qemu/hw/vfio/pci-quirks.c
<<
>>
Prefs
   1/*
   2 * device quirks for PCI devices
   3 *
   4 * Copyright Red Hat, Inc. 2012-2015
   5 *
   6 * Authors:
   7 *  Alex Williamson <alex.williamson@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qemu/units.h"
  15#include "qemu/error-report.h"
  16#include "qemu/main-loop.h"
  17#include "qemu/range.h"
  18#include "qapi/error.h"
  19#include "qapi/visitor.h"
  20#include <sys/ioctl.h>
  21#include "hw/nvram/fw_cfg.h"
  22#include "pci.h"
  23#include "trace.h"
  24
  25/* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
  26static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
  27{
  28    return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
  29           (device == PCI_ANY_ID || device == vdev->device_id);
  30}
  31
  32static bool vfio_is_vga(VFIOPCIDevice *vdev)
  33{
  34    PCIDevice *pdev = &vdev->pdev;
  35    uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
  36
  37    return class == PCI_CLASS_DISPLAY_VGA;
  38}
  39
  40/*
  41 * List of device ids/vendor ids for which to disable
  42 * option rom loading. This avoids the guest hangs during rom
  43 * execution as noticed with the BCM 57810 card for lack of a
  44 * more better way to handle such issues.
  45 * The  user can still override by specifying a romfile or
  46 * rombar=1.
  47 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
  48 * for an analysis of the 57810 card hang. When adding
  49 * a new vendor id/device id combination below, please also add
  50 * your card/environment details and information that could
  51 * help in debugging to the bug tracking this issue
  52 */
  53static const struct {
  54    uint32_t vendor;
  55    uint32_t device;
  56} romblacklist[] = {
  57    { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
  58};
  59
  60bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
  61{
  62    int i;
  63
  64    for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
  65        if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
  66            trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
  67                                             romblacklist[i].vendor,
  68                                             romblacklist[i].device);
  69            return true;
  70        }
  71    }
  72    return false;
  73}
  74
  75/*
  76 * Device specific region quirks (mostly backdoors to PCI config space)
  77 */
  78
  79/*
  80 * The generic window quirks operate on an address and data register,
  81 * vfio_generic_window_address_quirk handles the address register and
  82 * vfio_generic_window_data_quirk handles the data register.  These ops
  83 * pass reads and writes through to hardware until a value matching the
  84 * stored address match/mask is written.  When this occurs, the data
  85 * register access emulated PCI config space for the device rather than
  86 * passing through accesses.  This enables devices where PCI config space
  87 * is accessible behind a window register to maintain the virtualization
  88 * provided through vfio.
  89 */
  90typedef struct VFIOConfigWindowMatch {
  91    uint32_t match;
  92    uint32_t mask;
  93} VFIOConfigWindowMatch;
  94
  95typedef struct VFIOConfigWindowQuirk {
  96    struct VFIOPCIDevice *vdev;
  97
  98    uint32_t address_val;
  99
 100    uint32_t address_offset;
 101    uint32_t data_offset;
 102
 103    bool window_enabled;
 104    uint8_t bar;
 105
 106    MemoryRegion *addr_mem;
 107    MemoryRegion *data_mem;
 108
 109    uint32_t nr_matches;
 110    VFIOConfigWindowMatch matches[];
 111} VFIOConfigWindowQuirk;
 112
 113static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
 114                                                       hwaddr addr,
 115                                                       unsigned size)
 116{
 117    VFIOConfigWindowQuirk *window = opaque;
 118    VFIOPCIDevice *vdev = window->vdev;
 119
 120    return vfio_region_read(&vdev->bars[window->bar].region,
 121                            addr + window->address_offset, size);
 122}
 123
 124static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
 125                                                    uint64_t data,
 126                                                    unsigned size)
 127{
 128    VFIOConfigWindowQuirk *window = opaque;
 129    VFIOPCIDevice *vdev = window->vdev;
 130    int i;
 131
 132    window->window_enabled = false;
 133
 134    vfio_region_write(&vdev->bars[window->bar].region,
 135                      addr + window->address_offset, data, size);
 136
 137    for (i = 0; i < window->nr_matches; i++) {
 138        if ((data & ~window->matches[i].mask) == window->matches[i].match) {
 139            window->window_enabled = true;
 140            window->address_val = data & window->matches[i].mask;
 141            trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
 142                                    memory_region_name(window->addr_mem), data);
 143            break;
 144        }
 145    }
 146}
 147
 148static const MemoryRegionOps vfio_generic_window_address_quirk = {
 149    .read = vfio_generic_window_quirk_address_read,
 150    .write = vfio_generic_window_quirk_address_write,
 151    .endianness = DEVICE_LITTLE_ENDIAN,
 152};
 153
 154static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
 155                                                    hwaddr addr, unsigned size)
 156{
 157    VFIOConfigWindowQuirk *window = opaque;
 158    VFIOPCIDevice *vdev = window->vdev;
 159    uint64_t data;
 160
 161    /* Always read data reg, discard if window enabled */
 162    data = vfio_region_read(&vdev->bars[window->bar].region,
 163                            addr + window->data_offset, size);
 164
 165    if (window->window_enabled) {
 166        data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
 167        trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
 168                                    memory_region_name(window->data_mem), data);
 169    }
 170
 171    return data;
 172}
 173
 174static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
 175                                                 uint64_t data, unsigned size)
 176{
 177    VFIOConfigWindowQuirk *window = opaque;
 178    VFIOPCIDevice *vdev = window->vdev;
 179
 180    if (window->window_enabled) {
 181        vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
 182        trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
 183                                    memory_region_name(window->data_mem), data);
 184        return;
 185    }
 186
 187    vfio_region_write(&vdev->bars[window->bar].region,
 188                      addr + window->data_offset, data, size);
 189}
 190
 191static const MemoryRegionOps vfio_generic_window_data_quirk = {
 192    .read = vfio_generic_window_quirk_data_read,
 193    .write = vfio_generic_window_quirk_data_write,
 194    .endianness = DEVICE_LITTLE_ENDIAN,
 195};
 196
 197/*
 198 * The generic mirror quirk handles devices which expose PCI config space
 199 * through a region within a BAR.  When enabled, reads and writes are
 200 * redirected through to emulated PCI config space.  XXX if PCI config space
 201 * used memory regions, this could just be an alias.
 202 */
 203typedef struct VFIOConfigMirrorQuirk {
 204    struct VFIOPCIDevice *vdev;
 205    uint32_t offset;
 206    uint8_t bar;
 207    MemoryRegion *mem;
 208    uint8_t data[];
 209} VFIOConfigMirrorQuirk;
 210
 211static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
 212                                               hwaddr addr, unsigned size)
 213{
 214    VFIOConfigMirrorQuirk *mirror = opaque;
 215    VFIOPCIDevice *vdev = mirror->vdev;
 216    uint64_t data;
 217
 218    /* Read and discard in case the hardware cares */
 219    (void)vfio_region_read(&vdev->bars[mirror->bar].region,
 220                           addr + mirror->offset, size);
 221
 222    data = vfio_pci_read_config(&vdev->pdev, addr, size);
 223    trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
 224                                         memory_region_name(mirror->mem),
 225                                         addr, data);
 226    return data;
 227}
 228
 229static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
 230                                            uint64_t data, unsigned size)
 231{
 232    VFIOConfigMirrorQuirk *mirror = opaque;
 233    VFIOPCIDevice *vdev = mirror->vdev;
 234
 235    vfio_pci_write_config(&vdev->pdev, addr, data, size);
 236    trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
 237                                          memory_region_name(mirror->mem),
 238                                          addr, data);
 239}
 240
 241static const MemoryRegionOps vfio_generic_mirror_quirk = {
 242    .read = vfio_generic_quirk_mirror_read,
 243    .write = vfio_generic_quirk_mirror_write,
 244    .endianness = DEVICE_LITTLE_ENDIAN,
 245};
 246
 247/* Is range1 fully contained within range2?  */
 248static bool vfio_range_contained(uint64_t first1, uint64_t len1,
 249                                 uint64_t first2, uint64_t len2) {
 250    return (first1 >= first2 && first1 + len1 <= first2 + len2);
 251}
 252
 253#define PCI_VENDOR_ID_ATI               0x1002
 254
 255/*
 256 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
 257 * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
 258 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
 259 * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
 260 * I/O port BAR address.  Originally this was coded to return the virtual BAR
 261 * address only if the physical register read returns the actual BAR address,
 262 * but users have reported greater success if we return the virtual address
 263 * unconditionally.
