HPTE(spapr->htab, index));
2062            index++;
2063            examined++;
2064        }
2065
2066        invalidstart = index;
2067        /* Consume invalid dirty HPTEs */
2068        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2069               && HPTE_DIRTY(HPTE(spapr->htab, index))
2070               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2071            CLEAN_HPTE(HPTE(spapr->htab, index));
2072            index++;
2073            examined++;
2074        }
2075
2076        if (index > chunkstart) {
2077            int n_valid = invalidstart - chunkstart;
2078            int n_invalid = index - invalidstart;
2079
2080            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2081            sent += index - chunkstart;
2082
2083            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2084                break;
2085            }
2086        }
2087
2088        if (examined >= htabslots) {
2089            break;
2090        }
2091
2092        if (index >= htabslots) {
2093            assert(index == htabslots);
2094            index = 0;
2095        }
2096    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2097
2098    if (index >= htabslots) {
2099        assert(index == htabslots);
2100        index = 0;
2101    }
2102
2103    spapr->htab_save_index = index;
2104
2105    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2106}
2107
2108#define MAX_ITERATION_NS    5000000 /* 5 ms */
2109#define MAX_KVM_BUF_SIZE    2048
2110
2111static int htab_save_iterate(QEMUFile *f, void *opaque)
2112{
2113    sPAPRMachineState *spapr = opaque;
2114    int fd;
2115    int rc = 0;
2116
2117    /* Iteration header */
2118    if (!spapr->htab_shift) {
2119        qemu_put_be32(f, -1);
2120        return 1;
2121    } else {
2122        qemu_put_be32(f, 0);
2123    }
2124
2125    if (!spapr->htab) {
2126        assert(kvm_enabled());
2127
2128        fd = get_htab_fd(spapr);
2129        if (fd < 0) {
2130            return fd;
2131        }
2132
2133        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2134        if (rc < 0) {
2135            return rc;
2136        }
2137    } else  if (spapr->htab_first_pass) {
2138        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2139    } else {
2140        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2141    }
2142
2143    htab_save_end_marker(f);
2144
2145    return rc;
2146}
2147
2148static int htab_save_complete(QEMUFile *f, void *opaque)
2149{
2150    sPAPRMachineState *spapr = opaque;
2151    int fd;
2152
2153    /* Iteration header */
2154    if (!spapr->htab_shift) {
2155        qemu_put_be32(f, -1);
2156        return 0;
2157    } else {
2158        qemu_put_be32(f, 0);
2159    }
2160
2161    if (!spapr->htab) {
2162        int rc;
2163
2164        assert(kvm_enabled());
2165
2166        fd = get_htab_fd(spapr);
2167        if (fd < 0) {
2168            return fd;
2169        }
2170
2171        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2172        if (rc < 0) {
2173            return rc;
2174        }
2175    } else {
2176        if (spapr->htab_first_pass) {
2177            htab_save_first_pass(f, spapr, -1);
2178        }
2179        htab_save_later_pass(f, spapr, -1);
2180    }
2181
2182    /* End marker */
2183    htab_save_end_marker(f);
2184
2185    return 0;
2186}
2187
2188static int htab_load(QEMUFile *f, void *opaque, int version_id)
2189{
2190    sPAPRMachineState *spapr = opaque;
2191    uint32_t section_hdr;
2192    int fd = -1;
2193    Error *local_err = NULL;
2194
2195    if (version_id < 1 || version_id > 1) {
2196        error_report("htab_load() bad version");
2197        return -EINVAL;
2198    }
2199
2200    section_hdr = qemu_get_be32(f);
2201
2202    if (section_hdr == -1) {
2203        spapr_free_hpt(spapr);
2204        return 0;
2205    }
2206
2207    if (section_hdr) {
2208        /* First section gives the htab size */
2209        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2210        if (local_err) {
2211            error_report_err(local_err);
2212            return -EINVAL;
2213        }
2214        return 0;
2215    }
2216
2217    if (!spapr->htab) {
2218        assert(kvm_enabled());
2219
2220        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2221        if (fd < 0) {
2222            error_report_err(local_err);
2223            return fd;
2224        }
2225    }
2226
2227    while (true) {
2228        uint32_t index;
2229        uint16_t n_valid, n_invalid;
2230
2231        index = qemu_get_be32(f);
2232        n_valid = qemu_get_be16(f);
2233        n_invalid = qemu_get_be16(f);
2234
2235        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2236            /* End of Stream */
2237            break;
2238        }
2239
2240        if ((index + n_valid + n_invalid) >
2241            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2242            /* Bad index in stream */
2243            error_report(
2244                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2245                index, n_valid, n_invalid, spapr->htab_shift);
2246            return -EINVAL;
2247        }
2248
2249        if (spapr->htab) {
2250            if (n_valid) {
2251                qemu_get_buffer(f, HPTE(spapr->htab, index),
2252                                HASH_PTE_SIZE_64 * n_valid);
2253            }
2254            if (n_invalid) {
2255                memset(HPTE(spapr->htab, index + n_valid), 0,
2256                       HASH_PTE_SIZE_64 * n_invalid);
2257            }
2258        } else {
2259            int rc;
2260
2261            assert(fd >= 0);
2262
2263            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2264            if (rc < 0) {
2265                return rc;
2266            }
2267        }
2268    }
2269
2270    if (!spapr->htab) {
2271        assert(fd >= 0);
2272        close(fd);
2273    }
2274
2275    return 0;
2276}
2277
2278static void htab_save_cleanup(void *opaque)
2279{
2280    sPAPRMachineState *spapr = opaque;
2281
2282    close_htab_fd(spapr);
2283}
2284
2285static SaveVMHandlers savevm_htab_handlers = {
2286    .save_setup = htab_save_setup,
2287    .save_live_iterate = htab_save_iterate,
2288    .save_live_complete_precopy = htab_save_complete,
2289    .save_cleanup = htab_save_cleanup,
2290    .load_state = htab_load,
2291};
2292
2293static void spapr_boot_set(void *opaque, const char *boot_device,
2294                           Error **errp)
2295{
2296    MachineState *machine = MACHINE(opaque);
2297    machine->boot_order = g_strdup(boot_device);
2298}
2299
2300static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2301{
2302    MachineState *machine = MACHINE(spapr);
2303    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2304    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2305    int i;
2306
2307    for (i = 0; i < nr_lmbs; i++) {
2308        uint64_t addr;
2309
2310        addr = i * lmb_size + machine->device_memory->base;
2311        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2312                               addr / lmb_size);
2313    }
2314}
2315
2316/*
2317 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2318 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2319 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2320 */
2321static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2322{
2323    int i;
2324
2325    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2326        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2327                   " is not aligned to %" PRIu64 " MiB",
2328                   machine->ram_size,
2329                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2330        return;
2331    }
2332
2333    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2334        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2335                   " is not aligned to %" PRIu64 " MiB",
2336                   machine->ram_size,
2337                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2338        return;
2339    }
2340
2341    for (i = 0; i < nb_numa_nodes; i++) {
2342        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2343            error_setg(errp,
2344                       "Node %d memory size 0x%" PRIx64
2345                       " is not aligned to %" PRIu64 " MiB",
2346                       i, numa_info[i].node_mem,
2347                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2348            return;
2349        }
2350    }
2351}
2352
2353/* find cpu slot in machine->possible_cpus by core_id */
2354static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2355{
2356    int index = id / smp_threads;
2357
2358    if (index >= ms->possible_cpus->len) {
2359        return NULL;
2360    }
2361    if (idx) {
2362        *idx = index;
2363    }
2364    return &ms->possible_cpus->cpus[index];
2365}
2366
2367static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2368{
2369    Error *local_err = NULL;
2370    bool vsmt_user = !!spapr->vsmt;
2371    int kvm_smt = kvmppc_smt_threads();
2372    int ret;
2373
2374    if (!kvm_enabled() && (smp_threads > 1)) {
2375        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2376                     "on a pseries machine");
2377        goto out;
2378    }
2379    if (!is_power_of_2(smp_threads)) {
2380        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2381                     "machine because it must be a power of 2", smp_threads);
2382        goto out;
2383    }
2384
2385    /* Detemine the VSMT mode to use: */
2386    if (vsmt_user) {
2387        if (spapr->vsmt < smp_threads) {
2388            error_setg(&local_err, "Cannot support VSMT mode %d"
2389                         " because it must be >= threads/core (%d)",
2390                         spapr->vsmt, smp_threads);
2391            goto out;
2392        }
2393        /* In this case, spapr->vsmt has been set by the command line */
2394    } else {
2395        /*
2396         * Default VSMT value is tricky, because we need it to be as
2397         * consistent as possible (for migration), but this requires
2398         * changing it for at least some existing cases.  We pick 8 as
2399         * the value that we'd get with KVM on POWER8, the
2400         * overwhelmingly common case in production systems.
