qemu/hw/ppc/spapr_pci.c
<<
>>
Prefs
   1/*
   2 * QEMU sPAPR PCI host originated from Uninorth PCI host
   3 *
   4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
   5 * Copyright (C) 2011 David Gibson, IBM Corporation.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25#include "qemu/osdep.h"
  26#include "qapi/error.h"
  27#include "qemu-common.h"
  28#include "cpu.h"
  29#include "hw/hw.h"
  30#include "hw/sysbus.h"
  31#include "hw/pci/pci.h"
  32#include "hw/pci/msi.h"
  33#include "hw/pci/msix.h"
  34#include "hw/pci/pci_host.h"
  35#include "hw/ppc/spapr.h"
  36#include "hw/pci-host/spapr.h"
  37#include "exec/address-spaces.h"
  38#include "exec/ram_addr.h"
  39#include <libfdt.h>
  40#include "trace.h"
  41#include "qemu/error-report.h"
  42#include "qapi/qmp/qerror.h"
  43#include "hw/ppc/fdt.h"
  44#include "hw/pci/pci_bridge.h"
  45#include "hw/pci/pci_bus.h"
  46#include "hw/pci/pci_ids.h"
  47#include "hw/ppc/spapr_drc.h"
  48#include "sysemu/device_tree.h"
  49#include "sysemu/kvm.h"
  50#include "sysemu/hostmem.h"
  51#include "sysemu/numa.h"
  52
  53/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
  54#define RTAS_QUERY_FN           0
  55#define RTAS_CHANGE_FN          1
  56#define RTAS_RESET_FN           2
  57#define RTAS_CHANGE_MSI_FN      3
  58#define RTAS_CHANGE_MSIX_FN     4
  59
  60/* Interrupt types to return on RTAS_CHANGE_* */
  61#define RTAS_TYPE_MSI           1
  62#define RTAS_TYPE_MSIX          2
  63
  64sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
  65{
  66    sPAPRPHBState *sphb;
  67
  68    QLIST_FOREACH(sphb, &spapr->phbs, list) {
  69        if (sphb->buid != buid) {
  70            continue;
  71        }
  72        return sphb;
  73    }
  74
  75    return NULL;
  76}
  77
  78PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
  79                              uint32_t config_addr)
  80{
  81    sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
  82    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
  83    int bus_num = (config_addr >> 16) & 0xFF;
  84    int devfn = (config_addr >> 8) & 0xFF;
  85
  86    if (!phb) {
  87        return NULL;
  88    }
  89
  90    return pci_find_device(phb->bus, bus_num, devfn);
  91}
  92
  93static uint32_t rtas_pci_cfgaddr(uint32_t arg)
  94{
  95    /* This handles the encoding of extended config space addresses */
  96    return ((arg >> 20) & 0xf00) | (arg & 0xff);
  97}
  98
  99static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 100                                   uint32_t addr, uint32_t size,
 101                                   target_ulong rets)
 102{
 103    PCIDevice *pci_dev;
 104    uint32_t val;
 105
 106    if ((size != 1) && (size != 2) && (size != 4)) {
 107        /* access must be 1, 2 or 4 bytes */
 108        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 109        return;
 110    }
 111
 112    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 113    addr = rtas_pci_cfgaddr(addr);
 114
 115    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 116        /* Access must be to a valid device, within bounds and
 117         * naturally aligned */
 118        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 119        return;
 120    }
 121
 122    val = pci_host_config_read_common(pci_dev, addr,
 123                                      pci_config_size(pci_dev), size);
 124
 125    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 126    rtas_st(rets, 1, val);
 127}
 128
 129static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 130                                     uint32_t token, uint32_t nargs,
 131                                     target_ulong args,
 132                                     uint32_t nret, target_ulong rets)
 133{
 134    uint64_t buid;
 135    uint32_t size, addr;
 136
 137    if ((nargs != 4) || (nret != 2)) {
 138        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 139        return;
 140    }
 141
 142    buid = rtas_ldq(args, 1);
 143    size = rtas_ld(args, 3);
 144    addr = rtas_ld(args, 0);
 145
 146    finish_read_pci_config(spapr, buid, addr, size, rets);
 147}
 148
 149static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 150                                 uint32_t token, uint32_t nargs,
 151                                 target_ulong args,
 152                                 uint32_t nret, target_ulong rets)
 153{
 154    uint32_t size, addr;
 155
 156    if ((nargs != 2) || (nret != 2)) {
 157        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 158        return;
 159    }
 160
 161    size = rtas_ld(args, 1);
 162    addr = rtas_ld(args, 0);
 163
 164    finish_read_pci_config(spapr, 0, addr, size, rets);
 165}
 166
 167static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
 168                                    uint32_t addr, uint32_t size,
 169                                    uint32_t val, target_ulong rets)
 170{
 171    PCIDevice *pci_dev;
 172
 173    if ((size != 1) && (size != 2) && (size != 4)) {
 174        /* access must be 1, 2 or 4 bytes */
 175        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 176        return;
 177    }
 178
 179    pci_dev = spapr_pci_find_dev(spapr, buid, addr);
 180    addr = rtas_pci_cfgaddr(addr);
 181
 182    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
 183        /* Access must be to a valid device, within bounds and
 184         * naturally aligned */
 185        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 186        return;
 187    }
 188
 189    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
 190                                 val, size);
 191
 192    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 193}
 194
 195static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 196                                      uint32_t token, uint32_t nargs,
 197                                      target_ulong args,
 198                                      uint32_t nret, target_ulong rets)
 199{
 200    uint64_t buid;
 201    uint32_t val, size, addr;
 202
 203    if ((nargs != 5) || (nret != 1)) {
 204        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 205        return;
 206    }
 207
 208    buid = rtas_ldq(args, 1);
 209    val = rtas_ld(args, 4);
 210    size = rtas_ld(args, 3);
 211    addr = rtas_ld(args, 0);
 212
 213    finish_write_pci_config(spapr, buid, addr, size, val, rets);
 214}
 215
 216static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 217                                  uint32_t token, uint32_t nargs,
 218                                  target_ulong args,
 219                                  uint32_t nret, target_ulong rets)
 220{
 221    uint32_t val, size, addr;
 222
 223    if ((nargs != 3) || (nret != 1)) {
 224        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 225        return;
 226    }
 227
 228
 229    val = rtas_ld(args, 2);
 230    size = rtas_ld(args, 1);
 231    addr = rtas_ld(args, 0);
 232
 233    finish_write_pci_config(spapr, 0, addr, size, val, rets);
 234}
 235
 236/*
 237 * Set MSI/MSIX message data.
 238 * This is required for msi_notify()/msix_notify() which
 239 * will write at the addresses via spapr_msi_write().
 240 *
 241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
 242 * table will be reset.
