qemu/include/exec/exec-all.h
<<
>>
Prefs
   1/*
   2 * internal execution defines for qemu
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef EXEC_ALL_H
  21#define EXEC_ALL_H
  22
  23#include "qemu-common.h"
  24#include "exec/tb-context.h"
  25#include "sysemu/cpus.h"
  26
  27/* allow to see translation results - the slowdown should be negligible, so we leave it */
  28#define DEBUG_DISAS
  29
  30/* Page tracking code uses ram addresses in system mode, and virtual
  31   addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
  32   type.  */
  33#if defined(CONFIG_USER_ONLY)
  34typedef abi_ulong tb_page_addr_t;
  35#define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
  36#else
  37typedef ram_addr_t tb_page_addr_t;
  38#define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
  39#endif
  40
  41#include "qemu/log.h"
  42
  43void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
  44void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
  45                          target_ulong *data);
  46
  47void cpu_gen_init(void);
  48
  49/**
  50 * cpu_restore_state:
  51 * @cpu: the vCPU state is to be restore to
  52 * @searched_pc: the host PC the fault occurred at
  53 * @will_exit: true if the TB executed will be interrupted after some
  54               cpu adjustments. Required for maintaining the correct
  55               icount valus
  56 * @return: true if state was restored, false otherwise
  57 *
  58 * Attempt to restore the state for a fault occurring in translated
  59 * code. If the searched_pc is not in translated code no state is
  60 * restored and the function returns false.
  61 */
  62bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
  63
  64void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
  65void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
  66TranslationBlock *tb_gen_code(CPUState *cpu,
  67                              target_ulong pc, target_ulong cs_base,
  68                              uint32_t flags,
  69                              int cflags);
  70
  71void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
  72void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
  73void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
  74
  75#if !defined(CONFIG_USER_ONLY)
  76void cpu_reloading_memory_map(void);
  77/**
  78 * cpu_address_space_init:
  79 * @cpu: CPU to add this address space to
  80 * @asidx: integer index of this address space
  81 * @prefix: prefix to be used as name of address space
  82 * @mr: the root memory region of address space
  83 *
  84 * Add the specified address space to the CPU's cpu_ases list.
  85 * The address space added with @asidx 0 is the one used for the
  86 * convenience pointer cpu->as.
  87 * The target-specific code which registers ASes is responsible
  88 * for defining what semantics address space 0, 1, 2, etc have.
  89 *
  90 * Before the first call to this function, the caller must set
  91 * cpu->num_ases to the total number of address spaces it needs
  92 * to support.
  93 *
  94 * Note that with KVM only one address space is supported.
  95 */
  96void cpu_address_space_init(CPUState *cpu, int asidx,
  97                            const char *prefix, MemoryRegion *mr);
  98#endif
  99
 100#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
 101/* cputlb.c */
 102/**
 103 * tlb_init - initialize a CPU's TLB
 104 * @cpu: CPU whose TLB should be initialized
 105 */
 106void tlb_init(CPUState *cpu);
 107/**
 108 * tlb_flush_page:
 109 * @cpu: CPU whose TLB should be flushed
 110 * @addr: virtual address of page to be flushed
 111 *
 112 * Flush one page from the TLB of the specified CPU, for all
 113 * MMU indexes.
 114 */
 115void tlb_flush_page(CPUState *cpu, target_ulong addr);
 116/**
 117 * tlb_flush_page_all_cpus:
 118 * @cpu: src CPU of the flush
 119 * @addr: virtual address of page to be flushed
 120 *
 121 * Flush one page from the TLB of the specified CPU, for all
 122 * MMU indexes.
 123 */
 124void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
 125/**
 126 * tlb_flush_page_all_cpus_synced:
 127 * @cpu: src CPU of the flush
 128 * @addr: virtual address of page to be flushed
 129 *
 130 * Flush one page from the TLB of the specified CPU, for all MMU
 131 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
 132 * is scheduled as safe work meaning all flushes will be complete once
 133 * the source vCPUs safe work is complete. This will depend on when
 134 * the guests translation ends the TB.
 135 */
 136void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
 137/**
 138 * tlb_flush:
 139 * @cpu: CPU whose TLB should be flushed
 140 *
 141 * Flush the entire TLB for the specified CPU. Most CPU architectures
 142 * allow the implementation to drop entries from the TLB at any time
 143 * so this is generally safe. If more selective flushing is required
 144 * use one of the other functions for efficiency.