2401         */
2402        spapr->vsmt = MAX(8, smp_threads);
2403    }
2404
2405    /* KVM: If necessary, set the SMT mode: */
2406    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2407        ret = kvmppc_set_smt_threads(spapr->vsmt);
2408        if (ret) {
2409            /* Looks like KVM isn't able to change VSMT mode */
2410            error_setg(&local_err,
2411                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2412                       spapr->vsmt, ret);
2413            /* We can live with that if the default one is big enough
2414             * for the number of threads, and a submultiple of the one
2415             * we want.  In this case we'll waste some vcpu ids, but
2416             * behaviour will be correct */
2417            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2418                warn_report_err(local_err);
2419                local_err = NULL;
2420                goto out;
2421            } else {
2422                if (!vsmt_user) {
2423                    error_append_hint(&local_err,
2424                                      "On PPC, a VM with %d threads/core"
2425                                      " on a host with %d threads/core"
2426                                      " requires the use of VSMT mode %d.\n",
2427                                      smp_threads, kvm_smt, spapr->vsmt);
2428                }
2429                kvmppc_hint_smt_possible(&local_err);
2430                goto out;
2431            }
2432        }
2433    }
2434    /* else TCG: nothing to do currently */
2435out:
2436    error_propagate(errp, local_err);
2437}
2438
2439static void spapr_init_cpus(sPAPRMachineState *spapr)
2440{
2441    MachineState *machine = MACHINE(spapr);
2442    MachineClass *mc = MACHINE_GET_CLASS(machine);
2443    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2444    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2445    const CPUArchIdList *possible_cpus;
2446    int boot_cores_nr = smp_cpus / smp_threads;
2447    int i;
2448
2449    possible_cpus = mc->possible_cpu_arch_ids(machine);
2450    if (mc->has_hotpluggable_cpus) {
2451        if (smp_cpus % smp_threads) {
2452            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2453                         smp_cpus, smp_threads);
2454            exit(1);
2455        }
2456        if (max_cpus % smp_threads) {
2457            error_report("max_cpus (%u) must be multiple of threads (%u)",
2458                         max_cpus, smp_threads);
2459            exit(1);
2460        }
2461    } else {
2462        if (max_cpus != smp_cpus) {
2463            error_report("This machine version does not support CPU hotplug");
2464            exit(1);
2465        }
2466        boot_cores_nr = possible_cpus->len;
2467    }
2468
2469    /* VSMT must be set in order to be able to compute VCPU ids, ie to
2470     * call xics_max_server_number() or spapr_vcpu_id().
2471     */
2472    spapr_set_vsmt_mode(spapr, &error_fatal);
2473
2474    if (smc->pre_2_10_has_unused_icps) {
2475        int i;
2476
2477        for (i = 0; i < xics_max_server_number(spapr); i++) {
2478            /* Dummy entries get deregistered when real ICPState objects
2479             * are registered during CPU core hotplug.
2480             */
2481            pre_2_10_vmstate_register_dummy_icp(i);
2482        }
2483    }
2484
2485    for (i = 0; i < possible_cpus->len; i++) {
2486        int core_id = i * smp_threads;
2487
2488        if (mc->has_hotpluggable_cpus) {
2489            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2490                                   spapr_vcpu_id(spapr, core_id));
2491        }
2492
2493        if (i < boot_cores_nr) {
2494            Object *core  = object_new(type);
2495            int nr_threads = smp_threads;
2496
2497            /* Handle the partially filled core for older machine types */
2498            if ((i + 1) * smp_threads >= smp_cpus) {
2499                nr_threads = smp_cpus - i * smp_threads;
2500            }
2501
2502            object_property_set_int(core, nr_threads, "nr-threads",
2503                                    &error_fatal);
2504            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2505                                    &error_fatal);
2506            object_property_set_bool(core, true, "realized", &error_fatal);
2507
2508            object_unref(core);
2509        }
2510    }
2511}
2512
2513/* pSeries LPAR / sPAPR hardware init */
2514static void spapr_machine_init(MachineState *machine)
2515{
2516    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2517    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2518    const char *kernel_filename = machine->kernel_filename;
2519    const char *initrd_filename = machine->initrd_filename;
2520    PCIHostState *phb;
2521    int i;
2522    MemoryRegion *sysmem = get_system_memory();
2523    MemoryRegion *ram = g_new(MemoryRegion, 1);
2524    hwaddr node0_size = spapr_node0_size(machine);
2525    long load_limit, fw_size;
2526    char *filename;
2527    Error *resize_hpt_err = NULL;
2528
2529    msi_nonbroken = true;
2530
2531    QLIST_INIT(&spapr->phbs);
2532    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2533
2534    /* Determine capabilities to run with */
2535    spapr_caps_init(spapr);
2536
2537    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2538    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2539        /*
2540         * If the user explicitly requested a mode we should either
2541         * supply it, or fail completely (which we do below).  But if
2542         * it's not set explicitly, we reset our mode to something
2543         * that works
2544         */
2545        if (resize_hpt_err) {
2546            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2547            error_free(resize_hpt_err);
2548            resize_hpt_err = NULL;
2549        } else {
2550            spapr->resize_hpt = smc->resize_hpt_default;
2551        }
2552    }
2553
2554    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2555
2556    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2557        /*
2558         * User requested HPT resize, but this host can't supply it.  Bail out
2559         */
2560        error_report_err(resize_hpt_err);
2561        exit(1);
2562    }
2563
2564    spapr->rma_size = node0_size;
2565
2566    /* With KVM, we don't actually know whether KVM supports an
2567     * unbounded RMA (PR KVM) or is limited by the hash table size
2568     * (HV KVM using VRMA), so we always assume the latter
2569     *
2570     * In that case, we also limit the initial allocations for RTAS
2571     * etc... to 256M since we have no way to know what the VRMA size
2572     * is going to be as it depends on the size of the hash table
2573     * which isn't determined yet.
2574     */
2575    if (kvm_enabled()) {
2576        spapr->vrma_adjust = 1;
2577        spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2578    }
2579
2580    /* Actually we don't support unbounded RMA anymore since we added
2581     * proper emulation of HV mode. The max we can get is 16G which
2582     * also happens to be what we configure for PAPR mode so make sure
2583     * we don't do anything bigger than that
2584     */
2585    spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2586
2587    if (spapr->rma_size > node0_size) {
2588        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2589                     spapr->rma_size);
2590        exit(1);
2591    }
2592
2593    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2594    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2595
2596    /* Set up Interrupt Controller before we create the VCPUs */
2597    smc->irq->init(spapr, &error_fatal);
2598
2599    /* Set up containers for ibm,client-architecture-support negotiated options
2600     */
2601    spapr->ov5 = spapr_ovec_new();
2602    spapr->ov5_cas = spapr_ovec_new();
2603
2604    if (smc->dr_lmb_enabled) {
2605        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2606        spapr_validate_node_memory(machine, &error_fatal);
2607    }
2608
2609    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2610
2611    /* advertise support for dedicated HP event source to guests */
2612    if (spapr->use_hotplug_event_source) {
2613        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2614    }
2615
2616    /* advertise support for HPT resizing */
2617    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2618        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2619    }
2620
2621    /* advertise support for ibm,dyamic-memory-v2 */
2622    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2623
2624    /* init CPUs */
2625    spapr_init_cpus(spapr);
2626
2627    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2628        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2629                              spapr->max_compat_pvr)) {
2630        /* KVM and TCG always allow GTSE with radix... */
2631        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2632    }
2633    /* ... but not with hash (currently). */
2634
2635    if (kvm_enabled()) {
2636        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2637        kvmppc_enable_logical_ci_hcalls();
2638        kvmppc_enable_set_mode_hcall();
2639
2640        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2641        kvmppc_enable_clear_ref_mod_hcalls();
2642    }
2643
2644    /* allocate RAM */
2645    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2646                                         machine->ram_size);
2647    memory_region_add_subregion(sysmem, 0, ram);
2648
2649    /* always allocate the device memory information */
2650    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2651
2652    /* initialize hotplug memory address space */
2653    if (machine->ram_size < machine->maxram_size) {
2654        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2655        /*
2656         * Limit the number of hotpluggable memory slots to half the number
2657         * slots that KVM supports, leaving the other half for PCI and other
2658         * devices. However ensure that number of slots doesn't drop below 32.