 243 */
 244static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
 245                             unsigned first_irq, unsigned req_num)
 246{
 247    unsigned i;
 248    MSIMessage msg = { .address = addr, .data = first_irq };
 249
 250    if (!msix) {
 251        msi_set_message(pdev, msg);
 252        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
 253        return;
 254    }
 255
 256    for (i = 0; i < req_num; ++i) {
 257        msix_set_message(pdev, i, msg);
 258        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
 259        if (addr) {
 260            ++msg.data;
 261        }
 262    }
 263}
 264
 265static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 266                                uint32_t token, uint32_t nargs,
 267                                target_ulong args, uint32_t nret,
 268                                target_ulong rets)
 269{
 270    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 271    uint32_t config_addr = rtas_ld(args, 0);
 272    uint64_t buid = rtas_ldq(args, 1);
 273    unsigned int func = rtas_ld(args, 3);
 274    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
 275    unsigned int seq_num = rtas_ld(args, 5);
 276    unsigned int ret_intr_type;
 277    unsigned int irq, max_irqs = 0;
 278    sPAPRPHBState *phb = NULL;
 279    PCIDevice *pdev = NULL;
 280    spapr_pci_msi *msi;
 281    int *config_addr_key;
 282    Error *err = NULL;
 283    int i;
 284
 285    /* Fins sPAPRPHBState */
 286    phb = spapr_pci_find_phb(spapr, buid);
 287    if (phb) {
 288        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 289    }
 290    if (!phb || !pdev) {
 291        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 292        return;
 293    }
 294
 295    switch (func) {
 296    case RTAS_CHANGE_FN:
 297        if (msi_present(pdev)) {
 298            ret_intr_type = RTAS_TYPE_MSI;
 299        } else if (msix_present(pdev)) {
 300            ret_intr_type = RTAS_TYPE_MSIX;
 301        } else {
 302            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 303            return;
 304        }
 305        break;
 306    case RTAS_CHANGE_MSI_FN:
 307        if (msi_present(pdev)) {
 308            ret_intr_type = RTAS_TYPE_MSI;
 309        } else {
 310            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 311            return;
 312        }
 313        break;
 314    case RTAS_CHANGE_MSIX_FN:
 315        if (msix_present(pdev)) {
 316            ret_intr_type = RTAS_TYPE_MSIX;
 317        } else {
 318            rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 319            return;
 320        }
 321        break;
 322    default:
 323        error_report("rtas_ibm_change_msi(%u) is not implemented", func);
 324        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 325        return;
 326    }
 327
 328    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 329
 330    /* Releasing MSIs */
 331    if (!req_num) {
 332        if (!msi) {
 333            trace_spapr_pci_msi("Releasing wrong config", config_addr);
 334            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 335            return;
 336        }
 337
 338        if (!smc->legacy_irq_allocation) {
 339            spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
 340        }
 341        spapr_irq_free(spapr, msi->first_irq, msi->num);
 342        if (msi_present(pdev)) {
 343            spapr_msi_setmsg(pdev, 0, false, 0, 0);
 344        }
 345        if (msix_present(pdev)) {
 346            spapr_msi_setmsg(pdev, 0, true, 0, 0);
 347        }
 348        g_hash_table_remove(phb->msi, &config_addr);
 349
 350        trace_spapr_pci_msi("Released MSIs", config_addr);
 351        rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 352        rtas_st(rets, 1, 0);
 353        return;
 354    }
 355
 356    /* Enabling MSI */
 357
 358    /* Check if the device supports as many IRQs as requested */
 359    if (ret_intr_type == RTAS_TYPE_MSI) {
 360        max_irqs = msi_nr_vectors_allocated(pdev);
 361    } else if (ret_intr_type == RTAS_TYPE_MSIX) {
 362        max_irqs = pdev->msix_entries_nr;
 363    }
 364    if (!max_irqs) {
 365        error_report("Requested interrupt type %d is not enabled for device %x",
 366                     ret_intr_type, config_addr);
 367        rtas_st(rets, 0, -1); /* Hardware error */
 368        return;
 369    }
 370    /* Correct the number if the guest asked for too many */
 371    if (req_num > max_irqs) {
 372        trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
 373        req_num = max_irqs;
 374        irq = 0; /* to avoid misleading trace */
 375        goto out;
 376    }
 377
 378    /* Allocate MSIs */
 379    if (smc->legacy_irq_allocation) {
 380        irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
 381                             &err);
 382    } else {
 383        irq = spapr_irq_msi_alloc(spapr, req_num,
 384                                  ret_intr_type == RTAS_TYPE_MSI, &err);
 385    }
 386    if (err) {
 387        error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 388                          config_addr);
 389        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 390        return;
 391    }
 392
 393    for (i = 0; i < req_num; i++) {
 394        spapr_irq_claim(spapr, irq + i, false, &err);
 395        if (err) {
 396            error_reportf_err(err, "Can't allocate MSIs for device %x: ",
 397                              config_addr);
 398            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 399            return;
 400        }
 401    }
 402
 403    /* Release previous MSIs */
 404    if (msi) {
 405        if (!smc->legacy_irq_allocation) {
 406            spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
 407        }
 408        spapr_irq_free(spapr, msi->first_irq, msi->num);
 409        g_hash_table_remove(phb->msi, &config_addr);
 410    }
 411
 412    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
 413    spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
 414                     irq, req_num);
 415
 416    /* Add MSI device to cache */
 417    msi = g_new(spapr_pci_msi, 1);
 418    msi->first_irq = irq;
 419    msi->num = req_num;
 420    config_addr_key = g_new(int, 1);
 421    *config_addr_key = config_addr;
 422    g_hash_table_insert(phb->msi, config_addr_key, msi);
 423
 424out:
 425    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 426    rtas_st(rets, 1, req_num);
 427    rtas_st(rets, 2, ++seq_num);
 428    if (nret > 3) {
 429        rtas_st(rets, 3, ret_intr_type);
 430    }
 431
 432    trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
 433}
 434
 435static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
 436                                                   sPAPRMachineState *spapr,
 437                                                   uint32_t token,
 438                                                   uint32_t nargs,
 439                                                   target_ulong args,
 440                                                   uint32_t nret,
 441                                                   target_ulong rets)
 442{
 443    uint32_t config_addr = rtas_ld(args, 0);
 444    uint64_t buid = rtas_ldq(args, 1);
 445    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
 446    sPAPRPHBState *phb = NULL;
 447    PCIDevice *pdev = NULL;
 448    spapr_pci_msi *msi;
 449
 450    /* Find sPAPRPHBState */
 451    phb = spapr_pci_find_phb(spapr, buid);
 452    if (phb) {
 453        pdev = spapr_pci_find_dev(spapr, buid, config_addr);
 454    }
 455    if (!phb || !pdev) {
 456        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 457        return;
 458    }
 459
 460    /* Find device descriptor and start IRQ */
 461    msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
 462    if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
 463        trace_spapr_pci_msi("Failed to return vector", config_addr);
 464        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
 465        return;
 466    }
 467    intr_src_num = msi->first_irq + ioa_intr_num;
 468    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
 469                                                           intr_src_num);
 470
 471    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 472    rtas_st(rets, 1, intr_src_num);
 473    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
 474}
 475
 476static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
 477                                    sPAPRMachineState *spapr,
 478                                    uint32_t token, uint32_t nargs,
 479                                    target_ulong args, uint32_t nret,
 480                                    target_ulong rets)
 481{
 482    sPAPRPHBState *sphb;
 483    uint32_t addr, option;
 484    uint64_t buid;
 485    int ret;
 486
 487    if ((nargs != 4) || (nret != 1)) {
 488        goto param_error_exit;
 489    }
 490
 491    buid = rtas_ldq(args, 1);
 492    addr = rtas_ld(args, 0);
 493    option = rtas_ld(args, 3);
 494
 495    sphb = spapr_pci_find_phb(spapr, buid);
 496    if (!sphb) {
 497        goto param_error_exit;
 498    }
 499
 500    if (!spapr_phb_eeh_available(sphb)) {
 501        goto param_error_exit;
 502    }
 503
 504    ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
 505    rtas_st(rets, 0, ret);
 506    return;
 507
 508param_error_exit:
 509    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 510}
 511
 512static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
 513                                           sPAPRMachineState *spapr,
 514                                           uint32_t token, uint32_t nargs,
 515                                           target_ulong args, uint32_t nret,
 516                                           target_ulong rets)
 517{
 518    sPAPRPHBState *sphb;
 519    PCIDevice *pdev;
 520    uint32_t addr, option;
 521    uint64_t buid;
 522
 523    if ((nargs != 4) || (nret != 2)) {
 524        goto param_error_exit;
 525    }
 526
 527    buid = rtas_ldq(args, 1);
 528    sphb = spapr_pci_find_phb(spapr, buid);
 529    if (!sphb) {
 530        goto param_error_exit;
 531    }
 532
 533    if (!spapr_phb_eeh_available(sphb)) {
 534        goto param_error_exit;
 535    }
 536
 537    /*
 538     * We always have PE address of form "00BB0001". "BB"
 539     * represents the bus number of PE's primary bus.