 145 */
 146void tlb_flush(CPUState *cpu);
 147/**
 148 * tlb_flush_all_cpus:
 149 * @cpu: src CPU of the flush
 150 */
 151void tlb_flush_all_cpus(CPUState *src_cpu);
 152/**
 153 * tlb_flush_all_cpus_synced:
 154 * @cpu: src CPU of the flush
 155 *
 156 * Like tlb_flush_all_cpus except this except the source vCPUs work is
 157 * scheduled as safe work meaning all flushes will be complete once
 158 * the source vCPUs safe work is complete. This will depend on when
 159 * the guests translation ends the TB.
 160 */
 161void tlb_flush_all_cpus_synced(CPUState *src_cpu);
 162/**
 163 * tlb_flush_page_by_mmuidx:
 164 * @cpu: CPU whose TLB should be flushed
 165 * @addr: virtual address of page to be flushed
 166 * @idxmap: bitmap of MMU indexes to flush
 167 *
 168 * Flush one page from the TLB of the specified CPU, for the specified
 169 * MMU indexes.
 170 */
 171void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
 172                              uint16_t idxmap);
 173/**
 174 * tlb_flush_page_by_mmuidx_all_cpus:
 175 * @cpu: Originating CPU of the flush
 176 * @addr: virtual address of page to be flushed
 177 * @idxmap: bitmap of MMU indexes to flush
 178 *
 179 * Flush one page from the TLB of all CPUs, for the specified
 180 * MMU indexes.
 181 */
 182void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
 183                                       uint16_t idxmap);
 184/**
 185 * tlb_flush_page_by_mmuidx_all_cpus_synced:
 186 * @cpu: Originating CPU of the flush
 187 * @addr: virtual address of page to be flushed
 188 * @idxmap: bitmap of MMU indexes to flush
 189 *
 190 * Flush one page from the TLB of all CPUs, for the specified MMU
 191 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
 192 * vCPUs work is scheduled as safe work meaning all flushes will be
 193 * complete once  the source vCPUs safe work is complete. This will
 194 * depend on when the guests translation ends the TB.
 195 */
 196void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
 197                                              uint16_t idxmap);
 198/**
 199 * tlb_flush_by_mmuidx:
 200 * @cpu: CPU whose TLB should be flushed
 201 * @wait: If true ensure synchronisation by exiting the cpu_loop
 202 * @idxmap: bitmap of MMU indexes to flush
 203 *
 204 * Flush all entries from the TLB of the specified CPU, for the specified
 205 * MMU indexes.
 206 */
 207void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
 208/**
 209 * tlb_flush_by_mmuidx_all_cpus:
 210 * @cpu: Originating CPU of the flush
 211 * @idxmap: bitmap of MMU indexes to flush
 212 *
 213 * Flush all entries from all TLBs of all CPUs, for the specified
 214 * MMU indexes.
 215 */
 216void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
 217/**
 218 * tlb_flush_by_mmuidx_all_cpus_synced:
 219 * @cpu: Originating CPU of the flush
 220 * @idxmap: bitmap of MMU indexes to flush
 221 *
 222 * Flush all entries from all TLBs of all CPUs, for the specified
 223 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
 224 * vCPUs work is scheduled as safe work meaning all flushes will be
 225 * complete once  the source vCPUs safe work is complete. This will
 226 * depend on when the guests translation ends the TB.
 227 */
 228void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
 229/**
 230 * tlb_set_page_with_attrs:
 231 * @cpu: CPU to add this TLB entry for
 232 * @vaddr: virtual address of page to add entry for
 233 * @paddr: physical address of the page
 234 * @attrs: memory transaction attributes
 235 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
 236 * @mmu_idx: MMU index to insert TLB entry for
 237 * @size: size of the page in bytes
 238 *
 239 * Add an entry to this CPU's TLB (a mapping from virtual address
 240 * @vaddr to physical address @paddr) with the specified memory
 241 * transaction attributes. This is generally called by the target CPU
 242 * specific code after it has been called through the tlb_fill()
 243 * entry point and performed a successful page table walk to find
 244 * the physical address and attributes for the virtual address
 245 * which provoked the TLB miss.