2659         */
2660        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2661                           SPAPR_MAX_RAM_SLOTS;
2662
2663        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2664            max_memslots = SPAPR_MAX_RAM_SLOTS;
2665        }
2666        if (machine->ram_slots > max_memslots) {
2667            error_report("Specified number of memory slots %"
2668                         PRIu64" exceeds max supported %d",
2669                         machine->ram_slots, max_memslots);
2670            exit(1);
2671        }
2672
2673        machine->device_memory->base = ROUND_UP(machine->ram_size,
2674                                                SPAPR_DEVICE_MEM_ALIGN);
2675        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2676                           "device-memory", device_mem_size);
2677        memory_region_add_subregion(sysmem, machine->device_memory->base,
2678                                    &machine->device_memory->mr);
2679    }
2680
2681    if (smc->dr_lmb_enabled) {
2682        spapr_create_lmb_dr_connectors(spapr);
2683    }
2684
2685    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2686    if (!filename) {
2687        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2688        exit(1);
2689    }
2690    spapr->rtas_size = get_image_size(filename);
2691    if (spapr->rtas_size < 0) {
2692        error_report("Could not get size of LPAR rtas '%s'", filename);
2693        exit(1);
2694    }
2695    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2696    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2697        error_report("Could not load LPAR rtas '%s'", filename);
2698        exit(1);
2699    }
2700    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2701        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2702                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2703        exit(1);
2704    }
2705    g_free(filename);
2706
2707    /* Set up RTAS event infrastructure */
2708    spapr_events_init(spapr);
2709
2710    /* Set up the RTC RTAS interfaces */
2711    spapr_rtc_create(spapr);
2712
2713    /* Set up VIO bus */
2714    spapr->vio_bus = spapr_vio_bus_init();
2715
2716    for (i = 0; i < serial_max_hds(); i++) {
2717        if (serial_hd(i)) {
2718            spapr_vty_create(spapr->vio_bus, serial_hd(i));
2719        }
2720    }
2721
2722    /* We always have at least the nvram device on VIO */
2723    spapr_create_nvram(spapr);
2724
2725    /* Set up PCI */
2726    spapr_pci_rtas_init();
2727
2728    phb = spapr_create_phb(spapr, 0);
2729
2730    for (i = 0; i < nb_nics; i++) {
2731        NICInfo *nd = &nd_table[i];
2732
2733        if (!nd->model) {
2734            nd->model = g_strdup("spapr-vlan");
2735        }
2736
2737        if (g_str_equal(nd->model, "spapr-vlan") ||
2738            g_str_equal(nd->model, "ibmveth")) {
2739            spapr_vlan_create(spapr->vio_bus, nd);
2740        } else {
2741            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2742        }
2743    }
2744
2745    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2746        spapr_vscsi_create(spapr->vio_bus);
2747    }
2748
2749    /* Graphics */
2750    if (spapr_vga_init(phb->bus, &error_fatal)) {
2751        spapr->has_graphics = true;
2752        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2753    }
2754
2755    if (machine->usb) {
2756        if (smc->use_ohci_by_default) {
2757            pci_create_simple(phb->bus, -1, "pci-ohci");
2758        } else {
2759            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2760        }
2761
2762        if (spapr->has_graphics) {
2763            USBBus *usb_bus = usb_bus_find(-1);
2764
2765            usb_create_simple(usb_bus, "usb-kbd");
2766            usb_create_simple(usb_bus, "usb-mouse");
2767        }
2768    }
2769
2770    if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2771        error_report(
2772            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2773            MIN_RMA_SLOF);
2774        exit(1);
2775    }
2776
2777    if (kernel_filename) {
2778        uint64_t lowaddr = 0;
2779
2780        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2781                                      NULL, NULL, &lowaddr, NULL, 1,
2782                                      PPC_ELF_MACHINE, 0, 0);
2783        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2784            spapr->kernel_size = load_elf(kernel_filename,
2785                                          translate_kernel_address, NULL, NULL,
2786                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2787                                          0, 0);
2788            spapr->kernel_le = spapr->kernel_size > 0;
2789        }
2790        if (spapr->kernel_size < 0) {
2791            error_report("error loading %s: %s", kernel_filename,
2792                         load_elf_strerror(spapr->kernel_size));
2793            exit(1);
2794        }
2795
2796        /* load initrd */
2797        if (initrd_filename) {
2798            /* Try to locate the initrd in the gap between the kernel
2799             * and the firmware. Add a bit of space just in case
2800             */
2801            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2802                                  + 0x1ffff) & ~0xffff;
2803            spapr->initrd_size = load_image_targphys(initrd_filename,
2804                                                     spapr->initrd_base,
2805                                                     load_limit
2806                                                     - spapr->initrd_base);
2807            if (spapr->initrd_size < 0) {
2808                error_report("could not load initial ram disk '%s'",
2809                             initrd_filename);
2810                exit(1);
2811            }
2812        }
2813    }
2814
2815    if (bios_name == NULL) {
2816        bios_name = FW_FILE_NAME;
2817    }
2818    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2819    if (!filename) {
2820        error_report("Could not find LPAR firmware '%s'", bios_name);
2821        exit(1);
2822    }
2823    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2824    if (fw_size <= 0) {
2825        error_report("Could not load LPAR firmware '%s'", filename);
2826        exit(1);
2827    }
2828    g_free(filename);
2829
2830    /* FIXME: Should register things through the MachineState's qdev
2831     * interface, this is a legacy from the sPAPREnvironment structure
2832     * which predated MachineState but had a similar function */
2833    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2834    register_savevm_live(NULL, "spapr/htab", -1, 1,
2835                         &savevm_htab_handlers, spapr);
2836
2837    qemu_register_boot_set(spapr_boot_set, spapr);
2838
2839    if (kvm_enabled()) {
2840        /* to stop and start vmclock */
2841        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2842                                         &spapr->tb);
2843
2844        kvmppc_spapr_enable_inkernel_multitce();
2845    }
2846}
2847
2848static int spapr_kvm_type(const char *vm_type)
2849{
2850    if (!vm_type) {
2851        return 0;
2852    }
2853
2854    if (!strcmp(vm_type, "HV")) {
2855        return 1;
2856    }
2857
2858    if (!strcmp(vm_type, "PR")) {
2859        return 2;
2860    }
2861
2862    error_report("Unknown kvm-type specified '%s'", vm_type);
2863    exit(1);
2864}
2865
2866/*
2867 * Implementation of an interface to adjust firmware path
2868 * for the bootindex property handling.