 540     */
 541    option = rtas_ld(args, 3);
 542    switch (option) {
 543    case RTAS_GET_PE_ADDR:
 544        addr = rtas_ld(args, 0);
 545        pdev = spapr_pci_find_dev(spapr, buid, addr);
 546        if (!pdev) {
 547            goto param_error_exit;
 548        }
 549
 550        rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
 551        break;
 552    case RTAS_GET_PE_MODE:
 553        rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
 554        break;
 555    default:
 556        goto param_error_exit;
 557    }
 558
 559    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
 560    return;
 561
 562param_error_exit:
 563    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 564}
 565
 566static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
 567                                            sPAPRMachineState *spapr,
 568                                            uint32_t token, uint32_t nargs,
 569                                            target_ulong args, uint32_t nret,
 570                                            target_ulong rets)
 571{
 572    sPAPRPHBState *sphb;
 573    uint64_t buid;
 574    int state, ret;
 575
 576    if ((nargs != 3) || (nret != 4 && nret != 5)) {
 577        goto param_error_exit;
 578    }
 579
 580    buid = rtas_ldq(args, 1);
 581    sphb = spapr_pci_find_phb(spapr, buid);
 582    if (!sphb) {
 583        goto param_error_exit;
 584    }
 585
 586    if (!spapr_phb_eeh_available(sphb)) {
 587        goto param_error_exit;
 588    }
 589
 590    ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
 591    rtas_st(rets, 0, ret);
 592    if (ret != RTAS_OUT_SUCCESS) {
 593        return;
 594    }
 595
 596    rtas_st(rets, 1, state);
 597    rtas_st(rets, 2, RTAS_EEH_SUPPORT);
 598    rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
 599    if (nret >= 5) {
 600        rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
 601    }
 602    return;
 603
 604param_error_exit:
 605    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 606}
 607
 608static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
 609                                    sPAPRMachineState *spapr,
 610                                    uint32_t token, uint32_t nargs,
 611                                    target_ulong args, uint32_t nret,
 612                                    target_ulong rets)
 613{
 614    sPAPRPHBState *sphb;
 615    uint32_t option;
 616    uint64_t buid;
 617    int ret;
 618
 619    if ((nargs != 4) || (nret != 1)) {
 620        goto param_error_exit;
 621    }
 622
 623    buid = rtas_ldq(args, 1);
 624    option = rtas_ld(args, 3);
 625    sphb = spapr_pci_find_phb(spapr, buid);
 626    if (!sphb) {
 627        goto param_error_exit;
 628    }
 629
 630    if (!spapr_phb_eeh_available(sphb)) {
 631        goto param_error_exit;
 632    }
 633
 634    ret = spapr_phb_vfio_eeh_reset(sphb, option);
 635    rtas_st(rets, 0, ret);
 636    return;
 637
 638param_error_exit:
 639    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 640}
 641
 642static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
 643                                  sPAPRMachineState *spapr,
 644                                  uint32_t token, uint32_t nargs,
 645                                  target_ulong args, uint32_t nret,
 646                                  target_ulong rets)
 647{
 648    sPAPRPHBState *sphb;
 649    uint64_t buid;
 650    int ret;
 651
 652    if ((nargs != 3) || (nret != 1)) {
 653        goto param_error_exit;
 654    }
 655
 656    buid = rtas_ldq(args, 1);
 657    sphb = spapr_pci_find_phb(spapr, buid);
 658    if (!sphb) {
 659        goto param_error_exit;
 660    }
 661
 662    if (!spapr_phb_eeh_available(sphb)) {
 663        goto param_error_exit;
 664    }
 665
 666    ret = spapr_phb_vfio_eeh_configure(sphb);
 667    rtas_st(rets, 0, ret);
 668    return;
 669
 670param_error_exit:
 671    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 672}
 673
 674/* To support it later */
 675static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
 676                                       sPAPRMachineState *spapr,
 677                                       uint32_t token, uint32_t nargs,
 678                                       target_ulong args, uint32_t nret,
 679                                       target_ulong rets)
 680{
 681    sPAPRPHBState *sphb;
 682    int option;
 683    uint64_t buid;
 684
 685    if ((nargs != 8) || (nret != 1)) {
 686        goto param_error_exit;
 687    }
 688
 689    buid = rtas_ldq(args, 1);
 690    sphb = spapr_pci_find_phb(spapr, buid);
 691    if (!sphb) {
 692        goto param_error_exit;
 693    }
 694
 695    if (!spapr_phb_eeh_available(sphb)) {
 696        goto param_error_exit;
 697    }
 698
 699    option = rtas_ld(args, 7);
 700    switch (option) {
 701    case RTAS_SLOT_TEMP_ERR_LOG:
 702    case RTAS_SLOT_PERM_ERR_LOG:
 703        break;
 704    default:
 705        goto param_error_exit;
 706    }
 707
 708    /* We don't have error log yet */
 709    rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
 710    return;
 711
 712param_error_exit:
 713    rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
 714}
 715
 716static int pci_spapr_swizzle(int slot, int pin)
 717{
 718    return (slot + pin) % PCI_NUM_PINS;
 719}
 720
 721static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
 722{
 723    /*
 724     * Here we need to convert pci_dev + irq_num to some unique value
 725     * which is less than number of IRQs on the specific bus (4).  We
 726     * use standard PCI swizzling, that is (slot number + pin number)
 727     * % 4.
 728     */
 729    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
 730}
 731
 732static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
 733{
 734    /*
 735     * Here we use the number returned by pci_spapr_map_irq to find a
 736     * corresponding qemu_irq.
 737     */
 738    sPAPRPHBState *phb = opaque;
 739
 740    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
 741    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
 742}
 743
 744static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
 745{
 746    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
 747    PCIINTxRoute route;
 748
 749    route.mode = PCI_INTX_ENABLED;
 750    route.irq = sphb->lsi_table[pin].irq;
 751
 752    return route;
 753}
 754
 755/*
 756 * MSI/MSIX memory region implementation.
 757 * The handler handles both MSI and MSIX.
 758 * The vector number is encoded in least bits in data.
 759 */
 760static void spapr_msi_write(void *opaque, hwaddr addr,
 761                            uint64_t data, unsigned size)
 762{
 763    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 764    uint32_t irq = data;
 765
 766    trace_spapr_pci_msi_write(addr, data, irq);
 767
 768    qemu_irq_pulse(spapr_qirq(spapr, irq));
 769}
 770
 771static const MemoryRegionOps spapr_msi_ops = {
 772    /* There is no .read as the read result is undefined by PCI spec */
 773    .read = NULL,
 774    .write = spapr_msi_write,
 775    .endianness = DEVICE_LITTLE_ENDIAN
 776};
 777
 778/*
 779 * PHB PCI device
 780 */
 781static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
 782{
 783    sPAPRPHBState *phb = opaque;
 784
 785    return &phb->iommu_as;
 786}
 787
 788static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
 789{
 790    char *path = NULL, *buf = NULL, *host = NULL;
 791
 792    /* Get the PCI VFIO host id */
 793    host = object_property_get_str(OBJECT(pdev), "host", NULL);
 794    if (!host) {
 795        goto err_out;
 796    }
 797
 798    /* Construct the path of the file that will give us the DT location */
 799    path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
 800    g_free(host);
 801    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 802        goto err_out;
 803    }
 804    g_free(path);
 805
 806    /* Construct and read from host device tree the loc-code */
 807    path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
 808    g_free(buf);
 809    if (!g_file_get_contents(path, &buf, NULL, NULL)) {
 810        goto err_out;
 811    }
 812    return buf;
 813
 814err_out:
 815    g_free(path);
 816    return NULL;
 817}
 818
 819static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
 820{
 821    char *buf;
 822    const char *devtype = "qemu";
 823    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
 824
 825    if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
 826        buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
 827        if (buf) {
 828            return buf;
 829        }
 830        devtype = "vfio";
 831    }
 832    /*
 833     * For emulated devices and VFIO-failure case, make up
 834     * the loc-code.