 246 *
 247 * At most one entry for a given virtual address is permitted. Only a
 248 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
 249 * used by tlb_flush_page.
 250 */
 251void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 252                             hwaddr paddr, MemTxAttrs attrs,
 253                             int prot, int mmu_idx, target_ulong size);
 254/* tlb_set_page:
 255 *
 256 * This function is equivalent to calling tlb_set_page_with_attrs()
 257 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
 258 * as a convenience for CPUs which don't use memory transaction attributes.
 259 */
 260void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 261                  hwaddr paddr, int prot,
 262                  int mmu_idx, target_ulong size);
 263void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
 264                 uintptr_t retaddr);
 265#else
 266static inline void tlb_init(CPUState *cpu)
 267{
 268}
 269static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
 270{
 271}
 272static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 273{
 274}
 275static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
 276                                                  target_ulong addr)
 277{
 278}
 279static inline void tlb_flush(CPUState *cpu)
 280{
 281}
 282static inline void tlb_flush_all_cpus(CPUState *src_cpu)
 283{
 284}
 285static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 286{
 287}
 288static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
 289                                            target_ulong addr, uint16_t idxmap)
 290{
 291}
 292
 293static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 294{
 295}
 296static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
 297                                                     target_ulong addr,
 298                                                     uint16_t idxmap)
 299{
 300}
 301static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
 302                                                            target_ulong addr,
 303                                                            uint16_t idxmap)
 304{
 305}
 306static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
 307{
 308}
 309
 310static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
 311                                                       uint16_t idxmap)
 312{
 313}
 314#endif
 315
 316#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
 317
 318/* Estimated block size for TB allocation.  */
 319/* ??? The following is based on a 2015 survey of x86_64 host output.
 320   Better would seem to be some sort of dynamically sized TB array,
 321   adapting to the block sizes actually being produced.  */
 322#if defined(CONFIG_SOFTMMU)
 323#define CODE_GEN_AVG_BLOCK_SIZE 400
 324#else
 325#define CODE_GEN_AVG_BLOCK_SIZE 150
 326#endif
 327
 328/*
 329 * Translation Cache-related fields of a TB.
 330 * This struct exists just for convenience; we keep track of TB's in a binary
 331 * search tree, and the only fields needed to compare TB's in the tree are
 332 * @ptr and @size.
 333 * Note: the address of search data can be obtained by adding @size to @ptr.
 334 */
 335struct tb_tc {
 336    void *ptr;    /* pointer to the translated code */
 337    size_t size;
 338};
 339
 340struct TranslationBlock {
 341    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
 342    target_ulong cs_base; /* CS base for this block */
 343    uint32_t flags; /* flags defining in which context the code was generated */
 344    uint16_t size;      /* size of target code for this block (1 <=
 345                           size <= TARGET_PAGE_SIZE) */
 346    uint16_t icount;
 347    uint32_t cflags;    /* compile flags */
 348#define CF_COUNT_MASK  0x00007fff
 349#define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
 350#define CF_NOCACHE     0x00010000 /* To be freed after execution */
 351#define CF_USE_ICOUNT  0x00020000
 352#define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
 353#define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
 354/* cflags' mask for hashing/comparison */
 355#define CF_HASH_MASK   \
 356    (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
 357
 358    /* Per-vCPU dynamic tracing state used to generate this TB */
 359    uint32_t trace_vcpu_dstate;
 360
 361    struct tb_tc tc;
 362
 363    /* original tb when cflags has CF_NOCACHE */
 364    struct TranslationBlock *orig_tb;
 365    /* first and second physical page containing code. The lower bit
 366       of the pointer tells the index in page_next[].
 367       The list is protected by the TB's page('s) lock(s) */
 368    uintptr_t page_next[2];
 369    tb_page_addr_t page_addr[2];
 370
 371    /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
 372    QemuSpin jmp_lock;
 373
 374    /* The following data are used to directly call another TB from
 375     * the code of this one. This can be done either by emitting direct or
 376     * indirect native jump instructions. These jumps are reset so that the TB
 377     * just continues its execution. The TB can be linked to another one by
 378     * setting one of the jump targets (or patching the jump instruction). Only
 379     * two of such jumps are supported.