2869 */
2870static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2871                                   DeviceState *dev)
2872{
2873#define CAST(type, obj, name) \
2874    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2875    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2876    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2877    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2878
2879    if (d) {
2880        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2881        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2882        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2883
2884        if (spapr) {
2885            /*
2886             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2887             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2888             * in the top 16 bits of the 64-bit LUN
2889             */
2890            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2891            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2892                                   (uint64_t)id << 48);
2893        } else if (virtio) {
2894            /*
2895             * We use SRP luns of the form 01000000 | (target << 8) | lun
2896             * in the top 32 bits of the 64-bit LUN
2897             * Note: the quote above is from SLOF and it is wrong,
2898             * the actual binding is:
2899             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2900             */
2901            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2902            if (d->lun >= 256) {
2903                /* Use the LUN "flat space addressing method" */
2904                id |= 0x4000;
2905            }
2906            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2907                                   (uint64_t)id << 32);
2908        } else if (usb) {
2909            /*
2910             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2911             * in the top 32 bits of the 64-bit LUN
2912             */
2913            unsigned usb_port = atoi(usb->port->path);
2914            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2915            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2916                                   (uint64_t)id << 32);
2917        }
2918    }
2919
2920    /*
2921     * SLOF probes the USB devices, and if it recognizes that the device is a
2922     * storage device, it changes its name to "storage" instead of "usb-host",
2923     * and additionally adds a child node for the SCSI LUN, so the correct
2924     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2925     */
2926    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2927        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2928        if (usb_host_dev_is_scsi_storage(usbdev)) {
2929            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2930        }
2931    }
2932
2933    if (phb) {
2934        /* Replace "pci" with "pci@800000020000000" */
2935        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2936    }
2937
2938    if (vsc) {
2939        /* Same logic as virtio above */
2940        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2941        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2942    }
2943
2944    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2945        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2946        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2947        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2948    }
2949
2950    return NULL;
2951}
2952
2953static char *spapr_get_kvm_type(Object *obj, Error **errp)
2954{
2955    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2956
2957    return g_strdup(spapr->kvm_type);
2958}
2959
2960static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2961{
2962    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2963
2964    g_free(spapr->kvm_type);
2965    spapr->kvm_type = g_strdup(value);
2966}
2967
2968static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2969{
2970    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2971
2972    return spapr->use_hotplug_event_source;
2973}
2974
2975static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2976                                            Error **errp)
2977{
2978    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2979
2980    spapr->use_hotplug_event_source = value;
2981}
2982
2983static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2984{
2985    return true;
2986}
2987
2988static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2989{
2990    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2991
2992    switch (spapr->resize_hpt) {
2993    case SPAPR_RESIZE_HPT_DEFAULT:
2994        return g_strdup("default");
2995    case SPAPR_RESIZE_HPT_DISABLED:
2996        return g_strdup("disabled");
2997    case SPAPR_RESIZE_HPT_ENABLED:
2998        return g_strdup("enabled");
2999    case SPAPR_RESIZE_HPT_REQUIRED:
3000        return g_strdup("required");
3001    }
3002    g_assert_not_reached();
3003}
3004
3005static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3006{
3007    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3008
3009    if (strcmp(value, "default") == 0) {
3010        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3011    } else if (strcmp(value, "disabled") == 0) {
3012        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3013    } else if (strcmp(value, "enabled") == 0) {
3014        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3015    } else if (strcmp(value, "required") == 0) {
3016        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3017    } else {
3018        error_setg(errp, "Bad value for \"resize-hpt\" property");
3019    }
3020}
3021
3022static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3023                                   void *opaque, Error **errp)
3024{
3025    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3026}
3027
3028static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3029                                   void *opaque, Error **errp)
3030{
3031    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3032}
3033
3034static void spapr_instance_init(Object *obj)
3035{
3036    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3037
3038    spapr->htab_fd = -1;
3039    spapr->use_hotplug_event_source = true;
3040    object_property_add_str(obj, "kvm-type",
3041                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3042    object_property_set_description(obj, "kvm-type",
3043                                    "Specifies the KVM virtualization mode (HV, PR)",
3044                                    NULL);
3045    object_property_add_bool(obj, "modern-hotplug-events",
3046                            spapr_get_modern_hotplug_events,
3047                            spapr_set_modern_hotplug_events,
3048                            NULL);
3049    object_property_set_description(obj, "modern-hotplug-events",
3050                                    "Use dedicated hotplug event mechanism in"
3051                                    " place of standard EPOW events when possible"
3052                                    " (required for memory hot-unplug support)",
3053                                    NULL);
3054    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3055                            "Maximum permitted CPU compatibility mode",
3056                            &error_fatal);
3057
3058    object_property_add_str(obj, "resize-hpt",
3059                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3060    object_property_set_description(obj, "resize-hpt",
3061                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
3062                                    NULL);
3063    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3064                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3065    object_property_set_description(obj, "vsmt",
3066                                    "Virtual SMT: KVM behaves as if this were"
3067                                    " the host's SMT mode", &error_abort);
3068    object_property_add_bool(obj, "vfio-no-msix-emulation",
3069                             spapr_get_msix_emulation, NULL, NULL);
3070}
3071
3072static void spapr_machine_finalizefn(Object *obj)
3073{
3074    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3075
3076    g_free(spapr->kvm_type);
3077}
3078
3079void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3080{
3081    cpu_synchronize_state(cs);
3082    ppc_cpu_do_system_reset(cs);
3083}
3084
3085static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3086{
3087    CPUState *cs;
3088
3089    CPU_FOREACH(cs) {
3090        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3091    }
3092}
3093
3094static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3095                           uint32_t node, bool dedicated_hp_event_source,
3096                           Error **errp)
3097{
3098    sPAPRDRConnector *drc;
3099    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3100    int i, fdt_offset, fdt_size;
3101    void *fdt;
3102    uint64_t addr = addr_start;
3103    bool hotplugged = spapr_drc_hotplugged(dev);
3104    Error *local_err = NULL;
3105
3106    for (i = 0; i < nr_lmbs; i++) {
3107        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3108                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3109        g_assert(drc);
3110
3111        fdt = create_device_tree(&fdt_size);
3112        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3113                                                SPAPR_MEMORY_BLOCK_SIZE);
3114
3115        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3116        if (local_err) {
3117            while (addr > addr_start) {
3118                addr -= SPAPR_MEMORY_BLOCK_SIZE;
3119                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3120                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
3121                spapr_drc_detach(drc);
3122            }
3123            g_free(fdt);
3124            error_propagate(errp, local_err);
3125            return;
3126        }
3127        if (!hotplugged) {
3128            spapr_drc_reset(drc);
3129        }
3130        addr += SPAPR_MEMORY_BLOCK_SIZE;
3131    }
3132    /* send hotplug notification to the
3133     * guest only in case of hotplugged memory
3134     */
3135    if (hotplugged) {
3136        if (dedicated_hp_event_source) {
3137            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3138                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3139            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3140                                                   nr_lmbs,
3141                                                   spapr_drc_index(drc));
3142        } else {
3143            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3144                                           nr_lmbs);
3145        }
3146    }
3147}
3148
3149static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3150                              Error **errp)
3151{
3152    Error *local_err = NULL;
3153    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3154    PCDIMMDevice *dimm = PC_DIMM(dev);
3155    uint64_t size, addr;
3156    uint32_t node;
3157
3158    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3159
3160    pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3161    if (local_err) {
3162        goto out;
3163    }
3164
3165    addr = object_property_get_uint(OBJECT(dimm),
3166                                    PC_DIMM_ADDR_PROP, &local_err);
3167    if (local_err) {
3168        goto out_unplug;
3169    }
3170
3171    node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3172                                    &error_abort);
3173    spapr_add_lmbs(dev, addr, size, node,
3174                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3175                   &local_err);
3176    if (local_err) {
3177        goto out_unplug;
3178    }
3179
3180    return;
3181
3182out_unplug:
3183    pc_dimm_unplug(dimm, MACHINE(ms));
3184out:
3185    error_propagate(errp, local_err);
3186}
3187
3188static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3189                                  Error **errp)
3190{
3191    const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3192    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3193    PCDIMMDevice *dimm = PC_DIMM(dev);
3194    Error *local_err = NULL;
3195    uint64_t size;
3196    Object *memdev;
3197    hwaddr pagesize;
3198
3199    if (!smc->dr_lmb_enabled) {
3200        error_setg(errp, "Memory hotplug not supported for this machine");
3201        return;
3202    }
3203
3204    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3205    if (local_err) {
3206        error_propagate(errp, local_err);
3207        return;
3208    }
3209
3210    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3211        error_setg(errp, "Hotplugged memory size must be a multiple of "
3212                      "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3213        return;
3214    }
3215
3216    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3217                                      &error_abort);
3218    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3219    spapr_check_pagesize(spapr, pagesize, &local_err);
3220    if (local_err) {
3221        error_propagate(errp, local_err);
3222        return;
3223    }
3224
3225    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3226}
3227
3228struct sPAPRDIMMState {
3229    PCDIMMDevice *dimm;
3230    uint32_t nr_lmbs;
3231    QTAILQ_ENTRY(sPAPRDIMMState) next;
3232};
3233
3234static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3235                                                       PCDIMMDevice *dimm)
3236{
3237    sPAPRDIMMState *dimm_state = NULL;
3238
3239    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3240        if (dimm_state->dimm == dimm) {
3241            break;
3242        }
3243    }
3244    return dimm_state;
3245}
3246
3247static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3248                                                      uint32_t nr_lmbs,
3249                                                      PCDIMMDevice *dimm)
3250{
3251    sPAPRDIMMState *ds = NULL;
3252
3253    /*
3254     * If this request is for a DIMM whose removal had failed earlier
3255     * (due to guest's refusal to remove the LMBs), we would have this
3256     * dimm already in the pending_dimm_unplugs list. In that
3257     * case don't add again.