 264 */
 265static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
 266                                        hwaddr addr, unsigned size)
 267{
 268    VFIOPCIDevice *vdev = opaque;
 269    uint64_t data = vfio_pci_read_config(&vdev->pdev,
 270                                         PCI_BASE_ADDRESS_4 + 1, size);
 271
 272    trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
 273
 274    return data;
 275}
 276
 277static const MemoryRegionOps vfio_ati_3c3_quirk = {
 278    .read = vfio_ati_3c3_quirk_read,
 279    .endianness = DEVICE_LITTLE_ENDIAN,
 280};
 281
 282static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
 283{
 284    VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
 285    QLIST_INIT(&quirk->ioeventfds);
 286    quirk->mem = g_new0(MemoryRegion, nr_mem);
 287    quirk->nr_mem = nr_mem;
 288
 289    return quirk;
 290}
 291
 292static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
 293{
 294    QLIST_REMOVE(ioeventfd, next);
 295    memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
 296                              true, ioeventfd->data, &ioeventfd->e);
 297
 298    if (ioeventfd->vfio) {
 299        struct vfio_device_ioeventfd vfio_ioeventfd;
 300
 301        vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
 302        vfio_ioeventfd.flags = ioeventfd->size;
 303        vfio_ioeventfd.data = ioeventfd->data;
 304        vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
 305                                ioeventfd->region_addr;
 306        vfio_ioeventfd.fd = -1;
 307
 308        if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
 309            error_report("Failed to remove vfio ioeventfd for %s+0x%"
 310                         HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
 311                         memory_region_name(ioeventfd->mr), ioeventfd->addr,
 312                         ioeventfd->size, ioeventfd->data);
 313        }
 314    } else {
 315        qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
 316                            NULL, NULL, NULL);
 317    }
 318
 319    event_notifier_cleanup(&ioeventfd->e);
 320    trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
 321                              (uint64_t)ioeventfd->addr, ioeventfd->size,
 322                              ioeventfd->data);
 323    g_free(ioeventfd);
 324}
 325
 326static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
 327{
 328    VFIOIOEventFD *ioeventfd, *tmp;
 329
 330    QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
 331        if (ioeventfd->dynamic) {
 332            vfio_ioeventfd_exit(vdev, ioeventfd);
 333        }
 334    }
 335}
 336
 337static void vfio_ioeventfd_handler(void *opaque)
 338{
 339    VFIOIOEventFD *ioeventfd = opaque;
 340
 341    if (event_notifier_test_and_clear(&ioeventfd->e)) {
 342        vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
 343                          ioeventfd->data, ioeventfd->size);
 344        trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
 345                                     (uint64_t)ioeventfd->addr, ioeventfd->size,
 346                                     ioeventfd->data);
 347    }
 348}
 349
 350static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
 351                                          MemoryRegion *mr, hwaddr addr,
 352                                          unsigned size, uint64_t data,
 353                                          VFIORegion *region,
 354                                          hwaddr region_addr, bool dynamic)
 355{
 356    VFIOIOEventFD *ioeventfd;
 357
 358    if (vdev->no_kvm_ioeventfd) {
 359        return NULL;
 360    }
 361
 362    ioeventfd = g_malloc0(sizeof(*ioeventfd));
 363
 364    if (event_notifier_init(&ioeventfd->e, 0)) {
 365        g_free(ioeventfd);
 366        return NULL;
 367    }
 368
 369    /*
 370     * MemoryRegion and relative offset, plus additional ioeventfd setup
 371     * parameters for configuring and later tearing down KVM ioeventfd.
 372     */
 373    ioeventfd->mr = mr;
 374    ioeventfd->addr = addr;
 375    ioeventfd->size = size;
 376    ioeventfd->data = data;
 377    ioeventfd->dynamic = dynamic;
 378    /*
 379     * VFIORegion and relative offset for implementing the userspace
 380     * handler.  data & size fields shared for both uses.
 381     */
 382    ioeventfd->region = region;
 383    ioeventfd->region_addr = region_addr;
 384
 385    if (!vdev->no_vfio_ioeventfd) {
 386        struct vfio_device_ioeventfd vfio_ioeventfd;
 387
 388        vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
 389        vfio_ioeventfd.flags = ioeventfd->size;
 390        vfio_ioeventfd.data = ioeventfd->data;
 391        vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
 392                                ioeventfd->region_addr;
 393        vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
 394
 395        ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
 396                                 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
 397    }
 398
 399    if (!ioeventfd->vfio) {
 400        qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
 401                            vfio_ioeventfd_handler, NULL, ioeventfd);
 402    }
 403
 404    memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
 405                              true, ioeventfd->data, &ioeventfd->e);
 406    trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
 407                              size, data, ioeventfd->vfio);
 408
 409    return ioeventfd;
 410}
 411
 412static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
 413{
 414    VFIOQuirk *quirk;
 415
 416    /*
 417     * As long as the BAR is >= 256 bytes it will be aligned such that the
 418     * lower byte is always zero.  Filter out anything else, if it exists.
 419     */
 420    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 421        !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
 422        return;
 423    }
 424
 425    quirk = vfio_quirk_alloc(1);
 426
 427    memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
 428                          "vfio-ati-3c3-quirk", 1);
 429    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 430                                3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
 431
 432    QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 433                      quirk, next);
 434
 435    trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
 436}
 437
 438/*
 439 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
 440 * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
 441 * the MMIO space directly, but a window to this space is provided through
 442 * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
 443 * data register.  When the address is programmed to a range of 0x4000-0x4fff
 444 * PCI configuration space is available.  Experimentation seems to indicate
 445 * that read-only may be provided by hardware.
 446 */
 447static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
 448{
 449    VFIOQuirk *quirk;
 450    VFIOConfigWindowQuirk *window;
 451
 452    /* This windows doesn't seem to be used except by legacy VGA code */
 453    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 454        !vdev->vga || nr != 4) {
 455        return;
 456    }
 457
 458    quirk = vfio_quirk_alloc(2);
 459    window = quirk->data = g_malloc0(sizeof(*window) +
 460                                     sizeof(VFIOConfigWindowMatch));
 461    window->vdev = vdev;
 462    window->address_offset = 0;
 463    window->data_offset = 4;
 464    window->nr_matches = 1;
 465    window->matches[0].match = 0x4000;
 466    window->matches[0].mask = vdev->config_size - 1;
 467    window->bar = nr;
 468    window->addr_mem = &quirk->mem[0];
 469    window->data_mem = &quirk->mem[1];
 470
 471    memory_region_init_io(window->addr_mem, OBJECT(vdev),
 472                          &vfio_generic_window_address_quirk, window,
 473                          "vfio-ati-bar4-window-address-quirk", 4);
 474    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 475                                        window->address_offset,
 476                                        window->addr_mem, 1);
 477
 478    memory_region_init_io(window->data_mem, OBJECT(vdev),
 479                          &vfio_generic_window_data_quirk, window,
 480                          "vfio-ati-bar4-window-data-quirk", 4);
 481    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 482                                        window->data_offset,
 483                                        window->data_mem, 1);
 484
 485    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 486
 487    trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
 488}
 489
 490/*
 491 * Trap the BAR2 MMIO mirror to config space as well.
 492 */
 493static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
 494{
 495    VFIOQuirk *quirk;
 496    VFIOConfigMirrorQuirk *mirror;
 497
 498    /* Only enable on newer devices where BAR2 is 64bit */
 499    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 500        !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
 501        return;
 502    }
 503
 504    quirk = vfio_quirk_alloc(1);
 505    mirror = quirk->data = g_malloc0(sizeof(*mirror));
 506    mirror->mem = quirk->mem;
 507    mirror->vdev = vdev;
 508    mirror->offset = 0x4000;
 509    mirror->bar = nr;
 510
 511    memory_region_init_io(mirror->mem, OBJECT(vdev),
 512                          &vfio_generic_mirror_quirk, mirror,
 513                          "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
 514    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 515                                        mirror->offset, mirror->mem, 1);
 516
 517    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 518
 519    trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
 520}
 521
 522/*
 523 * Older ATI/AMD cards like the X550 have a similar window to that above.
 524 * I/O port BAR1 provides a window to a mirror of PCI config space located
 525 * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
 526 * note it for future reference.