 835     */
 836    buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
 837                          devtype, pdev->name, sphb->index, busnr,
 838                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
 839    return buf;
 840}
 841
 842/* Macros to operate with address in OF binding to PCI */
 843#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
 844#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
 845#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
 846#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
 847#define b_ss(x)         b_x((x), 24, 2) /* the space code */
 848#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
 849#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
 850#define b_fff(x)        b_x((x), 8, 3)  /* function number */
 851#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
 852
 853/* for 'reg'/'assigned-addresses' OF properties */
 854#define RESOURCE_CELLS_SIZE 2
 855#define RESOURCE_CELLS_ADDRESS 3
 856
 857typedef struct ResourceFields {
 858    uint32_t phys_hi;
 859    uint32_t phys_mid;
 860    uint32_t phys_lo;
 861    uint32_t size_hi;
 862    uint32_t size_lo;
 863} QEMU_PACKED ResourceFields;
 864
 865typedef struct ResourceProps {
 866    ResourceFields reg[8];
 867    ResourceFields assigned[7];
 868    uint32_t reg_len;
 869    uint32_t assigned_len;
 870} ResourceProps;
 871
 872/* fill in the 'reg'/'assigned-resources' OF properties for
 873 * a PCI device. 'reg' describes resource requirements for a
 874 * device's IO/MEM regions, 'assigned-addresses' describes the
 875 * actual resource assignments.
 876 *
 877 * the properties are arrays of ('phys-addr', 'size') pairs describing
 878 * the addressable regions of the PCI device, where 'phys-addr' is a
 879 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
 880 * (phys.hi, phys.mid, phys.lo), and 'size' is a
 881 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
 882 *
 883 * phys.hi = 0xYYXXXXZZ, where:
 884 *   0xYY = npt000ss
 885 *          |||   |
 886 *          |||   +-- space code
 887 *          |||               |
 888 *          |||               +  00 if configuration space
 889 *          |||               +  01 if IO region,
 890 *          |||               +  10 if 32-bit MEM region
 891 *          |||               +  11 if 64-bit MEM region
 892 *          |||
 893 *          ||+------ for non-relocatable IO: 1 if aliased
 894 *          ||        for relocatable IO: 1 if below 64KB
 895 *          ||        for MEM: 1 if below 1MB
 896 *          |+------- 1 if region is prefetchable
 897 *          +-------- 1 if region is non-relocatable
 898 *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
 899 *            bits respectively
 900 *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
 901 *          to the region
 902 *
 903 * phys.mid and phys.lo correspond respectively to the hi/lo portions
 904 * of the actual address of the region.
 905 *
 906 * how the phys-addr/size values are used differ slightly between
 907 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
 908 * an additional description for the config space region of the
 909 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
 910 * to describe the region as relocatable, with an address-mapping
 911 * that corresponds directly to the PHB's address space for the
 912 * resource. 'assigned-addresses' always has n=1 set with an absolute
 913 * address assigned for the resource. in general, 'assigned-addresses'
 914 * won't be populated, since addresses for PCI devices are generally
 915 * unmapped initially and left to the guest to assign.
 916 *
 917 * note also that addresses defined in these properties are, at least
 918 * for PAPR guests, relative to the PHBs IO/MEM windows, and
 919 * correspond directly to the addresses in the BARs.
 920 *
 921 * in accordance with PCI Bus Binding to Open Firmware,
 922 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
 923 * Appendix C.
 924 */
 925static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
 926{
 927    int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
 928    uint32_t dev_id = (b_bbbbbbbb(bus_num) |
 929                       b_ddddd(PCI_SLOT(d->devfn)) |
 930                       b_fff(PCI_FUNC(d->devfn)));
 931    ResourceFields *reg, *assigned;
 932    int i, reg_idx = 0, assigned_idx = 0;
 933
 934    /* config space region */
 935    reg = &rp->reg[reg_idx++];
 936    reg->phys_hi = cpu_to_be32(dev_id);
 937    reg->phys_mid = 0;
 938    reg->phys_lo = 0;
 939    reg->size_hi = 0;
 940    reg->size_lo = 0;
 941
 942    for (i = 0; i < PCI_NUM_REGIONS; i++) {
 943        if (!d->io_regions[i].size) {
 944            continue;
 945        }
 946
 947        reg = &rp->reg[reg_idx++];
 948
 949        reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
 950        if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
 951            reg->phys_hi |= cpu_to_be32(b_ss(1));
 952        } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
 953            reg->phys_hi |= cpu_to_be32(b_ss(3));
 954        } else {
 955            reg->phys_hi |= cpu_to_be32(b_ss(2));
 956        }
 957        reg->phys_mid = 0;
 958        reg->phys_lo = 0;
 959        reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
 960        reg->size_lo = cpu_to_be32(d->io_regions[i].size);
 961
 962        if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
 963            continue;
 964        }
 965
 966        assigned = &rp->assigned[assigned_idx++];
 967        assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
 968        assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
 969        assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
 970        assigned->size_hi = reg->size_hi;
 971        assigned->size_lo = reg->size_lo;
 972    }
 973
 974    rp->reg_len = reg_idx * sizeof(ResourceFields);
 975    rp->assigned_len = assigned_idx * sizeof(ResourceFields);
 976}
 977
 978typedef struct PCIClass PCIClass;
 979typedef struct PCISubClass PCISubClass;
 980typedef struct PCIIFace PCIIFace;
 981
 982struct PCIIFace {
 983    int iface;
 984    const char *name;
 985};
 986
 987struct PCISubClass {
 988    int subclass;
 989    const char *name;
 990    const PCIIFace *iface;
 991};
 992
 993struct PCIClass {
 994    const char *name;
 995    const PCISubClass *subc;
 996};
 997
 998static const PCISubClass undef_subclass[] = {
 999    { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
1000    { 0xFF, NULL, NULL },
1001};
1002
1003static const PCISubClass mass_subclass[] = {
1004    { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
1005    { PCI_CLASS_STORAGE_IDE, "ide", NULL },
1006    { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
1007    { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
1008    { PCI_CLASS_STORAGE_RAID, "raid", NULL },
1009    { PCI_CLASS_STORAGE_ATA, "ata", NULL },
1010    { PCI_CLASS_STORAGE_SATA, "sata", NULL },
1011    { PCI_CLASS_STORAGE_SAS, "sas", NULL },
1012    { 0xFF, NULL, NULL },
1013};
1014
1015static const PCISubClass net_subclass[] = {
1016    { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1017    { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1018    { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1019    { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1020    { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1021    { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1022    { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1023    { 0xFF, NULL, NULL },
1024};
1025
1026static const PCISubClass displ_subclass[] = {
1027    { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1028    { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1029    { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1030    { 0xFF, NULL, NULL },
1031};
1032
1033static const PCISubClass media_subclass[] = {
1034    { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1035    { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1036    { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1037    { 0xFF, NULL, NULL },
1038};
1039
1040static const PCISubClass mem_subclass[] = {
1041    { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1042    { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1043    { 0xFF, NULL, NULL },
1044};
1045
1046static const PCISubClass bridg_subclass[] = {
1047    { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1048    { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1049    { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1050    { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1051    { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1052    { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1053    { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1054    { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1055    { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1056    { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1057    { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1058    { 0xFF, NULL, NULL },
1059};
1060
1061static const PCISubClass comm_subclass[] = {
1062    { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1063    { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1064    { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1065    { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1066    { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1067    { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1068    { 0xFF, NULL, NULL, },
1069};
1070
1071static const PCIIFace pic_iface[] = {
1072    { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1073    { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1074    { 0xFF, NULL },
1075};
1076
1077static const PCISubClass sys_subclass[] = {
1078    { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1079    { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1080    { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1081    { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1082    { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1083    { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1084    { 0xFF, NULL, NULL },
1085};
1086
1087static const PCISubClass inp_subclass[] = {
1088    { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1089    { PCI_CLASS_INPUT_PEN, "pen", NULL },
1090    { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1091    { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1092    { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1093    { 0xFF, NULL, NULL },
1094};
1095
1096static const PCISubClass dock_subclass[] = {
1097    { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1098    { 0xFF, NULL, NULL },
1099};
1100
1101static const PCISubClass cpu_subclass[] = {
1102    { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1103    { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1104    { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1105    { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1106    { 0xFF, NULL, NULL },
1107};
1108
1109static const PCIIFace usb_iface[] = {
1110    { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1111    { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1112    { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1113    { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1114    { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1115    { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1116    { 0xFF, NULL },
1117};
1118
1119static const PCISubClass ser_subclass[] = {
1120    { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1121    { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1122    { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1123    { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1124    { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1125    { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1126    { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1127    { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1128    { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1129    { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1130    { 0xFF, NULL, NULL },
1131};
1132
1133static const PCISubClass wrl_subclass[] = {