3258     */
3259    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3260    if (!ds) {
3261        ds = g_malloc0(sizeof(sPAPRDIMMState));
3262        ds->nr_lmbs = nr_lmbs;
3263        ds->dimm = dimm;
3264        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3265    }
3266    return ds;
3267}
3268
3269static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3270                                              sPAPRDIMMState *dimm_state)
3271{
3272    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3273    g_free(dimm_state);
3274}
3275
3276static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3277                                                        PCDIMMDevice *dimm)
3278{
3279    sPAPRDRConnector *drc;
3280    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3281                                                  &error_abort);
3282    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3283    uint32_t avail_lmbs = 0;
3284    uint64_t addr_start, addr;
3285    int i;
3286
3287    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3288                                         &error_abort);
3289
3290    addr = addr_start;
3291    for (i = 0; i < nr_lmbs; i++) {
3292        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3293                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3294        g_assert(drc);
3295        if (drc->dev) {
3296            avail_lmbs++;
3297        }
3298        addr += SPAPR_MEMORY_BLOCK_SIZE;
3299    }
3300
3301    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3302}
3303
3304/* Callback to be called during DRC release. */
3305void spapr_lmb_release(DeviceState *dev)
3306{
3307    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3308    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3309    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3310
3311    /* This information will get lost if a migration occurs
3312     * during the unplug process. In this case recover it. */
3313    if (ds == NULL) {
3314        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3315        g_assert(ds);
3316        /* The DRC being examined by the caller at least must be counted */
3317        g_assert(ds->nr_lmbs);
3318    }
3319
3320    if (--ds->nr_lmbs) {
3321        return;
3322    }
3323
3324    /*
3325     * Now that all the LMBs have been removed by the guest, call the
3326     * unplug handler chain. This can never fail.
3327     */
3328    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3329}
3330
3331static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3332{
3333    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3334    sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3335
3336    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3337    object_unparent(OBJECT(dev));
3338    spapr_pending_dimm_unplugs_remove(spapr, ds);
3339}
3340
3341static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3342                                        DeviceState *dev, Error **errp)
3343{
3344    sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3345    Error *local_err = NULL;
3346    PCDIMMDevice *dimm = PC_DIMM(dev);
3347    uint32_t nr_lmbs;
3348    uint64_t size, addr_start, addr;
3349    int i;
3350    sPAPRDRConnector *drc;
3351
3352    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3353    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3354
3355    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3356                                         &local_err);
3357    if (local_err) {
3358        goto out;
3359    }
3360
3361    /*
3362     * An existing pending dimm state for this DIMM means that there is an
3363     * unplug operation in progress, waiting for the spapr_lmb_release
3364     * callback to complete the job (BQL can't cover that far). In this case,
3365     * bail out to avoid detaching DRCs that were already released.
3366     */
3367    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3368        error_setg(&local_err,
3369                   "Memory unplug already in progress for device %s",
3370                   dev->id);
3371        goto out;
3372    }
3373
3374    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3375
3376    addr = addr_start;
3377    for (i = 0; i < nr_lmbs; i++) {
3378        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3379                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3380        g_assert(drc);
3381
3382        spapr_drc_detach(drc);
3383        addr += SPAPR_MEMORY_BLOCK_SIZE;
3384    }
3385
3386    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3387                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3388    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3389                                              nr_lmbs, spapr_drc_index(drc));
3390out:
3391    error_propagate(errp, local_err);
3392}
3393
3394static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3395                                           sPAPRMachineState *spapr)
3396{
3397    PowerPCCPU *cpu = POWERPC_CPU(cs);
3398    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3399    int id = spapr_get_vcpu_id(cpu);
3400    void *fdt;
3401    int offset, fdt_size;
3402    char *nodename;
3403
3404    fdt = create_device_tree(&fdt_size);
3405    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3406    offset = fdt_add_subnode(fdt, 0, nodename);
3407
3408    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3409    g_free(nodename);
3410
3411    *fdt_offset = offset;
3412    return fdt;
3413}
3414
3415/* Callback to be called during DRC release. */
3416void spapr_core_release(DeviceState *dev)
3417{
3418    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3419
3420    /* Call the unplug handler chain. This can never fail. */
3421    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3422}
3423
3424static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3425{
3426    MachineState *ms = MACHINE(hotplug_dev);
3427    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3428    CPUCore *cc = CPU_CORE(dev);
3429    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3430
3431    if (smc->pre_2_10_has_unused_icps) {
3432        sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3433        int i;
3434
3435        for (i = 0; i < cc->nr_threads; i++) {
3436            CPUState *cs = CPU(sc->threads[i]);
3437
3438            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3439        }
3440    }
3441
3442    assert(core_slot);
3443    core_slot->cpu = NULL;
3444    object_unparent(OBJECT(dev));
3445}
3446
3447static
3448void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3449                               Error **errp)
3450{
3451    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3452    int index;
3453    sPAPRDRConnector *drc;
3454    CPUCore *cc = CPU_CORE(dev);
3455
3456    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3457        error_setg(errp, "Unable to find CPU core with core-id: %d",
3458                   cc->core_id);
3459        return;
3460    }
3461    if (index == 0) {
3462        error_setg(errp, "Boot CPU core may not be unplugged");
3463        return;
3464    }
3465
3466    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3467                          spapr_vcpu_id(spapr, cc->core_id));
3468    g_assert(drc);
3469
3470    spapr_drc_detach(drc);
3471
3472    spapr_hotplug_req_remove_by_index(drc);
3473}
3474
3475static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3476                            Error **errp)
3477{
3478    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3479    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3480    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3481    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3482    CPUCore *cc = CPU_CORE(dev);
3483    CPUState *cs = CPU(core->threads[0]);
3484    sPAPRDRConnector *drc;
3485    Error *local_err = NULL;
3486    CPUArchId *core_slot;
3487    int index;
3488    bool hotplugged = spapr_drc_hotplugged(dev);
3489
3490    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3491    if (!core_slot) {
3492        error_setg(errp, "Unable to find CPU core with core-id: %d",
3493                   cc->core_id);
3494        return;
3495    }
3496    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3497                          spapr_vcpu_id(spapr, cc->core_id));
3498
3499    g_assert(drc || !mc->has_hotpluggable_cpus);
3500
3501    if (drc) {
3502        void *fdt;
3503        int fdt_offset;
3504
3505        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3506
3507        spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3508        if (local_err) {
3509            g_free(fdt);
3510            error_propagate(errp, local_err);
3511            return;
3512        }
3513
3514        if (hotplugged) {
3515            /*
3516             * Send hotplug notification interrupt to the guest only
3517             * in case of hotplugged CPUs.