 527 */
 528
 529#define PCI_VENDOR_ID_NVIDIA                    0x10de
 530
 531/*
 532 * Nvidia has several different methods to get to config space, the
 533 * nouveu project has several of these documented here:
 534 * https://github.com/pathscale/envytools/tree/master/hwdocs
 535 *
 536 * The first quirk is actually not documented in envytools and is found
 537 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
 538 * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
 539 * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
 540 * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
 541 * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
 542 * is written for a write to 0x3d4.  The BAR0 offset is then accessible
 543 * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
 544 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
 545 */
 546typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
 547static const char *nv3d0_states[] = { "NONE", "SELECT",
 548                                      "WINDOW", "READ", "WRITE" };
 549
 550typedef struct VFIONvidia3d0Quirk {
 551    VFIOPCIDevice *vdev;
 552    VFIONvidia3d0State state;
 553    uint32_t offset;
 554} VFIONvidia3d0Quirk;
 555
 556static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
 557                                           hwaddr addr, unsigned size)
 558{
 559    VFIONvidia3d0Quirk *quirk = opaque;
 560    VFIOPCIDevice *vdev = quirk->vdev;
 561
 562    quirk->state = NONE;
 563
 564    return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 565                         addr + 0x14, size);
 566}
 567
 568static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
 569                                        uint64_t data, unsigned size)
 570{
 571    VFIONvidia3d0Quirk *quirk = opaque;
 572    VFIOPCIDevice *vdev = quirk->vdev;
 573    VFIONvidia3d0State old_state = quirk->state;
 574
 575    quirk->state = NONE;
 576
 577    switch (data) {
 578    case 0x338:
 579        if (old_state == NONE) {
 580            quirk->state = SELECT;
 581            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 582                                              nv3d0_states[quirk->state]);
 583        }
 584        break;
 585    case 0x538:
 586        if (old_state == WINDOW) {
 587            quirk->state = READ;
 588            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 589                                              nv3d0_states[quirk->state]);
 590        }
 591        break;
 592    case 0x738:
 593        if (old_state == WINDOW) {
 594            quirk->state = WRITE;
 595            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 596                                              nv3d0_states[quirk->state]);
 597        }
 598        break;
 599    }
 600
 601    vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 602                   addr + 0x14, data, size);
 603}
 604
 605static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
 606    .read = vfio_nvidia_3d4_quirk_read,
 607    .write = vfio_nvidia_3d4_quirk_write,
 608    .endianness = DEVICE_LITTLE_ENDIAN,
 609};
 610
 611static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
 612                                           hwaddr addr, unsigned size)
 613{
 614    VFIONvidia3d0Quirk *quirk = opaque;
 615    VFIOPCIDevice *vdev = quirk->vdev;
 616    VFIONvidia3d0State old_state = quirk->state;
 617    uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 618                                  addr + 0x10, size);
 619
 620    quirk->state = NONE;
 621
 622    if (old_state == READ &&
 623        (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 624        uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 625
 626        data = vfio_pci_read_config(&vdev->pdev, offset, size);
 627        trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
 628                                         offset, size, data);
 629    }
 630
 631    return data;
 632}
 633
 634static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
 635                                        uint64_t data, unsigned size)
 636{
 637    VFIONvidia3d0Quirk *quirk = opaque;
 638    VFIOPCIDevice *vdev = quirk->vdev;
 639    VFIONvidia3d0State old_state = quirk->state;
 640
 641    quirk->state = NONE;
 642
 643    if (old_state == SELECT) {
 644        quirk->offset = (uint32_t)data;
 645        quirk->state = WINDOW;
 646        trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 647                                          nv3d0_states[quirk->state]);
 648    } else if (old_state == WRITE) {
 649        if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 650            uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 651
 652            vfio_pci_write_config(&vdev->pdev, offset, data, size);
 653            trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
 654                                              offset, data, size);
 655            return;
 656        }
 657    }
 658
 659    vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 660                   addr + 0x10, data, size);
 661}
 662
 663static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
 664    .read = vfio_nvidia_3d0_quirk_read,
 665    .write = vfio_nvidia_3d0_quirk_write,
 666    .endianness = DEVICE_LITTLE_ENDIAN,
 667};
 668
 669static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
 670{
 671    VFIOQuirk *quirk;
 672    VFIONvidia3d0Quirk *data;
 673
 674    if (vdev->no_geforce_quirks ||
 675        !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 676        !vdev->bars[1].region.size) {
 677        return;
 678    }
 679
 680    quirk = vfio_quirk_alloc(2);
 681    quirk->data = data = g_malloc0(sizeof(*data));
 682    data->vdev = vdev;
 683
 684    memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
 685                          data, "vfio-nvidia-3d4-quirk", 2);
 686    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 687                                0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
 688
 689    memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
 690                          data, "vfio-nvidia-3d0-quirk", 2);
 691    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 692                                0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
 693
 694    QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 695                      quirk, next);
 696
 697    trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
 698}
 699
 700/*
 701 * The second quirk is documented in envytools.  The I/O port BAR5 is just
 702 * a set of address/data ports to the MMIO BARs.  The BAR we care about is
 703 * again BAR0.  This backdoor is apparently a bit newer than the one above
 704 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
 705 * space, including extended space is available at the 4k @0x88000.
 706 */
 707typedef struct VFIONvidiaBAR5Quirk {
 708    uint32_t master;
 709    uint32_t enable;
 710    MemoryRegion *addr_mem;
 711    MemoryRegion *data_mem;
 712    bool enabled;
 713    VFIOConfigWindowQuirk window; /* last for match data */
 714} VFIONvidiaBAR5Quirk;
 715
 716static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
 717{
 718    VFIOPCIDevice *vdev = bar5->window.vdev;
 719
 720    if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
 721        return;
 722    }
 723
 724    bar5->enabled = !bar5->enabled;
 725    trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
 726                                       bar5->enabled ?  "Enable" : "Disable");
 727    memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
 728    memory_region_set_enabled(bar5->data_mem, bar5->enabled);
 729}
 730
 731static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
 732                                                   hwaddr addr, unsigned size)
 733{
 734    VFIONvidiaBAR5Quirk *bar5 = opaque;
 735    VFIOPCIDevice *vdev = bar5->window.vdev;
 736
 737    return vfio_region_read(&vdev->bars[5].region, addr, size);
 738}
 739
 740static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
 741                                                uint64_t data, unsigned size)
 742{
 743    VFIONvidiaBAR5Quirk *bar5 = opaque;
 744    VFIOPCIDevice *vdev = bar5->window.vdev;
 745
 746    vfio_region_write(&vdev->bars[5].region, addr, data, size);
 747
 748    bar5->master = data;
 749    vfio_nvidia_bar5_enable(bar5);
 750}
 751
 752static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
 753    .read = vfio_nvidia_bar5_quirk_master_read,
 754    .write = vfio_nvidia_bar5_quirk_master_write,
 755    .endianness = DEVICE_LITTLE_ENDIAN,
 756};
 757
 758static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
 759                                                   hwaddr addr, unsigned size)
 760{
 761    VFIONvidiaBAR5Quirk *bar5 = opaque;
 762    VFIOPCIDevice *vdev = bar5->window.vdev;
 763
 764    return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
 765}
 766
 767static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
 768                                                uint64_t data, unsigned size)
 769{
 770    VFIONvidiaBAR5Quirk *bar5 = opaque;
 771    VFIOPCIDevice *vdev = bar5->window.vdev;
 772
 773    vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
 774
 775    bar5->enable = data;
 776    vfio_nvidia_bar5_enable(bar5);
 777}
 778
 779static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
 780    .read = vfio_nvidia_bar5_quirk_enable_read,
 781    .write = vfio_nvidia_bar5_quirk_enable_write,
 782    .endianness = DEVICE_LITTLE_ENDIAN,
 783};
 784
 785static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
 786{
 787    VFIOQuirk *quirk;
 788    VFIONvidiaBAR5Quirk *bar5;
 789    VFIOConfigWindowQuirk *window;
 790
 791    if (vdev->no_geforce_quirks ||
 792        !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 793        !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
 794        return;
 795    }
 796
 797    quirk = vfio_quirk_alloc(4);
 798    bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
 799                                   (sizeof(VFIOConfigWindowMatch) * 2));
 800    window = &bar5->window;
 801
 802    window->vdev = vdev;
 803    window->address_offset = 0x8;
 804    window->data_offset = 0xc;
 805    window->nr_matches = 2;
 806    window->matches[0].match = 0x1800;
 807    window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
 808    window->matches[1].match = 0x88000;
 809    window->matches[1].mask = vdev->config_size - 1;
 810    window->bar = nr;
 811    window->addr_mem = bar5->addr_mem = &quirk->mem[0];
 812    window->data_mem = bar5->data_mem = &quirk->mem[1];
 813
 814    memory_region_init_io(window->addr_mem, OBJECT(vdev),
 815                          &vfio_generic_window_address_quirk, window,
 816                          "vfio-nvidia-bar5-window-address-quirk", 4);
 817    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 818                                        window->address_offset,
 819                                        window->addr_mem, 1);
 820    memory_region_set_enabled(window->addr_mem, false);
 821
 822    memory_region_init_io(window->data_mem, OBJECT(vdev),
 823                          &vfio_generic_window_data_quirk, window,
 824                          "vfio-nvidia-bar5-window-data-quirk", 4);
 825    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 826                                        window->data_offset,
 827                                        window->data_mem, 1);
 828    memory_region_set_enabled(window->data_mem, false);
 829
 830    memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
 831                          &vfio_nvidia_bar5_quirk_master, bar5,
 832                          "vfio-nvidia-bar5-master-quirk", 4);
 833    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 834                                        0, &quirk->mem[2], 1);
 835
 836    memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
 837                          &vfio_nvidia_bar5_quirk_enable, bar5,
 838                          "vfio-nvidia-bar5-enable-quirk", 4);
 839    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 840                                        4, &quirk->mem[3], 1);
 841
 842    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 843
 844    trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
 845}
 846
 847typedef struct LastDataSet {
 848    VFIOQuirk *quirk;
 849    hwaddr addr;
 850    uint64_t data;
 851    unsigned size;
 852    int hits;
 853    int added;
 854} LastDataSet;
 855
 856#define MAX_DYN_IOEVENTFD 10
 857#define HITS_FOR_IOEVENTFD 10
 858
 859/*
 860 * Finally, BAR0 itself.  We want to redirect any accesses to either
 861 * 0x1800 or 0x88000 through the PCI config space access functions.