1134    { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1135    { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1136    { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1137    { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1138    { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1139    { 0xFF, NULL, NULL },
1140};
1141
1142static const PCISubClass sat_subclass[] = {
1143    { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1144    { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1145    { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1146    { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1147    { 0xFF, NULL, NULL },
1148};
1149
1150static const PCISubClass crypt_subclass[] = {
1151    { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1152    { PCI_CLASS_CRYPT_ENTERTAINMENT,
1153      "entertainment-encryption", NULL },
1154    { 0xFF, NULL, NULL },
1155};
1156
1157static const PCISubClass spc_subclass[] = {
1158    { PCI_CLASS_SP_DPIO, "dpio", NULL },
1159    { PCI_CLASS_SP_PERF, "counter", NULL },
1160    { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1161    { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1162    { 0xFF, NULL, NULL },
1163};
1164
1165static const PCIClass pci_classes[] = {
1166    { "legacy-device", undef_subclass },
1167    { "mass-storage",  mass_subclass },
1168    { "network", net_subclass },
1169    { "display", displ_subclass, },
1170    { "multimedia-device", media_subclass },
1171    { "memory-controller", mem_subclass },
1172    { "unknown-bridge", bridg_subclass },
1173    { "communication-controller", comm_subclass},
1174    { "system-peripheral", sys_subclass },
1175    { "input-controller", inp_subclass },
1176    { "docking-station", dock_subclass },
1177    { "cpu", cpu_subclass },
1178    { "serial-bus", ser_subclass },
1179    { "wireless-controller", wrl_subclass },
1180    { "intelligent-io", NULL },
1181    { "satellite-device", sat_subclass },
1182    { "encryption", crypt_subclass },
1183    { "data-processing-controller", spc_subclass },
1184};
1185
1186static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1187                                        uint8_t iface)
1188{
1189    const PCIClass *pclass;
1190    const PCISubClass *psubclass;
1191    const PCIIFace *piface;
1192    const char *name;
1193
1194    if (class >= ARRAY_SIZE(pci_classes)) {
1195        return "pci";
1196    }
1197
1198    pclass = pci_classes + class;
1199    name = pclass->name;
1200
1201    if (pclass->subc == NULL) {
1202        return name;
1203    }
1204
1205    psubclass = pclass->subc;
1206    while ((psubclass->subclass & 0xff) != 0xff) {
1207        if ((psubclass->subclass & 0xff) == subclass) {
1208            name = psubclass->name;
1209            break;
1210        }
1211        psubclass++;
1212    }
1213
1214    piface = psubclass->iface;
1215    if (piface == NULL) {
1216        return name;
1217    }
1218    while ((piface->iface & 0xff) != 0xff) {
1219        if ((piface->iface & 0xff) == iface) {
1220            name = piface->name;
1221            break;
1222        }
1223        piface++;
1224    }
1225
1226    return name;
1227}
1228
1229static gchar *pci_get_node_name(PCIDevice *dev)
1230{
1231    int slot = PCI_SLOT(dev->devfn);
1232    int func = PCI_FUNC(dev->devfn);
1233    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1234    const char *name;
1235
1236    name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1237                                ccode & 0xff);
1238
1239    if (func != 0) {
1240        return g_strdup_printf("%s@%x,%x", name, slot, func);
1241    } else {
1242        return g_strdup_printf("%s@%x", name, slot);
1243    }
1244}
1245
1246static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1247                                            PCIDevice *pdev);
1248
1249static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1250                                       sPAPRPHBState *sphb)
1251{
1252    ResourceProps rp;
1253    bool is_bridge = false;
1254    int pci_status;
1255    char *buf = NULL;
1256    uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1257    uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1258    uint32_t max_msi, max_msix;
1259
1260    if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1261        PCI_HEADER_TYPE_BRIDGE) {
1262        is_bridge = true;
1263    }
1264
1265    /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1266    _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1267                          pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1268    _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1269                          pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1270    _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1271                          pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1272    _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1273    if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1274        _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1275                 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1276    }
1277
1278    if (!is_bridge) {
1279        _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1280            pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1281        _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1282            pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1283    }
1284
1285    if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1286        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1287                 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1288    }
1289
1290    if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1291        _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1292                 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1293    }
1294
1295    _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1296        pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1297
1298    /* the following fdt cells are masked off the pci status register */
1299    pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1300    _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1301                          PCI_STATUS_DEVSEL_MASK & pci_status));
1302
1303    if (pci_status & PCI_STATUS_FAST_BACK) {
1304        _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1305    }
1306    if (pci_status & PCI_STATUS_66MHZ) {
1307        _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1308    }
1309    if (pci_status & PCI_STATUS_UDF) {
1310        _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1311    }
1312
1313    _FDT(fdt_setprop_string(fdt, offset, "name",
1314                            pci_find_device_name((ccode >> 16) & 0xff,
1315                                                 (ccode >> 8) & 0xff,
1316                                                 ccode & 0xff)));
1317
1318    buf = spapr_phb_get_loc_code(sphb, dev);
1319    _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1320    g_free(buf);
1321
1322    if (drc_index) {
1323        _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1324    }
1325
1326    _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1327                          RESOURCE_CELLS_ADDRESS));
1328    _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1329                          RESOURCE_CELLS_SIZE));
1330
1331    if (msi_present(dev)) {
1332        max_msi = msi_nr_vectors_allocated(dev);
1333        if (max_msi) {
1334            _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1335        }
1336    }
1337    if (msix_present(dev)) {
1338        max_msix = dev->msix_entries_nr;
1339        if (max_msix) {
1340            _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1341        }
1342    }
1343
1344    populate_resource_props(dev, &rp);
1345    _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1346    _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1347                     (uint8_t *)rp.assigned, rp.assigned_len));
1348
1349    if (sphb->pcie_ecs && pci_is_express(dev)) {
1350        _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1351    }
1352}
1353
1354/* create OF node for pci device and required OF DT properties */
1355static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1356                                     void *fdt, int node_offset)
1357{
1358    int offset;
1359    gchar *nodename;
1360
1361    nodename = pci_get_node_name(dev);
1362    _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1363    g_free(nodename);
1364
1365    spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1366
1367    return offset;
1368}
1369
1370/* Callback to be called during DRC release. */
1371void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1372{
1373    /* some version guests do not wait for completion of a device
1374     * cleanup (generally done asynchronously by the kernel) before
1375     * signaling to QEMU that the device is safe, but instead sleep
1376     * for some 'safe' period of time. unfortunately on a busy host
1377     * this sleep isn't guaranteed to be long enough, resulting in
1378     * bad things like IRQ lines being left asserted during final
1379     * device removal. to deal with this we call reset just prior
1380     * to finalizing the device, which will put the device back into
1381     * an 'idle' state, as the device cleanup code expects.
1382     */
1383    pci_device_reset(PCI_DEVICE(dev));
1384    object_unparent(OBJECT(dev));
1385}
1386
1387static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1388                                                    uint32_t busnr,
1389                                                    int32_t devfn)
1390{
1391    return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1392                           (phb->index << 16) | (busnr << 8) | devfn);
1393}
1394
1395static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1396                                               PCIDevice *pdev)
1397{
1398    uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1399    return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1400}
1401
1402static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1403                                            PCIDevice *pdev)
1404{
1405    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1406
1407    if (!drc) {
1408        return 0;
1409    }
1410
1411    return spapr_drc_index(drc);
1412}
1413
1414static void spapr_pci_plug(HotplugHandler *plug_handler,
1415                           DeviceState *plugged_dev, Error **errp)
1416{
1417    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1418    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1419    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1420    Error *local_err = NULL;
1421    PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1422    uint32_t slotnr = PCI_SLOT(pdev->devfn);
1423    void *fdt = NULL;
1424    int fdt_start_offset, fdt_size;
1425
1426    /* if DR is disabled we don't need to do anything in the case of
1427     * hotplug or coldplug callbacks
1428     */
1429    if (!phb->dr_enabled) {
1430        /* if this is a hotplug operation initiated by the user
1431         * we need to let them know it's not enabled
1432         */
1433        if (plugged_dev->hotplugged) {
1434            error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1435                       object_get_typename(OBJECT(phb)));
1436        }
1437        goto out;
1438    }
1439
1440    g_assert(drc);
1441
1442    /* Following the QEMU convention used for PCIe multifunction
1443     * hotplug, we do not allow functions to be hotplugged to a
1444     * slot that already has function 0 present
1445     */
1446    if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1447        PCI_FUNC(pdev->devfn) != 0) {
1448        error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1449                   " additional functions can no longer be exposed to guest.",
1450                   slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1451        goto out;
1452    }
1453
1454    fdt = create_device_tree(&fdt_size);
1455    fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1456
1457    spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1458    if (local_err) {
1459        goto out;
1460    }
1461
1462    /* If this is function 0, signal hotplug for all the device functions.