3518             */
3519            spapr_hotplug_req_add_by_index(drc);
3520        } else {
3521            spapr_drc_reset(drc);
3522        }
3523    }
3524
3525    core_slot->cpu = OBJECT(dev);
3526
3527    if (smc->pre_2_10_has_unused_icps) {
3528        int i;
3529
3530        for (i = 0; i < cc->nr_threads; i++) {
3531            cs = CPU(core->threads[i]);
3532            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3533        }
3534    }
3535}
3536
3537static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3538                                Error **errp)
3539{
3540    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3541    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3542    Error *local_err = NULL;
3543    CPUCore *cc = CPU_CORE(dev);
3544    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3545    const char *type = object_get_typename(OBJECT(dev));
3546    CPUArchId *core_slot;
3547    int index;
3548
3549    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3550        error_setg(&local_err, "CPU hotplug not supported for this machine");
3551        goto out;
3552    }
3553
3554    if (strcmp(base_core_type, type)) {
3555        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3556        goto out;
3557    }
3558
3559    if (cc->core_id % smp_threads) {
3560        error_setg(&local_err, "invalid core id %d", cc->core_id);
3561        goto out;
3562    }
3563
3564    /*
3565     * In general we should have homogeneous threads-per-core, but old
3566     * (pre hotplug support) machine types allow the last core to have
3567     * reduced threads as a compatibility hack for when we allowed
3568     * total vcpus not a multiple of threads-per-core.
3569     */
3570    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3571        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3572                   cc->nr_threads, smp_threads);
3573        goto out;
3574    }
3575
3576    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3577    if (!core_slot) {
3578        error_setg(&local_err, "core id %d out of range", cc->core_id);
3579        goto out;
3580    }
3581
3582    if (core_slot->cpu) {
3583        error_setg(&local_err, "core %d already populated", cc->core_id);
3584        goto out;
3585    }
3586
3587    numa_cpu_pre_plug(core_slot, dev, &local_err);
3588
3589out:
3590    error_propagate(errp, local_err);
3591}
3592
3593static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3594                                      DeviceState *dev, Error **errp)
3595{
3596    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3597        spapr_memory_plug(hotplug_dev, dev, errp);
3598    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3599        spapr_core_plug(hotplug_dev, dev, errp);
3600    }
3601}
3602
3603static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3604                                        DeviceState *dev, Error **errp)
3605{
3606    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3607        spapr_memory_unplug(hotplug_dev, dev);
3608    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3609        spapr_core_unplug(hotplug_dev, dev);
3610    }
3611}
3612
3613static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3614                                                DeviceState *dev, Error **errp)
3615{
3616    sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3617    MachineClass *mc = MACHINE_GET_CLASS(sms);
3618
3619    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3620        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3621            spapr_memory_unplug_request(hotplug_dev, dev, errp);
3622        } else {
3623            /* NOTE: this means there is a window after guest reset, prior to
3624             * CAS negotiation, where unplug requests will fail due to the
3625             * capability not being detected yet. This is a bit different than
3626             * the case with PCI unplug, where the events will be queued and
3627             * eventually handled by the guest after boot
3628             */
3629            error_setg(errp, "Memory hot unplug not supported for this guest");
3630        }
3631    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3632        if (!mc->has_hotpluggable_cpus) {
3633            error_setg(errp, "CPU hot unplug not supported on this machine");
3634            return;
3635        }
3636        spapr_core_unplug_request(hotplug_dev, dev, errp);
3637    }
3638}
3639
3640static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3641                                          DeviceState *dev, Error **errp)
3642{
3643    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3644        spapr_memory_pre_plug(hotplug_dev, dev, errp);
3645    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3646        spapr_core_pre_plug(hotplug_dev, dev, errp);
3647    }
3648}
3649
3650static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3651                                                 DeviceState *dev)
3652{
3653    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3654        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3655        return HOTPLUG_HANDLER(machine);
3656    }
3657    return NULL;
3658}
3659
3660static CpuInstanceProperties
3661spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3662{
3663    CPUArchId *core_slot;
3664    MachineClass *mc = MACHINE_GET_CLASS(machine);
3665
3666    /* make sure possible_cpu are intialized */
3667    mc->possible_cpu_arch_ids(machine);
3668    /* get CPU core slot containing thread that matches cpu_index */
3669    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3670    assert(core_slot);
3671    return core_slot->props;
3672}
3673
3674static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3675{
3676    return idx / smp_cores % nb_numa_nodes;
3677}
3678
3679static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3680{
3681    int i;
3682    const char *core_type;
3683    int spapr_max_cores = max_cpus / smp_threads;
3684    MachineClass *mc = MACHINE_GET_CLASS(machine);
3685
3686    if (!mc->has_hotpluggable_cpus) {
3687        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3688    }
3689    if (machine->possible_cpus) {
3690        assert(machine->possible_cpus->len == spapr_max_cores);
3691        return machine->possible_cpus;
3692    }
3693
3694    core_type = spapr_get_cpu_core_type(machine->cpu_type);
3695    if (!core_type) {
3696        error_report("Unable to find sPAPR CPU Core definition");
3697        exit(1);
3698    }
3699
3700    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3701                             sizeof(CPUArchId) * spapr_max_cores);
3702    machine->possible_cpus->len = spapr_max_cores;
3703    for (i = 0; i < machine->possible_cpus->len; i++) {
3704        int core_id = i * smp_threads;
3705
3706        machine->possible_cpus->cpus[i].type = core_type;
3707        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3708        machine->possible_cpus->cpus[i].arch_id = core_id;
3709        machine->possible_cpus->cpus[i].props.has_core_id = true;
3710        machine->possible_cpus->cpus[i].props.core_id = core_id;
3711    }
3712    return machine->possible_cpus;
3713}
3714
3715static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3716                                uint64_t *buid, hwaddr *pio,
3717                                hwaddr *mmio32, hwaddr *mmio64,
3718                                unsigned n_dma, uint32_t *liobns, Error **errp)
3719{
3720    /*
3721     * New-style PHB window placement.
3722     *
3723     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3724     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3725     * windows.
3726     *
3727     * Some guest kernels can't work with MMIO windows above 1<<46
3728     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3729     *
3730     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3731     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3732     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3733     * 1TiB 64-bit MMIO windows for each PHB.