 862 */
 863static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
 864                                           uint64_t data, unsigned size)
 865{
 866    VFIOConfigMirrorQuirk *mirror = opaque;
 867    VFIOPCIDevice *vdev = mirror->vdev;
 868    PCIDevice *pdev = &vdev->pdev;
 869    LastDataSet *last = (LastDataSet *)&mirror->data;
 870
 871    vfio_generic_quirk_mirror_write(opaque, addr, data, size);
 872
 873    /*
 874     * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
 875     * MSI capability ID register.  Both the ID and next register are
 876     * read-only, so we allow writes covering either of those to real hw.
 877     */
 878    if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
 879        vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
 880        vfio_region_write(&vdev->bars[mirror->bar].region,
 881                          addr + mirror->offset, data, size);
 882        trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
 883    }
 884
 885    /*
 886     * Automatically add an ioeventfd to handle any repeated write with the
 887     * same data and size above the standard PCI config space header.  This is
 888     * primarily expected to accelerate the MSI-ACK behavior, such as noted
 889     * above.  Current hardware/drivers should trigger an ioeventfd at config
 890     * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
 891     *
 892     * The criteria of 10 successive hits is arbitrary but reliably adds the
 893     * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd,
 894     * the remaining ones have a greater chance of being seen successively.
 895     * To avoid the pathological case of burning up all of QEMU's open file
 896     * handles, arbitrarily limit this algorithm from adding no more than 10
 897     * ioeventfds, print an error if we would have added an 11th, and then
 898     * stop counting.
 899     */
 900    if (!vdev->no_kvm_ioeventfd &&
 901        addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
 902        if (addr != last->addr || data != last->data || size != last->size) {
 903            last->addr = addr;
 904            last->data = data;
 905            last->size = size;
 906            last->hits = 1;
 907        } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
 908            if (last->added < MAX_DYN_IOEVENTFD) {
 909                VFIOIOEventFD *ioeventfd;
 910                ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
 911                                        data, &vdev->bars[mirror->bar].region,
 912                                        mirror->offset + addr, true);
 913                if (ioeventfd) {
 914                    VFIOQuirk *quirk = last->quirk;
 915
 916                    QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
 917                    last->added++;
 918                }
 919            } else {
 920                last->added++;
 921                warn_report("NVIDIA ioeventfd queue full for %s, unable to "
 922                            "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
 923                            "size %u", vdev->vbasedev.name, addr, data, size);
 924            }
 925        }
 926    }
 927}
 928
 929static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
 930    .read = vfio_generic_quirk_mirror_read,
 931    .write = vfio_nvidia_quirk_mirror_write,
 932    .endianness = DEVICE_LITTLE_ENDIAN,
 933};
 934
 935static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
 936{
 937    VFIOConfigMirrorQuirk *mirror = quirk->data;
 938    LastDataSet *last = (LastDataSet *)&mirror->data;
 939
 940    last->addr = last->data = last->size = last->hits = last->added = 0;
 941
 942    vfio_drop_dynamic_eventfds(vdev, quirk);
 943}
 944
 945static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
 946{
 947    VFIOQuirk *quirk;
 948    VFIOConfigMirrorQuirk *mirror;
 949    LastDataSet *last;
 950
 951    if (vdev->no_geforce_quirks ||
 952        !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 953        !vfio_is_vga(vdev) || nr != 0) {
 954        return;
 955    }
 956
 957    quirk = vfio_quirk_alloc(1);
 958    quirk->reset = vfio_nvidia_bar0_quirk_reset;
 959    mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
 960    mirror->mem = quirk->mem;
 961    mirror->vdev = vdev;
 962    mirror->offset = 0x88000;
 963    mirror->bar = nr;
 964    last = (LastDataSet *)&mirror->data;
 965    last->quirk = quirk;
 966
 967    memory_region_init_io(mirror->mem, OBJECT(vdev),
 968                          &vfio_nvidia_mirror_quirk, mirror,
 969                          "vfio-nvidia-bar0-88000-mirror-quirk",
 970                          vdev->config_size);
 971    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 972                                        mirror->offset, mirror->mem, 1);
 973
 974    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 975
 976    /* The 0x1800 offset mirror only seems to get used by legacy VGA */
 977    if (vdev->vga) {
 978        quirk = vfio_quirk_alloc(1);
 979        quirk->reset = vfio_nvidia_bar0_quirk_reset;
 980        mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
 981        mirror->mem = quirk->mem;
 982        mirror->vdev = vdev;
 983        mirror->offset = 0x1800;
 984        mirror->bar = nr;
 985        last = (LastDataSet *)&mirror->data;
 986        last->quirk = quirk;
 987
 988        memory_region_init_io(mirror->mem, OBJECT(vdev),
 989                              &vfio_nvidia_mirror_quirk, mirror,
 990                              "vfio-nvidia-bar0-1800-mirror-quirk",
 991                              PCI_CONFIG_SPACE_SIZE);
 992        memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 993                                            mirror->offset, mirror->mem, 1);
 994
 995        QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 996    }
 997
 998    trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
 999}
1000
1001/*
1002 * TODO - Some Nvidia devices provide config access to their companion HDA
1003 * device and even to their parent bridge via these config space mirrors.
1004 * Add quirks for those regions.
1005 */
1006
1007#define PCI_VENDOR_ID_REALTEK 0x10ec
1008
1009/*
1010 * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
1011 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1012 * register.  According to the Linux r8169 driver, the MSI-X table is addressed
1013 * when the "type" portion of the address register is set to 0x1.  This appears
1014 * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
1015 * "address latched" indicator.  Bits 12:15 are a mask field, which we can
1016 * ignore because the MSI-X table should always be accessed as a dword (full
1017 * mask).  Bits 0:11 is offset within the type.