1463     * Otherwise defer sending the hotplug event.
1464     */
1465    if (!spapr_drc_hotplugged(plugged_dev)) {
1466        spapr_drc_reset(drc);
1467    } else if (PCI_FUNC(pdev->devfn) == 0) {
1468        int i;
1469
1470        for (i = 0; i < 8; i++) {
1471            sPAPRDRConnector *func_drc;
1472            sPAPRDRConnectorClass *func_drck;
1473            sPAPRDREntitySense state;
1474
1475            func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1476                                                  PCI_DEVFN(slotnr, i));
1477            func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1478            state = func_drck->dr_entity_sense(func_drc);
1479
1480            if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1481                spapr_hotplug_req_add_by_index(func_drc);
1482            }
1483        }
1484    }
1485
1486out:
1487    if (local_err) {
1488        error_propagate(errp, local_err);
1489        g_free(fdt);
1490    }
1491}
1492
1493static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1494                                     DeviceState *plugged_dev, Error **errp)
1495{
1496    sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1497    PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1498    sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1499
1500    if (!phb->dr_enabled) {
1501        error_setg(errp, QERR_BUS_NO_HOTPLUG,
1502                   object_get_typename(OBJECT(phb)));
1503        return;
1504    }
1505
1506    g_assert(drc);
1507    g_assert(drc->dev == plugged_dev);
1508
1509    if (!spapr_drc_unplug_requested(drc)) {
1510        PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1511        uint32_t slotnr = PCI_SLOT(pdev->devfn);
1512        sPAPRDRConnector *func_drc;
1513        sPAPRDRConnectorClass *func_drck;
1514        sPAPRDREntitySense state;
1515        int i;
1516
1517        /* ensure any other present functions are pending unplug */
1518        if (PCI_FUNC(pdev->devfn) == 0) {
1519            for (i = 1; i < 8; i++) {
1520                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1521                                                      PCI_DEVFN(slotnr, i));
1522                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1523                state = func_drck->dr_entity_sense(func_drc);
1524                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1525                    && !spapr_drc_unplug_requested(func_drc)) {
1526                    error_setg(errp,
1527                               "PCI: slot %d, function %d still present. "
1528                               "Must unplug all non-0 functions first.",
1529                               slotnr, i);
1530                    return;
1531                }
1532            }
1533        }
1534
1535        spapr_drc_detach(drc);
1536
1537        /* if this isn't func 0, defer unplug event. otherwise signal removal
1538         * for all present functions
1539         */
1540        if (PCI_FUNC(pdev->devfn) == 0) {
1541            for (i = 7; i >= 0; i--) {
1542                func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1543                                                      PCI_DEVFN(slotnr, i));
1544                func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1545                state = func_drck->dr_entity_sense(func_drc);
1546                if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1547                    spapr_hotplug_req_remove_by_index(func_drc);
1548                }
1549            }
1550        }
1551    }
1552}
1553
1554static void spapr_phb_realize(DeviceState *dev, Error **errp)
1555{
1556    /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1557     * tries to add a sPAPR PHB to a non-pseries machine.
1558     */
1559    sPAPRMachineState *spapr =
1560        (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1561                                                  TYPE_SPAPR_MACHINE);
1562    sPAPRMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1563    SysBusDevice *s = SYS_BUS_DEVICE(dev);
1564    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1565    PCIHostState *phb = PCI_HOST_BRIDGE(s);
1566    char *namebuf;
1567    int i;
1568    PCIBus *bus;
1569    uint64_t msi_window_size = 4096;
1570    sPAPRTCETable *tcet;
1571    const unsigned windows_supported =
1572        sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1573
1574    if (!spapr) {
1575        error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1576        return;
1577    }
1578
1579    if (sphb->index != (uint32_t)-1) {
1580        Error *local_err = NULL;
1581
1582        smc->phb_placement(spapr, sphb->index,
1583                           &sphb->buid, &sphb->io_win_addr,
1584                           &sphb->mem_win_addr, &sphb->mem64_win_addr,
1585                           windows_supported, sphb->dma_liobn, &local_err);
1586        if (local_err) {
1587            error_propagate(errp, local_err);
1588            return;
1589        }
1590    } else {
1591        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1592        return;
1593    }
1594
1595    if (sphb->mem64_win_size != 0) {
1596        if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1597            error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1598                       " (max 2 GiB)", sphb->mem_win_size);
1599            return;
1600        }
1601
1602        /* 64-bit window defaults to identity mapping */
1603        sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1604    } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1605        /*
1606         * For compatibility with old configuration, if no 64-bit MMIO
1607         * window is specified, but the ordinary (32-bit) memory
1608         * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1609         * window, with a 64-bit MMIO window following on immediately
1610         * afterwards
1611         */
1612        sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1613        sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1614        sphb->mem64_win_pciaddr =
1615            SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1616        sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1617    }
1618
1619    if (spapr_pci_find_phb(spapr, sphb->buid)) {
1620        error_setg(errp, "PCI host bridges must have unique BUIDs");
1621        return;
1622    }
1623
1624    if (sphb->numa_node != -1 &&
1625        (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1626        error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1627        return;
1628    }
1629
1630    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1631
1632    /* Initialize memory regions */
1633    namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1634    memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1635    g_free(namebuf);
1636
1637    namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1638    memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1639                             namebuf, &sphb->memspace,
1640                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1641    g_free(namebuf);
1642    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1643                                &sphb->mem32window);
1644
1645    if (sphb->mem64_win_size != 0) {
1646        namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1647        memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1648                                 namebuf, &sphb->memspace,
1649                                 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1650        g_free(namebuf);
1651
1652        memory_region_add_subregion(get_system_memory(),
1653                                    sphb->mem64_win_addr,
1654                                    &sphb->mem64window);
1655    }
1656
1657    /* Initialize IO regions */
1658    namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1659    memory_region_init(&sphb->iospace, OBJECT(sphb),
1660                       namebuf, SPAPR_PCI_IO_WIN_SIZE);
1661    g_free(namebuf);
1662
1663    namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1664    memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1665                             &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1666    g_free(namebuf);
1667    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1668                                &sphb->iowindow);
1669
1670    bus = pci_register_root_bus(dev, NULL,
1671                                pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1672                                &sphb->memspace, &sphb->iospace,
1673                                PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1674    phb->bus = bus;
1675    qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1676
1677    /*
1678     * Initialize PHB address space.
1679     * By default there will be at least one subregion for default
1680     * 32bit DMA window.
1681     * Later the guest might want to create another DMA window
1682     * which will become another memory subregion.
1683     */
1684    namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1685    memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1686                       namebuf, UINT64_MAX);
1687    g_free(namebuf);
1688    address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1689                       sphb->dtbusname);
1690
1691    /*
1692     * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1693     * we need to allocate some memory to catch those writes coming
1694     * from msi_notify()/msix_notify().
1695     * As MSIMessage:addr is going to be the same and MSIMessage:data
1696     * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1697     * be used.
1698     *
1699     * For KVM we want to ensure that this memory is a full page so that
1700     * our memory slot is of page size granularity.