3734     */
3735    const uint64_t base_buid = 0x800000020000000ULL;
3736#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3737                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3738    int i;
3739
3740    /* Sanity check natural alignments */
3741    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3742    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3743    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3744    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3745    /* Sanity check bounds */
3746    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3747                      SPAPR_PCI_MEM32_WIN_SIZE);
3748    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3749                      SPAPR_PCI_MEM64_WIN_SIZE);
3750
3751    if (index >= SPAPR_MAX_PHBS) {
3752        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3753                   SPAPR_MAX_PHBS - 1);
3754        return;
3755    }
3756
3757    *buid = base_buid + index;
3758    for (i = 0; i < n_dma; ++i) {
3759        liobns[i] = SPAPR_PCI_LIOBN(index, i);
3760    }
3761
3762    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3763    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3764    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3765}
3766
3767static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3768{
3769    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3770
3771    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3772}
3773
3774static void spapr_ics_resend(XICSFabric *dev)
3775{
3776    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3777
3778    ics_resend(spapr->ics);
3779}
3780
3781static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3782{
3783    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3784
3785    return cpu ? ICP(cpu->intc) : NULL;
3786}
3787
3788static void spapr_pic_print_info(InterruptStatsProvider *obj,
3789                                 Monitor *mon)
3790{
3791    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3792    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3793
3794    smc->irq->print_info(spapr, mon);
3795}
3796
3797int spapr_get_vcpu_id(PowerPCCPU *cpu)
3798{
3799    return cpu->vcpu_id;
3800}
3801
3802void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3803{
3804    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3805    int vcpu_id;
3806
3807    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3808
3809    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3810        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3811        error_append_hint(errp, "Adjust the number of cpus to %d "
3812                          "or try to raise the number of threads per core\n",
3813                          vcpu_id * smp_threads / spapr->vsmt);
3814        return;
3815    }
3816
3817    cpu->vcpu_id = vcpu_id;
3818}
3819
3820PowerPCCPU *spapr_find_cpu(int vcpu_id)
3821{
3822    CPUState *cs;
3823
3824    CPU_FOREACH(cs) {
3825        PowerPCCPU *cpu = POWERPC_CPU(cs);
3826
3827        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3828            return cpu;
3829        }
3830    }
3831
3832    return NULL;
3833}
3834
3835static void spapr_machine_class_init(ObjectClass *oc, void *data)
3836{
3837    MachineClass *mc = MACHINE_CLASS(oc);
3838    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3839    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3840    NMIClass *nc = NMI_CLASS(oc);
3841    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3842    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3843    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3844    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3845
3846    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3847    mc->ignore_boot_device_suffixes = true;
3848
3849    /*
3850     * We set up the default / latest behaviour here.  The class_init
3851     * functions for the specific versioned machine types can override
3852     * these details for backwards compatibility
3853     */
3854    mc->init = spapr_machine_init;
3855    mc->reset = spapr_machine_reset;
3856    mc->block_default_type = IF_SCSI;
3857    mc->max_cpus = 1024;
3858    mc->no_parallel = 1;
3859    mc->default_boot_order = "";
3860    mc->default_ram_size = 512 * MiB;
3861    mc->default_display = "std";
3862    mc->kvm_type = spapr_kvm_type;
3863    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3864    mc->pci_allow_0_address = true;
3865    assert(!mc->get_hotplug_handler);
3866    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3867    hc->pre_plug = spapr_machine_device_pre_plug;
3868    hc->plug = spapr_machine_device_plug;
3869    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3870    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3871    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3872    hc->unplug_request = spapr_machine_device_unplug_request;
3873    hc->unplug = spapr_machine_device_unplug;
3874
3875    smc->dr_lmb_enabled = true;
3876    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3877    mc->has_hotpluggable_cpus = true;
3878    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3879    fwc->get_dev_path = spapr_get_fw_dev_path;
3880    nc->nmi_monitor_handler = spapr_nmi;
3881    smc->phb_placement = spapr_phb_placement;
3882    vhc->hypercall = emulate_spapr_hypercall;
3883    vhc->hpt_mask = spapr_hpt_mask;
3884    vhc->map_hptes = spapr_map_hptes;
3885    vhc->unmap_hptes = spapr_unmap_hptes;
3886    vhc->store_hpte = spapr_store_hpte;
3887    vhc->get_patbe = spapr_get_patbe;
3888    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3889    xic->ics_get = spapr_ics_get;
3890    xic->ics_resend = spapr_ics_resend;
3891    xic->icp_get = spapr_icp_get;
3892    ispc->print_info = spapr_pic_print_info;
3893    /* Force NUMA node memory size to be a multiple of
3894     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3895     * in which LMBs are represented and hot-added
3896     */
3897    mc->numa_mem_align_shift = 28;
3898
3899    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3900    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3901    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3902    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3903    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3904    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3905    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3906    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
3907    spapr_caps_add_properties(smc, &error_abort);
3908    smc->irq = &spapr_irq_xics;
3909}
3910
3911static const TypeInfo spapr_machine_info = {
3912    .name          = TYPE_SPAPR_MACHINE,
3913    .parent        = TYPE_MACHINE,
3914    .abstract      = true,
3915    .instance_size = sizeof(sPAPRMachineState),
3916    .instance_init = spapr_instance_init,
3917    .instance_finalize = spapr_machine_finalizefn,
3918    .class_size    = sizeof(sPAPRMachineClass),
3919    .class_init    = spapr_machine_class_init,
3920    .interfaces = (InterfaceInfo[]) {
3921        { TYPE_FW_PATH_PROVIDER },
3922        { TYPE_NMI },
3923        { TYPE_HOTPLUG_HANDLER },
3924        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3925        { TYPE_XICS_FABRIC },
3926        { TYPE_INTERRUPT_STATS_PROVIDER },
3927        { }
3928    },
3929};
3930
3931#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3932    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3933                                                    void *data)      \
3934    {                                                                \
3935        MachineClass *mc = MACHINE_CLASS(oc);                        \
3936        spapr_machine_##suffix##_class_options(mc);                  \
3937        if (latest) {                                                \
3938            mc->alias = "pseries";                                   \
3939            mc->is_default = 1;                                      \
3940        }                                                            \
3941    }                                                                \
3942    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3943    {                                                                \
3944        MachineState *machine = MACHINE(obj);                        \
3945        spapr_machine_##suffix##_instance_options(machine);          \
3946    }                                                                \
3947    static const TypeInfo spapr_machine_##suffix##_info = {          \
3948        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3949        .parent = TYPE_SPAPR_MACHINE,                                \
3950        .class_init = spapr_machine_##suffix##_class_init,           \
3951        .instance_init = spapr_machine_##suffix##_instance_init,     \
3952    };                                                               \
3953    static void spapr_machine_register_##suffix(void)                \
3954    {                                                                \
3955        type_register(&spapr_machine_##suffix##_info);               \
3956    }                                                                \
3957    type_init(spapr_machine_register_##suffix)
3958
3959 /*
3960 * pseries-3.1
3961 */
3962static void spapr_machine_3_1_instance_options(MachineState *machine)
3963{
3964}
3965
3966static void spapr_machine_3_1_class_options(MachineClass *mc)
3967{
3968    /* Defaults for the latest behaviour inherited from the base class */
3969}
3970
3971DEFINE_SPAPR_MACHINE(3_1, "3.1", true);
3972
3973/*
3974 * pseries-3.0
3975 */
3976#define SPAPR_COMPAT_3_0                                              \
3977    HW_COMPAT_3_0
3978
3979static void spapr_machine_3_0_instance_options(MachineState *machine)
3980{
3981    spapr_machine_3_1_instance_options(machine);
3982}
3983
3984static void spapr_machine_3_0_class_options(MachineClass *mc)
3985{
3986    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3987
3988    spapr_machine_3_1_class_options(mc);
3989    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
3990
3991    smc->legacy_irq_allocation = true;
3992    smc->irq = &spapr_irq_xics_legacy;
3993}
3994
3995DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
3996
3997/*
3998 * pseries-2.12
3999 */
4000#define SPAPR_COMPAT_2_12                                              \
4001    HW_COMPAT_2_12                                                     \
4002    {                                                                  \
4003        .driver = TYPE_POWERPC_CPU,                                    \
4004        .property = "pre-3.0-migration",                               \
4005        .value    = "on",                                              \
4006    },                                                                 \
4007    {                                                                  \
4008        .driver = TYPE_SPAPR_CPU_CORE,                                 \
4009        .property = "pre-3.0-migration",                               \
4010        .value    = "on",                                              \
4011    },
4012
4013static void spapr_machine_2_12_instance_options(MachineState *machine)
4014{
4015    spapr_machine_3_0_instance_options(machine);
4016}
4017
4018static void spapr_machine_2_12_class_options(MachineClass *mc)
4019{
4020    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4021
4022    spapr_machine_3_0_class_options(mc);
4023    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4024
4025    /* We depend on kvm_enabled() to choose a default value for the
4026     * hpt-max-page-size capability. Of course we can't do it here
4027     * because this is too early and the HW accelerator isn't initialzed
4028     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4029     */