1018 *
1019 * Example trace:
1020 *
1021 * Read from MSI-X table offset 0
1022 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1023 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1024 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1025 *
1026 * Write 0xfee00000 to MSI-X table offset 0
1027 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1028 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1029 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1030 */
1031typedef struct VFIOrtl8168Quirk {
1032    VFIOPCIDevice *vdev;
1033    uint32_t addr;
1034    uint32_t data;
1035    bool enabled;
1036} VFIOrtl8168Quirk;
1037
1038static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1039                                                hwaddr addr, unsigned size)
1040{
1041    VFIOrtl8168Quirk *rtl = opaque;
1042    VFIOPCIDevice *vdev = rtl->vdev;
1043    uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1044
1045    if (rtl->enabled) {
1046        data = rtl->addr ^ 0x80000000U; /* latch/complete */
1047        trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1048    }
1049
1050    return data;
1051}
1052
1053static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1054                                             uint64_t data, unsigned size)
1055{
1056    VFIOrtl8168Quirk *rtl = opaque;
1057    VFIOPCIDevice *vdev = rtl->vdev;
1058
1059    rtl->enabled = false;
1060
1061    if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1062        rtl->enabled = true;
1063        rtl->addr = (uint32_t)data;
1064
1065        if (data & 0x80000000U) { /* Do write */
1066            if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1067                hwaddr offset = data & 0xfff;
1068                uint64_t val = rtl->data;
1069
1070                trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1071                                                    (uint16_t)offset, val);
1072
1073                /* Write to the proper guest MSI-X table instead */
1074                memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1075                                             offset, val, size,
1076                                             MEMTXATTRS_UNSPECIFIED);
1077            }
1078            return; /* Do not write guest MSI-X data to hardware */
1079        }
1080    }
1081
1082    vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1083}
1084
1085static const MemoryRegionOps vfio_rtl_address_quirk = {
1086    .read = vfio_rtl8168_quirk_address_read,
1087    .write = vfio_rtl8168_quirk_address_write,
1088    .valid = {
1089        .min_access_size = 4,
1090        .max_access_size = 4,
1091        .unaligned = false,
1092    },
1093    .endianness = DEVICE_LITTLE_ENDIAN,
1094};
1095
1096static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1097                                             hwaddr addr, unsigned size)
1098{
1099    VFIOrtl8168Quirk *rtl = opaque;
1100    VFIOPCIDevice *vdev = rtl->vdev;
1101    uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1102
1103    if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1104        hwaddr offset = rtl->addr & 0xfff;
1105        memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1106                                    &data, size, MEMTXATTRS_UNSPECIFIED);
1107        trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1108    }
1109
1110    return data;
1111}
1112
1113static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1114                                          uint64_t data, unsigned size)
1115{
1116    VFIOrtl8168Quirk *rtl = opaque;
1117    VFIOPCIDevice *vdev = rtl->vdev;
1118
1119    rtl->data = (uint32_t)data;
1120
1121    vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1122}
1123
1124static const MemoryRegionOps vfio_rtl_data_quirk = {
1125    .read = vfio_rtl8168_quirk_data_read,
1126    .write = vfio_rtl8168_quirk_data_write,
1127    .valid = {
1128        .min_access_size = 4,
1129        .max_access_size = 4,
1130        .unaligned = false,
1131    },
1132    .endianness = DEVICE_LITTLE_ENDIAN,
1133};
1134
1135static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1136{
1137    VFIOQuirk *quirk;
1138    VFIOrtl8168Quirk *rtl;
1139
1140    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1141        return;
1142    }
1143
1144    quirk = vfio_quirk_alloc(2);
1145    quirk->data = rtl = g_malloc0(sizeof(*rtl));
1146    rtl->vdev = vdev;
1147
1148    memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1149                          &vfio_rtl_address_quirk, rtl,
1150                          "vfio-rtl8168-window-address-quirk", 4);
1151    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1152                                        0x74, &quirk->mem[0], 1);
1153
1154    memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1155                          &vfio_rtl_data_quirk, rtl,
1156                          "vfio-rtl8168-window-data-quirk", 4);
1157    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1158                                        0x70, &quirk->mem[1], 1);
1159
1160    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1161
1162    trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1163}
1164
1165/*
1166 * Intel IGD support
1167 *
1168 * Obviously IGD is not a discrete device, this is evidenced not only by it
1169 * being integrated into the CPU, but by the various chipset and BIOS
1170 * dependencies that it brings along with it.  Intel is trying to move away
1171 * from this and Broadwell and newer devices can run in what Intel calls
1172 * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
1173 * more is required beyond assigning the IGD device to a VM.  There are
1174 * however support limitations to this mode.  It only supports IGD as a
1175 * secondary graphics device in the VM and it doesn't officially support any
1176 * physical outputs.
1177 *
1178 * The code here attempts to enable what we'll call legacy mode assignment,
1179 * IGD retains most of the capabilities we expect for it to have on bare
1180 * metal.  To enable this mode, the IGD device must be assigned to the VM
1181 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1182 * support, we must have VM BIOS support for reserving and populating some
1183 * of the required tables, and we need to tweak the chipset with revisions
1184 * and IDs and an LPC/ISA bridge device.  The intention is to make all of
1185 * this happen automatically by installing the device at the correct VM PCI
1186 * bus address.  If any of the conditions are not met, we cross our fingers
1187 * and hope the user knows better.
1188 *
1189 * NB - It is possible to enable physical outputs in UPT mode by supplying
1190 * an OpRegion table.  We don't do this by default because the guest driver
1191 * behaves differently if an OpRegion is provided and no monitor is attached
1192 * vs no OpRegion and a monitor being attached or not.  Effectively, if a
1193 * headless setup is desired, the OpRegion gets in the way of that.
1194 */
1195
1196/*
1197 * This presumes the device is already known to be an Intel VGA device, so we
1198 * take liberties in which device ID bits match which generation.  This should
1199 * not be taken as an indication that all the devices are supported, or even
1200 * supportable, some of them don't even support VT-d.
1201 * See linux:include/drm/i915_pciids.h for IDs.
1202 */
1203static int igd_gen(VFIOPCIDevice *vdev)
1204{
1205    if ((vdev->device_id & 0xfff) == 0xa84) {
1206        return 8; /* Broxton */
1207    }
1208
1209    switch (vdev->device_id & 0xff00) {
1210    /* Old, untested, unavailable, unknown */
1211    case 0x0000:
1212    case 0x2500:
1213    case 0x2700:
1214    case 0x2900:
1215    case 0x2a00:
1216    case 0x2e00:
1217    case 0x3500:
1218    case 0xa000:
1219        return -1;
1220    /* SandyBridge, IvyBridge, ValleyView, Haswell */
1221    case 0x0100:
1222    case 0x0400:
1223    case 0x0a00:
1224    case 0x0c00:
1225    case 0x0d00:
1226    case 0x0f00:
1227        return 6;
1228    /* BroadWell, CherryView, SkyLake, KabyLake */
1229    case 0x1600:
1230    case 0x1900:
1231    case 0x2200:
1232    case 0x5900:
1233        return 8;
1234    }
1235
1236    return 8; /* Assume newer is compatible */
1237}
1238
1239typedef struct VFIOIGDQuirk {
1240    struct VFIOPCIDevice *vdev;
1241    uint32_t index;
1242    uint32_t bdsm;
1243} VFIOIGDQuirk;
1244
1245#define IGD_GMCH 0x50 /* Graphics Control Register */
1246#define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1247#define IGD_ASLS 0xfc /* ASL Storage Register */
1248
1249/*
1250 * The OpRegion includes the Video BIOS Table, which seems important for
1251 * telling the driver what sort of outputs it has.  Without this, the device
1252 * may work in the guest, but we may not get output.  This also requires BIOS
1253 * support to reserve and populate a section of guest memory sufficient for
1254 * the table and to write the base address of that memory to the ASLS register
1255 * of the IGD device.
1256 */
1257int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1258                               struct vfio_region_info *info, Error **errp)
1259{
1260    int ret;
1261
1262    vdev->igd_opregion = g_malloc0(info->size);
1263    ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1264                info->size, info->offset);
1265    if (ret != info->size) {
1266        error_setg(errp, "failed to read IGD OpRegion");
1267        g_free(vdev->igd_opregion);
1268        vdev->igd_opregion = NULL;
1269        return -EINVAL;
1270    }
1271
1272    /*
1273     * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1274     * allocate 32bit reserved memory for, copy these contents into, and write
1275     * the reserved memory base address to the device ASLS register at 0xFC.
1276     * Alignment of this reserved region seems flexible, but using a 4k page
1277     * alignment seems to work well.  This interface assumes a single IGD
1278     * device, which may be at VM address 00:02.0 in legacy mode or another
1279     * address in UPT mode.