1701     */
1702#ifdef CONFIG_KVM
1703    if (kvm_enabled()) {
1704        msi_window_size = getpagesize();
1705    }
1706#endif
1707
1708    memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1709                          "msi", msi_window_size);
1710    memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1711                                &sphb->msiwindow);
1712
1713    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1714
1715    pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1716
1717    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1718
1719    /* Initialize the LSI table */
1720    for (i = 0; i < PCI_NUM_PINS; i++) {
1721        uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1722        Error *local_err = NULL;
1723
1724        if (smc->legacy_irq_allocation) {
1725            irq = spapr_irq_findone(spapr, &local_err);
1726            if (local_err) {
1727                error_propagate_prepend(errp, local_err,
1728                                        "can't allocate LSIs: ");
1729                return;
1730            }
1731        }
1732
1733        spapr_irq_claim(spapr, irq, true, &local_err);
1734        if (local_err) {
1735            error_propagate_prepend(errp, local_err, "can't allocate LSIs: ");
1736            return;
1737        }
1738
1739        sphb->lsi_table[i].irq = irq;
1740    }
1741
1742    /* allocate connectors for child PCI devices */
1743    if (sphb->dr_enabled) {
1744        for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1745            spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1746                                   (sphb->index << 16) | i);
1747        }
1748    }
1749
1750    /* DMA setup */
1751    for (i = 0; i < windows_supported; ++i) {
1752        tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1753        if (!tcet) {
1754            error_setg(errp, "Creating window#%d failed for %s",
1755                       i, sphb->dtbusname);
1756            return;
1757        }
1758        memory_region_add_subregion(&sphb->iommu_root, 0,
1759                                    spapr_tce_get_iommu(tcet));
1760    }
1761
1762    sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1763}
1764
1765static int spapr_phb_children_reset(Object *child, void *opaque)
1766{
1767    DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1768
1769    if (dev) {
1770        device_reset(dev);
1771    }
1772
1773    return 0;
1774}
1775
1776void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1777{
1778    int i;
1779    sPAPRTCETable *tcet;
1780
1781    for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1782        tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1783
1784        if (tcet && tcet->nb_table) {
1785            spapr_tce_table_disable(tcet);
1786        }
1787    }
1788
1789    /* Register default 32bit DMA window */
1790    tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1791    spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1792                           sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1793}
1794
1795static void spapr_phb_reset(DeviceState *qdev)
1796{
1797    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1798
1799    spapr_phb_dma_reset(sphb);
1800
1801    /* Reset the IOMMU state */
1802    object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1803
1804    if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1805        spapr_phb_vfio_reset(qdev);
1806    }
1807}
1808
1809static Property spapr_phb_properties[] = {
1810    DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1811    DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1812                       SPAPR_PCI_MEM32_WIN_SIZE),
1813    DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1814                       SPAPR_PCI_MEM64_WIN_SIZE),
1815    DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1816                       SPAPR_PCI_IO_WIN_SIZE),
1817    DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1818                     true),
1819    /* Default DMA window is 0..1GB */
1820    DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1821    DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1822    DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1823                       0x800000000000000ULL),
1824    DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1825    DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1826                       (1ULL << 12) | (1ULL << 16)),
1827    DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1828    DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1829                     pre_2_8_migration, false),
1830    DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1831                     pcie_ecs, true),
1832    DEFINE_PROP_END_OF_LIST(),
1833};
1834
1835static const VMStateDescription vmstate_spapr_pci_lsi = {
1836    .name = "spapr_pci/lsi",
1837    .version_id = 1,
1838    .minimum_version_id = 1,
1839    .fields = (VMStateField[]) {
1840        VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1841
1842        VMSTATE_END_OF_LIST()
1843    },
1844};
1845
1846static const VMStateDescription vmstate_spapr_pci_msi = {
1847    .name = "spapr_pci/msi",
1848    .version_id = 1,
1849    .minimum_version_id = 1,
1850    .fields = (VMStateField []) {
1851        VMSTATE_UINT32(key, spapr_pci_msi_mig),
1852        VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1853        VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1854        VMSTATE_END_OF_LIST()
1855    },
1856};
1857
1858static int spapr_pci_pre_save(void *opaque)
1859{
1860    sPAPRPHBState *sphb = opaque;
1861    GHashTableIter iter;
1862    gpointer key, value;
1863    int i;
1864
1865    if (sphb->pre_2_8_migration) {
1866        sphb->mig_liobn = sphb->dma_liobn[0];
1867        sphb->mig_mem_win_addr = sphb->mem_win_addr;
1868        sphb->mig_mem_win_size = sphb->mem_win_size;
1869        sphb->mig_io_win_addr = sphb->io_win_addr;
1870        sphb->mig_io_win_size = sphb->io_win_size;
1871
1872        if ((sphb->mem64_win_size != 0)
1873            && (sphb->mem64_win_addr
1874                == (sphb->mem_win_addr + sphb->mem_win_size))) {
1875            sphb->mig_mem_win_size += sphb->mem64_win_size;
1876        }
1877    }
1878
1879    g_free(sphb->msi_devs);
1880    sphb->msi_devs = NULL;
1881    sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1882    if (!sphb->msi_devs_num) {
1883        return 0;
1884    }
1885    sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num);
1886
1887    g_hash_table_iter_init(&iter, sphb->msi);
1888    for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1889        sphb->msi_devs[i].key = *(uint32_t *) key;
1890        sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1891    }
1892
1893    return 0;
1894}
1895
1896static int spapr_pci_post_load(void *opaque, int version_id)
1897{
1898    sPAPRPHBState *sphb = opaque;
1899    gpointer key, value;
1900    int i;
1901
1902    for (i = 0; i < sphb->msi_devs_num; ++i) {
1903        key = g_memdup(&sphb->msi_devs[i].key,
1904                       sizeof(sphb->msi_devs[i].key));
1905        value = g_memdup(&sphb->msi_devs[i].value,
1906                         sizeof(sphb->msi_devs[i].value));
1907        g_hash_table_insert(sphb->msi, key, value);
1908    }
1909    g_free(sphb->msi_devs);
1910    sphb->msi_devs = NULL;
1911    sphb->msi_devs_num = 0;
1912
1913    return 0;
1914}
1915
1916static bool pre_2_8_migration(void *opaque, int version_id)
1917{
1918    sPAPRPHBState *sphb = opaque;
1919
1920    return sphb->pre_2_8_migration;
1921}
1922
1923static const VMStateDescription vmstate_spapr_pci = {
1924    .name = "spapr_pci",
1925    .version_id = 2,
1926    .minimum_version_id = 2,
1927    .pre_save = spapr_pci_pre_save,
1928    .post_load = spapr_pci_post_load,
1929    .fields = (VMStateField[]) {
1930        VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1931        VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1932        VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1933        VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1934        VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1935        VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1936        VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1937                             vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1938        VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1939        VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1940                                    vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1941        VMSTATE_END_OF_LIST()
1942    },
1943};
1944
1945static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1946                                           PCIBus *rootbus)
1947{
1948    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1949
1950    return sphb->dtbusname;
1951}
1952
1953static void spapr_phb_class_init(ObjectClass *klass, void *data)
1954{
1955    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1956    DeviceClass *dc = DEVICE_CLASS(klass);
1957    HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1958
1959    hc->root_bus_path = spapr_phb_root_bus_path;
1960    dc->realize = spapr_phb_realize;
1961    dc->props = spapr_phb_properties;
1962    dc->reset = spapr_phb_reset;
1963    dc->vmsd = &vmstate_spapr_pci;
1964    /* Supported by TYPE_SPAPR_MACHINE */
1965    dc->user_creatable = true;
1966    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1967    hp->plug = spapr_pci_plug;
1968    hp->unplug_request = spapr_pci_unplug_request;
1969}
1970
1971static const TypeInfo spapr_phb_info = {
1972    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1973    .parent        = TYPE_PCI_HOST_BRIDGE,
1974    .instance_size = sizeof(sPAPRPHBState),
1975    .class_init    = spapr_phb_class_init,
1976    .interfaces    = (InterfaceInfo[]) {
1977        { TYPE_HOTPLUG_HANDLER },
1978        { }
1979    }
1980};
1981
1982PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1983{
1984    DeviceState *dev;
1985
1986    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1987    qdev_prop_set_uint32(dev, "index", index);
1988    qdev_init_nofail(dev);
1989
1990    return PCI_HOST_BRIDGE(dev);
1991}
1992
1993typedef struct sPAPRFDT {
1994    void *fdt;
1995    int node_off;
1996    sPAPRPHBState *sphb;
1997} sPAPRFDT;
1998
1999static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
2000                                          void *opaque)
2001{
2002    PCIBus *sec_bus;
2003    sPAPRFDT *p = opaque;
2004    int offset;
2005    sPAPRFDT s_fdt;