 380     */
 381    uint16_t jmp_reset_offset[2]; /* offset of original jump target */
 382#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
 383    uintptr_t jmp_target_arg[2];  /* target address or offset */
 384
 385    /*
 386     * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
 387     * Each TB can have two outgoing jumps, and therefore can participate
 388     * in two lists. The list entries are kept in jmp_list_next[2]. The least
 389     * significant bit (LSB) of the pointers in these lists is used to encode
 390     * which of the two list entries is to be used in the pointed TB.
 391     *
 392     * List traversals are protected by jmp_lock. The destination TB of each
 393     * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
 394     * can be acquired from any origin TB.
 395     *
 396     * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
 397     * being invalidated, so that no further outgoing jumps from it can be set.
 398     *
 399     * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
 400     * to a destination TB that has CF_INVALID set.
 401     */
 402    uintptr_t jmp_list_head;
 403    uintptr_t jmp_list_next[2];
 404    uintptr_t jmp_dest[2];
 405};
 406
 407extern bool parallel_cpus;
 408
 409/* Hide the atomic_read to make code a little easier on the eyes */
 410static inline uint32_t tb_cflags(const TranslationBlock *tb)
 411{
 412    return atomic_read(&tb->cflags);
 413}
 414
 415/* current cflags for hashing/comparison */
 416static inline uint32_t curr_cflags(void)
 417{
 418    return (parallel_cpus ? CF_PARALLEL : 0)
 419         | (use_icount ? CF_USE_ICOUNT : 0);
 420}
 421
 422/* TranslationBlock invalidate API */
 423#if defined(CONFIG_USER_ONLY)
 424void tb_invalidate_phys_addr(target_ulong addr);
 425void tb_invalidate_phys_range(target_ulong start, target_ulong end);
 426#else
 427void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
 428#endif
 429void tb_flush(CPUState *cpu);
 430void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
 431TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
 432                                   target_ulong cs_base, uint32_t flags,
 433                                   uint32_t cf_mask);
 434void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
 435
 436/* GETPC is the true target of the return instruction that we'll execute.  */
 437#if defined(CONFIG_TCG_INTERPRETER)
 438extern uintptr_t tci_tb_ptr;
 439# define GETPC() tci_tb_ptr
 440#else
 441# define GETPC() \
 442    ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
 443#endif
 444
 445/* The true return address will often point to a host insn that is part of
 446   the next translated guest insn.  Adjust the address backward to point to
 447   the middle of the call insn.  Subtracting one would do the job except for
 448   several compressed mode architectures (arm, mips) which set the low bit
 449   to indicate the compressed mode; subtracting two works around that.  It
 450   is also the case that there are no host isas that contain a call insn
 451   smaller than 4 bytes, so we don't worry about special-casing this.  */
 452#define GETPC_ADJ   2
 453
 454#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
 455void assert_no_pages_locked(void);
 456#else
 457static inline void assert_no_pages_locked(void)
 458{
 459}
 460#endif
 461
 462#if !defined(CONFIG_USER_ONLY)
 463
 464/**
 465 * iotlb_to_section:
 466 * @cpu: CPU performing the access
 467 * @index: TCG CPU IOTLB entry
 468 *
 469 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
 470 * it refers to. @index will have been initially created and returned
 471 * by memory_region_section_get_iotlb().
 472 */
 473struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
 474                                             hwaddr index, MemTxAttrs attrs);
 475
 476void tlb_fill(CPUState *cpu, target_ulong addr, int size,
 477              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
 478
 479#endif
 480
 481#if defined(CONFIG_USER_ONLY)
 482void mmap_lock(void);
 483void mmap_unlock(void);
 484bool have_mmap_lock(void);
 485
 486static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 487{
 488    return addr;
 489}
 490#else
 491static inline void mmap_lock(void) {}
 492static inline void mmap_unlock(void) {}
 493
 494/* cputlb.c */
 495tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
 496
 497void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
 498void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
 499
 500/* exec.c */
 501void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
 502
 503MemoryRegionSection *
 504address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 505                                  hwaddr *xlat, hwaddr *plen,
 506                                  MemTxAttrs attrs, int *prot);
 507hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 508                                       MemoryRegionSection *section,
 509                                       target_ulong vaddr,
 510                                       hwaddr paddr, hwaddr xlat,
 511                                       int prot,
 512                                       target_ulong *address);
 513#endif
 514
 515/* vl.c */
 516extern int singlestep;
 517
 518#endif
 519