1280     *
1281     * NB, there may be future use cases discovered where the VM should have
1282     * direct interaction with the host OpRegion, in which case the write to
1283     * the ASLS register would trigger MemoryRegion setup to enable that.
1284     */
1285    fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1286                    vdev->igd_opregion, info->size);
1287
1288    trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1289
1290    pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1291    pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1292    pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1293
1294    return 0;
1295}
1296
1297/*
1298 * The rather short list of registers that we copy from the host devices.
1299 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1300 * host bridge values may or may not be needed depending on the guest OS.
1301 * Since we're only munging revision and subsystem values on the host bridge,
1302 * we don't require our own device.  The LPC/ISA bridge needs to be our very
1303 * own though.
1304 */
1305typedef struct {
1306    uint8_t offset;
1307    uint8_t len;
1308} IGDHostInfo;
1309
1310static const IGDHostInfo igd_host_bridge_infos[] = {
1311    {PCI_REVISION_ID,         2},
1312    {PCI_SUBSYSTEM_VENDOR_ID, 2},
1313    {PCI_SUBSYSTEM_ID,        2},
1314};
1315
1316static const IGDHostInfo igd_lpc_bridge_infos[] = {
1317    {PCI_VENDOR_ID,           2},
1318    {PCI_DEVICE_ID,           2},
1319    {PCI_REVISION_ID,         2},
1320    {PCI_SUBSYSTEM_VENDOR_ID, 2},
1321    {PCI_SUBSYSTEM_ID,        2},
1322};
1323
1324static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1325                             struct vfio_region_info *info,
1326                             const IGDHostInfo *list, int len)
1327{
1328    int i, ret;
1329
1330    for (i = 0; i < len; i++) {
1331        ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1332                    list[i].len, info->offset + list[i].offset);
1333        if (ret != list[i].len) {
1334            error_report("IGD copy failed: %m");
1335            return -errno;
1336        }
1337    }
1338
1339    return 0;
1340}
1341
1342/*
1343 * Stuff a few values into the host bridge.
1344 */
1345static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1346                                  struct vfio_region_info *info)
1347{
1348    PCIBus *bus;
1349    PCIDevice *host_bridge;
1350    int ret;
1351
1352    bus = pci_device_root_bus(&vdev->pdev);
1353    host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1354
1355    if (!host_bridge) {
1356        error_report("Can't find host bridge");
1357        return -ENODEV;
1358    }
1359
1360    ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1361                            ARRAY_SIZE(igd_host_bridge_infos));
1362    if (!ret) {
1363        trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1364    }
1365
1366    return ret;
1367}
1368
1369/*
1370 * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1371 * arbitrary values into just any bridge, so we must create our own.  We try
1372 * to handle if the user has created it for us, which they might want to do
1373 * to enable multifunction so we don't occupy the whole PCI slot.
1374 */
1375static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1376{
1377    if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1378        error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1379    }
1380}
1381
1382static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1383{
1384    DeviceClass *dc = DEVICE_CLASS(klass);
1385    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1386
1387    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1388    dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1389    dc->hotpluggable = false;
1390    k->realize = vfio_pci_igd_lpc_bridge_realize;
1391    k->class_id = PCI_CLASS_BRIDGE_ISA;
1392}
1393
1394static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1395    .name = "vfio-pci-igd-lpc-bridge",
1396    .parent = TYPE_PCI_DEVICE,
1397    .class_init = vfio_pci_igd_lpc_bridge_class_init,
1398    .interfaces = (InterfaceInfo[]) {
1399        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1400        { },
1401    },
1402};
1403
1404static void vfio_pci_igd_register_types(void)
1405{
1406    type_register_static(&vfio_pci_igd_lpc_bridge_info);
1407}
1408
1409type_init(vfio_pci_igd_register_types)
1410
1411static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1412                                 struct vfio_region_info *info)
1413{
1414    PCIDevice *lpc_bridge;
1415    int ret;
1416
1417    lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1418                                 0, PCI_DEVFN(0x1f, 0));
1419    if (!lpc_bridge) {
1420        lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1421                                 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1422    }
1423
1424    ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1425                            ARRAY_SIZE(igd_lpc_bridge_infos));
1426    if (!ret) {
1427        trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1428    }
1429
1430    return ret;
1431}
1432
1433/*
1434 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1435 * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1436 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1437 * for programming the GTT.
1438 *
1439 * See linux:include/drm/i915_drm.h for shift and mask values.
1440 */
1441static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1442{
1443    uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1444    int ggms, gen = igd_gen(vdev);
1445
1446    gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1447    ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1448    if (gen > 6) {
1449        ggms = 1 << ggms;
1450    }
1451
1452    ggms *= MiB;
1453
1454    return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1455}
1456
1457/*
1458 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1459 * Somehow the host stolen memory range is used for this, but how the ROM gets
1460 * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1461 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1462 * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1463 * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1464 * IOBAR address and data registers to detect a write sequence targeting the
1465 * GTTADR.  This code is developed by observed behavior and doesn't have a
1466 * direct spec reference, unfortunately.
1467 */
1468static uint64_t vfio_igd_quirk_data_read(void *opaque,
1469                                         hwaddr addr, unsigned size)
1470{
1471    VFIOIGDQuirk *igd = opaque;
1472    VFIOPCIDevice *vdev = igd->vdev;
1473
1474    igd->index = ~0;
1475
1476    return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1477}
1478
1479static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1480                                      uint64_t data, unsigned size)
1481{
1482    VFIOIGDQuirk *igd = opaque;
1483    VFIOPCIDevice *vdev = igd->vdev;
1484    uint64_t val = data;
1485    int gen = igd_gen(vdev);
1486
1487    /*
1488     * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1489     * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1490     * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1491     * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1492     * to a 4k page, which we translate to a page from the VM allocated region,
1493     * pointed to by the BDSM register.  If this is not set, we fail.
1494     *
1495     * We trap writes to the full configured GTT size, but we typically only
1496     * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1497     * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1498     * write of that last entry does work, but is hopefully unnecessary since
1499     * we clear the previous GTT on initialization.
1500     */
1501    if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1502        if (gen < 8 || (igd->index % 8 == 1)) {
1503            uint32_t base;
1504
1505            base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1506            if (!base) {
1507                hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1508                         "BIOS reserved stolen memory.  Unsupported BIOS?");
1509            }
1510
1511            val = data - igd->bdsm + base;
1512        } else {
1513            val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1514        }
1515
1516        trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1517                                      igd->index, data, val);
1518    }
1519
1520    vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1521
1522    igd->index = ~0;
1523}
1524
1525static const MemoryRegionOps vfio_igd_data_quirk = {
1526    .read = vfio_igd_quirk_data_read,
1527    .write = vfio_igd_quirk_data_write,
1528    .endianness = DEVICE_LITTLE_ENDIAN,
1529};
1530
1531static uint64_t vfio_igd_quirk_index_read(void *opaque,
1532                                          hwaddr addr, unsigned size)
1533{
1534    VFIOIGDQuirk *igd = opaque;
1535    VFIOPCIDevice *vdev = igd->vdev;
1536
1537    igd->index = ~0;
1538
1539    return vfio_region_read(&vdev->bars[4].region, addr, size);
1540}
1541
1542static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1543                                       uint64_t data, unsigned size)
1544{
1545    VFIOIGDQuirk *igd = opaque;
1546    VFIOPCIDevice *vdev = igd->vdev;
1547
1548    igd->index = data;
1549
1550    vfio_region_write(&vdev->bars[4].region, addr, data, size);
1551}
1552
1553static const MemoryRegionOps vfio_igd_index_quirk = {
1554    .read = vfio_igd_quirk_index_read,
1555    .write = vfio_igd_quirk_index_write,
1556    .endianness = DEVICE_LITTLE_ENDIAN,
1557};
1558
1559static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1560{
1561    struct vfio_region_info *rom = NULL, *opregion = NULL,
1562                            *host = NULL, *lpc = NULL;
1563    VFIOQuirk *quirk;
1564    VFIOIGDQuirk *igd;
1565    PCIDevice *lpc_bridge;
1566    int i, ret, ggms_mb, gms_mb = 0, gen;
1567    uint64_t *bdsm_size;
1568    uint32_t gmch;
1569    uint16_t cmd_orig, cmd;
1570    Error *err = NULL;
1571
1572    /*
1573     * This must be an Intel VGA device at address 00:02.0 for us to even
1574     * consider enabling legacy mode.  The vBIOS has dependencies on the
1575     * PCI bus address.