2006
2007    offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
2008    if (!offset) {
2009        error_report("Failed to create pci child device tree node");
2010        return;
2011    }
2012
2013    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2014         PCI_HEADER_TYPE_BRIDGE)) {
2015        return;
2016    }
2017
2018    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2019    if (!sec_bus) {
2020        return;
2021    }
2022
2023    s_fdt.fdt = p->fdt;
2024    s_fdt.node_off = offset;
2025    s_fdt.sphb = p->sphb;
2026    pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2027                                spapr_populate_pci_devices_dt,
2028                                &s_fdt);
2029}
2030
2031static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2032                                           void *opaque)
2033{
2034    unsigned int *bus_no = opaque;
2035    unsigned int primary = *bus_no;
2036    unsigned int subordinate = 0xff;
2037    PCIBus *sec_bus = NULL;
2038
2039    if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2040         PCI_HEADER_TYPE_BRIDGE)) {
2041        return;
2042    }
2043
2044    (*bus_no)++;
2045    pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2046    pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2047    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2048
2049    sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2050    if (!sec_bus) {
2051        return;
2052    }
2053
2054    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2055    pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2056                        spapr_phb_pci_enumerate_bridge, bus_no);
2057    pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2058}
2059
2060static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2061{
2062    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2063    unsigned int bus_no = 0;
2064
2065    pci_for_each_device(bus, pci_bus_num(bus),
2066                        spapr_phb_pci_enumerate_bridge,
2067                        &bus_no);
2068
2069}
2070
2071int spapr_populate_pci_dt(sPAPRPHBState *phb, uint32_t xics_phandle, void *fdt,
2072                          uint32_t nr_msis)
2073{
2074    int bus_off, i, j, ret;
2075    gchar *nodename;
2076    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2077    struct {
2078        uint32_t hi;
2079        uint64_t child;
2080        uint64_t parent;
2081        uint64_t size;
2082    } QEMU_PACKED ranges[] = {
2083        {
2084            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2085            cpu_to_be64(phb->io_win_addr),
2086            cpu_to_be64(memory_region_size(&phb->iospace)),
2087        },
2088        {
2089            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2090            cpu_to_be64(phb->mem_win_addr),
2091            cpu_to_be64(phb->mem_win_size),
2092        },
2093        {
2094            cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2095            cpu_to_be64(phb->mem64_win_addr),
2096            cpu_to_be64(phb->mem64_win_size),
2097        },
2098    };
2099    const unsigned sizeof_ranges =
2100        (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2101    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2102    uint32_t interrupt_map_mask[] = {
2103        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2104    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2105    uint32_t ddw_applicable[] = {
2106        cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2107        cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2108        cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2109    };
2110    uint32_t ddw_extensions[] = {
2111        cpu_to_be32(1),
2112        cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2113    };
2114    uint32_t associativity[] = {cpu_to_be32(0x4),
2115                                cpu_to_be32(0x0),
2116                                cpu_to_be32(0x0),
2117                                cpu_to_be32(0x0),
2118                                cpu_to_be32(phb->numa_node)};
2119    sPAPRTCETable *tcet;
2120    PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2121    sPAPRFDT s_fdt;
2122
2123    /* Start populating the FDT */
2124    nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2125    _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2126    g_free(nodename);
2127
2128    /* Write PHB properties */
2129    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2130    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2131    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2132    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2133    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2134    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2135    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2136    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2137    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2138    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2139    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis));
2140
2141    /* Dynamic DMA window */
2142    if (phb->ddw_enabled) {
2143        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2144                         sizeof(ddw_applicable)));
2145        _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2146                         &ddw_extensions, sizeof(ddw_extensions)));
2147    }
2148
2149    /* Advertise NUMA via ibm,associativity */
2150    if (phb->numa_node != -1) {
2151        _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2152                         sizeof(associativity)));
2153    }
2154
2155    /* Build the interrupt-map, this must matches what is done
2156     * in pci_spapr_map_irq
2157     */
2158    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2159                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
2160    for (i = 0; i < PCI_SLOT_MAX; i++) {
2161        for (j = 0; j < PCI_NUM_PINS; j++) {
2162            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2163            int lsi_num = pci_spapr_swizzle(i, j);
2164
2165            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2166            irqmap[1] = 0;
2167            irqmap[2] = 0;
2168            irqmap[3] = cpu_to_be32(j+1);
2169            irqmap[4] = cpu_to_be32(xics_phandle);
2170            spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2171        }
2172    }
2173    /* Write interrupt map */
2174    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2175                     sizeof(interrupt_map)));
2176
2177    tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2178    if (!tcet) {
2179        return -1;
2180    }
2181    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2182                 tcet->liobn, tcet->bus_offset,
2183                 tcet->nb_table << tcet->page_shift);
2184
2185    /* Walk the bridges and program the bus numbers*/
2186    spapr_phb_pci_enumerate(phb);
2187    _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2188
2189    /* Populate tree nodes with PCI devices attached */
2190    s_fdt.fdt = fdt;
2191    s_fdt.node_off = bus_off;
2192    s_fdt.sphb = phb;
2193    pci_for_each_device_reverse(bus, pci_bus_num(bus),
2194                                spapr_populate_pci_devices_dt,
2195                                &s_fdt);
2196
2197    ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2198                                SPAPR_DR_CONNECTOR_TYPE_PCI);
2199    if (ret) {
2200        return ret;
2201    }
2202
2203    return 0;
2204}
2205
2206void spapr_pci_rtas_init(void)
2207{
2208    spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2209                        rtas_read_pci_config);
2210    spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2211                        rtas_write_pci_config);
2212    spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2213                        rtas_ibm_read_pci_config);
2214    spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2215                        rtas_ibm_write_pci_config);
2216    if (msi_nonbroken) {
2217        spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2218                            "ibm,query-interrupt-source-number",
2219                            rtas_ibm_query_interrupt_source_number);
2220        spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2221                            rtas_ibm_change_msi);
2222    }
2223
2224    spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2225                        "ibm,set-eeh-option",
2226                        rtas_ibm_set_eeh_option);
2227    spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2228                        "ibm,get-config-addr-info2",
2229                        rtas_ibm_get_config_addr_info2);
2230    spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2231                        "ibm,read-slot-reset-state2",
2232                        rtas_ibm_read_slot_reset_state2);
2233    spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2234                        "ibm,set-slot-reset",
2235                        rtas_ibm_set_slot_reset);
2236    spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2237                        "ibm,configure-pe",
2238                        rtas_ibm_configure_pe);
2239    spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2240                        "ibm,slot-error-detail",
2241                        rtas_ibm_slot_error_detail);
2242}
2243
2244static void spapr_pci_register_types(void)
2245{
2246    type_register_static(&spapr_phb_info);
2247}
2248
2249type_init(spapr_pci_register_types)
2250
2251static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2252{
2253    bool be = *(bool *)opaque;
2254
2255    if (object_dynamic_cast(OBJECT(dev), "VGA")
2256        || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2257        object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2258                                 &error_abort);
2259    }
2260    return 0;
2261}
2262
2263void spapr_pci_switch_vga(bool big_endian)
2264{
2265    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2266    sPAPRPHBState *sphb;
2267
2268    /*
2269     * For backward compatibility with existing guests, we switch
2270     * the endianness of the VGA controller when changing the guest
2271     * interrupt mode
2272     */
2273    QLIST_FOREACH(sphb, &spapr->phbs, list) {
2274        BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2275        qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2276                           &big_endian);
2277    }
2278}
2279