4030    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4031}
4032
4033DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4034
4035static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4036{
4037    spapr_machine_2_12_instance_options(machine);
4038}
4039
4040static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4041{
4042    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4043
4044    spapr_machine_2_12_class_options(mc);
4045    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4046    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4047    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4048}
4049
4050DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4051
4052/*
4053 * pseries-2.11
4054 */
4055#define SPAPR_COMPAT_2_11                                              \
4056    HW_COMPAT_2_11
4057
4058static void spapr_machine_2_11_instance_options(MachineState *machine)
4059{
4060    spapr_machine_2_12_instance_options(machine);
4061}
4062
4063static void spapr_machine_2_11_class_options(MachineClass *mc)
4064{
4065    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4066
4067    spapr_machine_2_12_class_options(mc);
4068    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4069    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4070}
4071
4072DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4073
4074/*
4075 * pseries-2.10
4076 */
4077#define SPAPR_COMPAT_2_10                                              \
4078    HW_COMPAT_2_10
4079
4080static void spapr_machine_2_10_instance_options(MachineState *machine)
4081{
4082    spapr_machine_2_11_instance_options(machine);
4083}
4084
4085static void spapr_machine_2_10_class_options(MachineClass *mc)
4086{
4087    spapr_machine_2_11_class_options(mc);
4088    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4089}
4090
4091DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4092
4093/*
4094 * pseries-2.9
4095 */
4096#define SPAPR_COMPAT_2_9                                               \
4097    HW_COMPAT_2_9                                                      \
4098    {                                                                  \
4099        .driver = TYPE_POWERPC_CPU,                                    \
4100        .property = "pre-2.10-migration",                              \
4101        .value    = "on",                                              \
4102    },                                                                 \
4103
4104static void spapr_machine_2_9_instance_options(MachineState *machine)
4105{
4106    spapr_machine_2_10_instance_options(machine);
4107}
4108
4109static void spapr_machine_2_9_class_options(MachineClass *mc)
4110{
4111    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4112
4113    spapr_machine_2_10_class_options(mc);
4114    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4115    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4116    smc->pre_2_10_has_unused_icps = true;
4117    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4118}
4119
4120DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4121
4122/*
4123 * pseries-2.8
4124 */
4125#define SPAPR_COMPAT_2_8                                        \
4126    HW_COMPAT_2_8                                               \
4127    {                                                           \
4128        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4129        .property = "pcie-extended-configuration-space",        \
4130        .value    = "off",                                      \
4131    },
4132
4133static void spapr_machine_2_8_instance_options(MachineState *machine)
4134{
4135    spapr_machine_2_9_instance_options(machine);
4136}
4137
4138static void spapr_machine_2_8_class_options(MachineClass *mc)
4139{
4140    spapr_machine_2_9_class_options(mc);
4141    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4142    mc->numa_mem_align_shift = 23;
4143}
4144
4145DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4146
4147/*
4148 * pseries-2.7
4149 */
4150#define SPAPR_COMPAT_2_7                            \
4151    HW_COMPAT_2_7                                   \
4152    {                                               \
4153        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4154        .property = "mem_win_size",                 \
4155        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4156    },                                              \
4157    {                                               \
4158        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4159        .property = "mem64_win_size",               \
4160        .value    = "0",                            \
4161    },                                              \
4162    {                                               \
4163        .driver = TYPE_POWERPC_CPU,                 \
4164        .property = "pre-2.8-migration",            \
4165        .value    = "on",                           \
4166    },                                              \
4167    {                                               \
4168        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4169        .property = "pre-2.8-migration",            \
4170        .value    = "on",                           \
4171    },
4172
4173static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4174                              uint64_t *buid, hwaddr *pio,
4175                              hwaddr *mmio32, hwaddr *mmio64,
4176                              unsigned n_dma, uint32_t *liobns, Error **errp)
4177{
4178    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4179    const uint64_t base_buid = 0x800000020000000ULL;
4180    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4181    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4182    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4183    const uint32_t max_index = 255;
4184    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4185
4186    uint64_t ram_top = MACHINE(spapr)->ram_size;
4187    hwaddr phb0_base, phb_base;
4188    int i;
4189
4190    /* Do we have device memory? */
4191    if (MACHINE(spapr)->maxram_size > ram_top) {
4192        /* Can't just use maxram_size, because there may be an
4193         * alignment gap between normal and device memory regions
4194         */
4195        ram_top = MACHINE(spapr)->device_memory->base +
4196            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4197    }
4198
4199    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4200
4201    if (index > max_index) {
4202        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4203                   max_index);
4204        return;
4205    }
4206
4207    *buid = base_buid + index;
4208    for (i = 0; i < n_dma; ++i) {
4209        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4210    }
4211
4212    phb_base = phb0_base + index * phb_spacing;
4213    *pio = phb_base + pio_offset;
4214    *mmio32 = phb_base + mmio_offset;
4215    /*
4216     * We don't set the 64-bit MMIO window, relying on the PHB's
4217     * fallback behaviour of automatically splitting a large "32-bit"
4218     * window into contiguous 32-bit and 64-bit windows
4219     */
4220}
4221
4222static void spapr_machine_2_7_instance_options(MachineState *machine)
4223{
4224    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4225
4226    spapr_machine_2_8_instance_options(machine);
4227    spapr->use_hotplug_event_source = false;
4228}
4229
4230static void spapr_machine_2_7_class_options(MachineClass *mc)
4231{
4232    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4233
4234    spapr_machine_2_8_class_options(mc);
4235    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4236    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4237    smc->phb_placement = phb_placement_2_7;
4238}
4239
4240DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4241
4242/*
4243 * pseries-2.6
4244 */
4245#define SPAPR_COMPAT_2_6 \
4246    HW_COMPAT_2_6 \
4247    { \
4248        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4249        .property = "ddw",\
4250        .value    = stringify(off),\
4251    },
4252
4253static void spapr_machine_2_6_instance_options(MachineState *machine)
4254{
4255    spapr_machine_2_7_instance_options(machine);
4256}
4257
4258static void spapr_machine_2_6_class_options(MachineClass *mc)
4259{
4260    spapr_machine_2_7_class_options(mc);
4261    mc->has_hotpluggable_cpus = false;
4262    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4263}
4264
4265DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4266
4267/*
4268 * pseries-2.5
4269 */
4270#define SPAPR_COMPAT_2_5 \
4271    HW_COMPAT_2_5 \
4272    { \
4273        .driver   = "spapr-vlan", \
4274        .property = "use-rx-buffer-pools", \
4275        .value    = "off", \
4276    },
4277
4278static void spapr_machine_2_5_instance_options(MachineState *machine)
4279{
4280    spapr_machine_2_6_instance_options(machine);
4281}
4282
4283static void spapr_machine_2_5_class_options(MachineClass *mc)
4284{
4285    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4286
4287    spapr_machine_2_6_class_options(mc);
4288    smc->use_ohci_by_default = true;
4289    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4290}
4291
4292DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4293
4294/*
4295 * pseries-2.4
4296 */
4297#define SPAPR_COMPAT_2_4 \
4298        HW_COMPAT_2_4
4299
4300static void spapr_machine_2_4_instance_options(MachineState *machine)
4301{
4302    spapr_machine_2_5_instance_options(machine);
4303}
4304
4305static void spapr_machine_2_4_class_options(MachineClass *mc)
4306{
4307    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4308
4309    spapr_machine_2_5_class_options(mc);
4310    smc->dr_lmb_enabled = false;
4311    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4312}
4313
4314DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4315
4316/*
4317 * pseries-2.3
4318 */
4319#define SPAPR_COMPAT_2_3 \
4320        HW_COMPAT_2_3 \
4321        {\
4322            .driver   = "spapr-pci-host-bridge",\
4323            .property = "dynamic-reconfiguration",\
4324            .value    = "off",\
4325        },
4326
4327static void spapr_machine_2_3_instance_options(MachineState *machine)
4328{
4329    spapr_machine_2_4_instance_options(machine);
4330}
4331
4332static void spapr_machine_2_3_class_options(MachineClass *mc)
4333{
4334    spapr_machine_2_4_class_options(mc);
4335    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4336}
4337DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4338
4339/*
4340 * pseries-2.2
4341 */
4342
4343#define SPAPR_COMPAT_2_2 \
4344        HW_COMPAT_2_2 \
4345        {\
4346            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4347            .property = "mem_win_size",\
4348            .value    = "0x20000000",\
4349        },
4350
4351static void spapr_machine_2_2_instance_options(MachineState *machine)
4352{
4353    spapr_machine_2_3_instance_options(machine);
4354    machine->suppress_vmdesc = true;
4355}
4356
4357static void spapr_machine_2_2_class_options(MachineClass *mc)
4358{
4359    spapr_machine_2_3_class_options(mc);
4360    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4361}
4362DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4363
4364/*
4365 * pseries-2.1
4366 */
4367#define SPAPR_COMPAT_2_1 \
4368        HW_COMPAT_2_1
4369
4370static void spapr_machine_2_1_instance_options(MachineState *machine)
4371{
4372    spapr_machine_2_2_instance_options(machine);
4373}
4374
4375static void spapr_machine_2_1_class_options(MachineClass *mc)
4376{
4377    spapr_machine_2_2_class_options(mc);
4378    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4379}
4380DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4381
4382static void spapr_machine_register_types(void)
4383{
4384    type_register_static(&spapr_machine_info);
4385}
4386
4387type_init(spapr_machine_register_types)
4388