1576     */
1577    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1578        !vfio_is_vga(vdev) || nr != 4 ||
1579        &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1580                                       0, PCI_DEVFN(0x2, 0))) {
1581        return;
1582    }
1583
1584    /*
1585     * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1586     * can stuff host values into, so if there's already one there and it's not
1587     * one we can hack on, legacy mode is no-go.  Sorry Q35.
1588     */
1589    lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1590                                 0, PCI_DEVFN(0x1f, 0));
1591    if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1592                                           "vfio-pci-igd-lpc-bridge")) {
1593        error_report("IGD device %s cannot support legacy mode due to existing "
1594                     "devices at address 1f.0", vdev->vbasedev.name);
1595        return;
1596    }
1597
1598    /*
1599     * IGD is not a standard, they like to change their specs often.  We
1600     * only attempt to support back to SandBridge and we hope that newer
1601     * devices maintain compatibility with generation 8.
1602     */
1603    gen = igd_gen(vdev);
1604    if (gen != 6 && gen != 8) {
1605        error_report("IGD device %s is unsupported in legacy mode, "
1606                     "try SandyBridge or newer", vdev->vbasedev.name);
1607        return;
1608    }
1609
1610    /*
1611     * Most of what we're doing here is to enable the ROM to run, so if
1612     * there's no ROM, there's no point in setting up this quirk.
1613     * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1614     */
1615    ret = vfio_get_region_info(&vdev->vbasedev,
1616                               VFIO_PCI_ROM_REGION_INDEX, &rom);
1617    if ((ret || !rom->size) && !vdev->pdev.romfile) {
1618        error_report("IGD device %s has no ROM, legacy mode disabled",
1619                     vdev->vbasedev.name);
1620        goto out;
1621    }
1622
1623    /*
1624     * Ignore the hotplug corner case, mark the ROM failed, we can't
1625     * create the devices we need for legacy mode in the hotplug scenario.
1626     */
1627    if (vdev->pdev.qdev.hotplugged) {
1628        error_report("IGD device %s hotplugged, ROM disabled, "
1629                     "legacy mode disabled", vdev->vbasedev.name);
1630        vdev->rom_read_failed = true;
1631        goto out;
1632    }
1633
1634    /*
1635     * Check whether we have all the vfio device specific regions to
1636     * support legacy mode (added in Linux v4.6).  If not, bail.
1637     */
1638    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1639                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1640                        VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1641    if (ret) {
1642        error_report("IGD device %s does not support OpRegion access,"
1643                     "legacy mode disabled", vdev->vbasedev.name);
1644        goto out;
1645    }
1646
1647    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1648                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1649                        VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1650    if (ret) {
1651        error_report("IGD device %s does not support host bridge access,"
1652                     "legacy mode disabled", vdev->vbasedev.name);
1653        goto out;
1654    }
1655
1656    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1657                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1658                        VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1659    if (ret) {
1660        error_report("IGD device %s does not support LPC bridge access,"
1661                     "legacy mode disabled", vdev->vbasedev.name);
1662        goto out;
1663    }
1664
1665    gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1666
1667    /*
1668     * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1669     * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1670     * but also no point in us enabling VGA if disabled in hardware.
1671     */
1672    if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1673        error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1674        error_report("IGD device %s failed to enable VGA access, "
1675                     "legacy mode disabled", vdev->vbasedev.name);
1676        goto out;
1677    }
1678
1679    /* Create our LPC/ISA bridge */
1680    ret = vfio_pci_igd_lpc_init(vdev, lpc);
1681    if (ret) {
1682        error_report("IGD device %s failed to create LPC bridge, "
1683                     "legacy mode disabled", vdev->vbasedev.name);
1684        goto out;
1685    }
1686
1687    /* Stuff some host values into the VM PCI host bridge */
1688    ret = vfio_pci_igd_host_init(vdev, host);
1689    if (ret) {
1690        error_report("IGD device %s failed to modify host bridge, "
1691                     "legacy mode disabled", vdev->vbasedev.name);
1692        goto out;
1693    }
1694
1695    /* Setup OpRegion access */
1696    ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1697    if (ret) {
1698        error_append_hint(&err, "IGD legacy mode disabled\n");
1699        error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1700        goto out;
1701    }
1702
1703    /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1704    quirk = vfio_quirk_alloc(2);
1705    igd = quirk->data = g_malloc0(sizeof(*igd));
1706    igd->vdev = vdev;
1707    igd->index = ~0;
1708    igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1709    igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1710
1711    memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1712                          igd, "vfio-igd-index-quirk", 4);
1713    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1714                                        0, &quirk->mem[0], 1);
1715
1716    memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1717                          igd, "vfio-igd-data-quirk", 4);
1718    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1719                                        4, &quirk->mem[1], 1);
1720
1721    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1722
1723    /* Determine the size of stolen memory needed for GTT */
1724    ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1725    if (gen > 6) {
1726        ggms_mb = 1 << ggms_mb;
1727    }
1728
1729    /*
1730     * Assume we have no GMS memory, but allow it to be overrided by device
1731     * option (experimental).  The spec doesn't actually allow zero GMS when
1732     * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1733     * so let's not waste VM memory for it.
1734     */
1735    gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1736
1737    if (vdev->igd_gms) {
1738        if (vdev->igd_gms <= 0x10) {
1739            gms_mb = vdev->igd_gms * 32;
1740            gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1741        } else {
1742            error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1743            vdev->igd_gms = 0;
1744        }
1745    }
1746
1747    /*
1748     * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1749     * must allocate a 1MB aligned reserved memory region below 4GB with
1750     * the requested size (in bytes) for use by the Intel PCI class VGA
1751     * device at VM address 00:02.0.  The base address of this reserved
1752     * memory region must be written to the device BDSM regsiter at PCI
1753     * config offset 0x5C.
1754     */
1755    bdsm_size = g_malloc(sizeof(*bdsm_size));
1756    *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1757    fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1758                    bdsm_size, sizeof(*bdsm_size));
1759
1760    /* GMCH is read-only, emulated */
1761    pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1762    pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1763    pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1764
1765    /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1766    pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1767    pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1768    pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1769
1770    /*
1771     * This IOBAR gives us access to GTTADR, which allows us to write to
1772     * the GTT itself.  So let's go ahead and write zero to all the GTT
1773     * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1774     * before talking to the device.
1775     */
1776    if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1777              vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1778        error_report("IGD device %s - failed to read PCI command register",
1779                     vdev->vbasedev.name);
1780    }
1781
1782    cmd = cmd_orig | PCI_COMMAND_IO;
1783
1784    if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1785               vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1786        error_report("IGD device %s - failed to write PCI command register",
1787                     vdev->vbasedev.name);
1788    }
1789
1790    for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1791        vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1792        vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1793    }
1794
1795    if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1796               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1797        error_report("IGD device %s - failed to restore PCI command register",
1798                     vdev->vbasedev.name);
1799    }
1800
1801    trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1802
1803out:
1804    g_free(rom);
1805    g_free(opregion);
1806    g_free(host);
1807    g_free(lpc);
1808}
1809
1810/*
1811 * Common quirk probe entry points.
1812 */
1813void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1814{
1815    vfio_vga_probe_ati_3c3_quirk(vdev);
1816    vfio_vga_probe_nvidia_3d0_quirk(vdev);
1817}
1818
1819void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1820{
1821    VFIOQuirk *quirk;
1822    int i, j;
1823
1824    for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1825        QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1826            for (j = 0; j < quirk->nr_mem; j++) {
1827                memory_region_del_subregion(&vdev->vga->region[i].mem,
1828                                            &quirk->mem[j]);
1829            }
1830        }
1831    }
1832}
1833
1834void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1835{
1836    int i, j;
1837
1838    for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1839        while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1840            VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1841            QLIST_REMOVE(quirk, next);
1842            for (j = 0; j < quirk->nr_mem; j++) {
1843                object_unparent(OBJECT(&quirk->mem[j]));
1844            }
1845            g_free(quirk->mem);
1846            g_free(quirk->data);
1847            g_free(quirk);
1848        }
1849    }
1850}
1851
1852void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1853{
1854    vfio_probe_ati_bar4_quirk(vdev, nr);
1855    vfio_probe_ati_bar2_quirk(vdev, nr);
1856    vfio_probe_nvidia_bar5_quirk(vdev, nr);
1857    vfio_probe_nvidia_bar0_quirk(vdev, nr);
1858    vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1859    vfio_probe_igd_bar4_quirk(vdev, nr);
1860}
1861
1862void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1863{
1864    VFIOBAR *bar = &vdev->bars[nr];
1865    VFIOQuirk *quirk;
1866    int i;
1867
1868    QLIST_FOREACH(quirk, &bar->quirks, next) {
1869        while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1870            vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1871        }
1872
1873        for (i = 0; i < quirk->nr_mem; i++) {
1874            memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1875        }
1876    }
1877}
1878
1879void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1880{
1881    VFIOBAR *bar = &vdev->bars[nr];
1882    int i;
1883
1884    while (!QLIST_EMPTY(&bar->quirks)) {
1885        VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1886        QLIST_REMOVE(quirk, next);
1887        for (i = 0; i < quirk->nr_mem; i++) {
1888            object_unparent(OBJECT(&quirk->mem[i]));
1889        }
1890        g_free(quirk->mem);
1891        g_free(quirk->data);
1892        g_free(quirk);
1893    }
1894}
1895
1896/*
1897 * Reset quirks
1898 */
1899void vfio_quirk_reset(VFIOPCIDevice *vdev)
1900{
1901    int i;
1902
1903    for (i = 0; i < PCI_ROM_SLOT; i++) {
1904        VFIOQuirk *quirk;
1905        VFIOBAR *bar = &vdev->bars[i];
1906
1907        QLIST_FOREACH(quirk, &bar->quirks, next) {
1908            if (quirk->reset) {
1909                quirk->reset(vdev, quirk);
1910            }
1911        }
1912    }
1913}
1914
1915/*
1916 * AMD Radeon PCI config reset, based on Linux:
1917 *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1918 *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1919 *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1920 *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1921 * IDs: include/drm/drm_pciids.h
1922 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1923 *
1924 * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1925 * hardware that should be fixed on future ASICs.  The symptom of this is that
1926 * once the accerlated driver loads, Windows guests will bsod on subsequent
1927 * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1928 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1929 * reset.  The PCI config reset only works if SMC firmware is running, so we
1930 * have a dependency on the state of the device as to whether this reset will
1931 * be effective.  There are still cases where we won't be able to kick the
1932 * device into working, but this greatly improves the usability overall.  The
1933 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1934 * poking is largely ASIC specific.
1935 */
1936static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1937{
1938    uint32_t clk, pc_c;
1939
1940    /*
1941     * Registers 200h and 204h are index and data registers for accessing
1942     * indirect configuration registers within the device.
1943     */
1944    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1945    clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1946    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1947    pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1948
1949    return (!(clk & 1) && (0x20100 <= pc_c));
1950}
1951
1952/*
1953 * The scope of a config reset is controlled by a mode bit in the misc register
1954 * and a fuse, exposed as a bit in another register.  The fuse is the default
1955 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1956 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1957 * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1958 * to flip the value of the bit in the misc register.
1959 */
1960static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1961{
1962    uint32_t misc, fuse;
1963    bool a, b;
1964
1965    vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1966    fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1967    b = fuse & 64;
1968
1969    vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1970    misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1971    a = misc & 2;
1972
1973    if (a == b) {
1974        vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1975        vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1976    }
1977}
1978
1979static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1980{
1981    PCIDevice *pdev = &vdev->pdev;
1982    int i, ret = 0;
1983    uint32_t data;
1984
1985    /* Defer to a kernel implemented reset */
1986    if (vdev->vbasedev.reset_works) {
1987        trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1988        return -ENODEV;
1989    }
1990
1991    /* Enable only memory BAR access */
1992    vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1993
1994    /* Reset only works if SMC firmware is loaded and running */
1995    if (!vfio_radeon_smc_is_running(vdev)) {
1996        ret = -EINVAL;
1997        trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1998        goto out;
1999    }
2000
2001    /* Make sure only the GFX function is reset */
2002    vfio_radeon_set_gfx_only_reset(vdev);
2003
2004    /* AMD PCI config reset */
2005    vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2006    usleep(100);
2007
2008    /* Read back the memory size to make sure we're out of reset */
2009    for (i = 0; i < 100000; i++) {
2010        if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2011            goto reset_smc;
2012        }
2013        usleep(1);
2014    }
2015
2016    trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2017
2018reset_smc:
2019    /* Reset SMC */
2020    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2021    data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2022    data |= 1;
2023    vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2024
2025    /* Disable SMC clock */
2026    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2027    data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2028    data |= 1;
2029    vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2030
2031    trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2032
2033out:
2034    /* Restore PCI command register */
2035    vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2036
2037    return ret;
2038}
2039
2040void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2041{
2042    switch (vdev->vendor_id) {
2043    case 0x1002:
2044        switch (vdev->device_id) {
2045        /* Bonaire */
2046        case 0x6649: /* Bonaire [FirePro W5100] */
2047        case 0x6650:
2048        case 0x6651:
2049        case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2050        case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2051        case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2052        /* Hawaii */
2053        case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2054        case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2055        case 0x67A2:
2056        case 0x67A8:
2057        case 0x67A9:
2058        case 0x67AA:
2059        case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2060        case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2061        case 0x67B8:
2062        case 0x67B9:
2063        case 0x67BA:
2064        case 0x67BE:
2065            vdev->resetfn = vfio_radeon_reset;
2066            trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2067            break;
2068        }
2069        break;
2070    }
2071}
2072
2073/*
2074 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2075 * devices as a member of a clique.  Devices within the same clique ID
2076 * are capable of direct P2P.  It's the user's responsibility that this
2077 * is correct.  The spec says that this may reside at any unused config
2078 * offset, but reserves and recommends hypervisors place this at C8h.
2079 * The spec also states that the hypervisor should place this capability
2080 * at the end of the capability list, thus next is defined as 0h.
2081 *
2082 * +----------------+----------------+----------------+----------------+
2083 * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
2084 * +----------------+----------------+----------------+----------------+
2085 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
2086 * +---------------------------------+---------------------------------+
2087 *
2088 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2089 */
2090static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2091                                       const char *name, void *opaque,
2092                                       Error **errp)
2093{
2094    DeviceState *dev = DEVICE(obj);
2095    Property *prop = opaque;
2096    uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2097
2098    visit_type_uint8(v, name, ptr, errp);
2099}
2100
2101static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2102                                       const char *name, void *opaque,
2103                                       Error **errp)
2104{
2105    DeviceState *dev = DEVICE(obj);
2106    Property *prop = opaque;
2107    uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2108    Error *local_err = NULL;
2109
2110    if (dev->realized) {
2111        qdev_prop_set_after_realize(dev, name, errp);
2112        return;
2113    }
2114
2115    visit_type_uint8(v, name, &value, &local_err);
2116    if (local_err) {
2117        error_propagate(errp, local_err);
2118        return;
2119    }
2120
2121    if (value & ~0xF) {
2122        error_setg(errp, "Property %s: valid range 0-15", name);
2123        return;
2124    }
2125
2126    *ptr = value;
2127}
2128
2129const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2130    .name = "uint4",
2131    .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2132    .get = get_nv_gpudirect_clique_id,
2133    .set = set_nv_gpudirect_clique_id,
2134};
2135
2136static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2137{
2138    PCIDevice *pdev = &vdev->pdev;
2139    int ret, pos = 0xC8;
2140
2141    if (vdev->nv_gpudirect_clique == 0xFF) {
2142        return 0;
2143    }
2144
2145    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2146        error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2147        return -EINVAL;
2148    }
2149
2150    if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2151        PCI_BASE_CLASS_DISPLAY) {
2152        error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2153        return -EINVAL;
2154    }
2155
2156    ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2157    if (ret < 0) {
2158        error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2159        return ret;
2160    }
2161
2162    memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2163    pos += PCI_CAP_FLAGS;
2164    pci_set_byte(pdev->config + pos++, 8);
2165    pci_set_byte(pdev->config + pos++, 'P');
2166    pci_set_byte(pdev->config + pos++, '2');
2167    pci_set_byte(pdev->config + pos++, 'P');
2168    pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2169    pci_set_byte(pdev->config + pos, 0);
2170
2171    return 0;
2172}
2173
2174int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2175{
2176    int ret;
2177
2178    ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2179    if (ret) {
2180        return ret;
2181    }
2182
2183    return 0;
2184}
2185