qemu/include/exec/memory.h
<<
>>
Prefs
   1/*
   2 * Physical memory management API
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#ifndef MEMORY_H
  15#define MEMORY_H
  16
  17#ifndef CONFIG_USER_ONLY
  18
  19#include "exec/cpu-common.h"
  20#include "exec/hwaddr.h"
  21#include "exec/memattrs.h"
  22#include "exec/ramlist.h"
  23#include "qemu/queue.h"
  24#include "qemu/int128.h"
  25#include "qemu/notify.h"
  26#include "qom/object.h"
  27#include "qemu/rcu.h"
  28#include "hw/qdev-core.h"
  29
  30#define RAM_ADDR_INVALID (~(ram_addr_t)0)
  31
  32#define MAX_PHYS_ADDR_SPACE_BITS 62
  33#define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
  34
  35#define TYPE_MEMORY_REGION "qemu:memory-region"
  36#define MEMORY_REGION(obj) \
  37        OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
  38
  39#define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
  40#define IOMMU_MEMORY_REGION(obj) \
  41        OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
  42#define IOMMU_MEMORY_REGION_CLASS(klass) \
  43        OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
  44                         TYPE_IOMMU_MEMORY_REGION)
  45#define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
  46        OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
  47                         TYPE_IOMMU_MEMORY_REGION)
  48
  49typedef struct MemoryRegionOps MemoryRegionOps;
  50typedef struct MemoryRegionMmio MemoryRegionMmio;
  51
  52struct MemoryRegionMmio {
  53    CPUReadMemoryFunc *read[3];
  54    CPUWriteMemoryFunc *write[3];
  55};
  56
  57typedef struct IOMMUTLBEntry IOMMUTLBEntry;
  58
  59/* See address_space_translate: bit 0 is read, bit 1 is write.  */
  60typedef enum {
  61    IOMMU_NONE = 0,
  62    IOMMU_RO   = 1,
  63    IOMMU_WO   = 2,
  64    IOMMU_RW   = 3,
  65} IOMMUAccessFlags;
  66
  67#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
  68
  69struct IOMMUTLBEntry {
  70    AddressSpace    *target_as;
  71    hwaddr           iova;
  72    hwaddr           translated_addr;
  73    hwaddr           addr_mask;  /* 0xfff = 4k translation */
  74    IOMMUAccessFlags perm;
  75};
  76
  77/*
  78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
  79 * register with one or multiple IOMMU Notifier capability bit(s).
  80 */
  81typedef enum {
  82    IOMMU_NOTIFIER_NONE = 0,
  83    /* Notify cache invalidations */
  84    IOMMU_NOTIFIER_UNMAP = 0x1,
  85    /* Notify entry changes (newly created entries) */
  86    IOMMU_NOTIFIER_MAP = 0x2,
  87} IOMMUNotifierFlag;
  88
  89#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
  90
  91struct IOMMUNotifier;
  92typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
  93                            IOMMUTLBEntry *data);
  94
  95struct IOMMUNotifier {
  96    IOMMUNotify notify;
  97    IOMMUNotifierFlag notifier_flags;
  98    /* Notify for address space range start <= addr <= end */
  99    hwaddr start;
 100    hwaddr end;
 101    int iommu_idx;
 102    QLIST_ENTRY(IOMMUNotifier) node;
 103};
 104typedef struct IOMMUNotifier IOMMUNotifier;
 105
 106/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 107#define RAM_PREALLOC   (1 << 0)
 108
 109/* RAM is mmap-ed with MAP_SHARED */
 110#define RAM_SHARED     (1 << 1)
 111
 112/* Only a portion of RAM (used_length) is actually used, and migrated.
 113 * This used_length size can change across reboots.
 114 */
 115#define RAM_RESIZEABLE (1 << 2)
 116
 117/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
 118 * zero the page and wake waiting processes.
 119 * (Set during postcopy)
 120 */
 121#define RAM_UF_ZEROPAGE (1 << 3)
 122
 123/* RAM can be migrated */
 124#define RAM_MIGRATABLE (1 << 4)
 125
 126/* RAM is a persistent kind memory */
 127#define RAM_PMEM (1 << 5)
 128
 129static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
 130                                       IOMMUNotifierFlag flags,
 131                                       hwaddr start, hwaddr end,
 132                                       int iommu_idx)
 133{
 134    n->notify = fn;
 135    n->notifier_flags = flags;
 136    n->start = start;
 137    n->end = end;
 138    n->iommu_idx = iommu_idx;
 139}
 140
 141/*
 142 * Memory region callbacks
 143 */
 144struct MemoryRegionOps {
 145    /* Read from the memory region. @addr is relative to @mr; @size is
 146     * in bytes. */
 147    uint64_t (*read)(void *opaque,
 148                     hwaddr addr,
 149                     unsigned size);
 150    /* Write to the memory region. @addr is relative to @mr; @size is
 151     * in bytes. */
 152    void (*write)(void *opaque,
 153                  hwaddr addr,
 154                  uint64_t data,
 155                  unsigned size);
 156
 157    MemTxResult (*read_with_attrs)(void *opaque,
 158                                   hwaddr addr,
 159                                   uint64_t *data,
 160                                   unsigned size,
 161                                   MemTxAttrs attrs);
 162    MemTxResult (*write_with_attrs)(void *opaque,
 163                                    hwaddr addr,
 164                                    uint64_t data,
 165                                    unsigned size,
 166                                    MemTxAttrs attrs);
 167
 168    enum device_endian endianness;
 169    /* Guest-visible constraints: */
 170    struct {
 171        /* If nonzero, specify bounds on access sizes beyond which a machine
 172         * check is thrown.
 173         */
 174        unsigned min_access_size;
 175        unsigned max_access_size;
 176        /* If true, unaligned accesses are supported.  Otherwise unaligned
 177         * accesses throw machine checks.
 178         */
 179         bool unaligned;
 180        /*
 181         * If present, and returns #false, the transaction is not accepted
 182         * by the device (and results in machine dependent behaviour such
 183         * as a machine check exception).
 184         */
 185        bool (*accepts)(void *opaque, hwaddr addr,
 186                        unsigned size, bool is_write,
 187                        MemTxAttrs attrs);
 188    } valid;
 189    /* Internal implementation constraints: */
 190    struct {
 191        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
 192         * will be rounded upwards and a partial result will be returned.
 193         */
 194        unsigned min_access_size;
 195        /* If nonzero, specifies the maximum size implemented.  Larger sizes
 196         * will be done as a series of accesses with smaller sizes.
 197         */
 198        unsigned max_access_size;
 199        /* If true, unaligned accesses are supported.  Otherwise all accesses
 200         * are converted to (possibly multiple) naturally aligned accesses.
 201         */
 202        bool unaligned;
 203    } impl;
 204};
 205
 206enum IOMMUMemoryRegionAttr {
 207    IOMMU_ATTR_SPAPR_TCE_FD
 208};
 209
 210/**
 211 * IOMMUMemoryRegionClass:
 212 *
 213 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
 214 * and provide an implementation of at least the @translate method here
 215 * to handle requests to the memory region. Other methods are optional.
 216 *
 217 * The IOMMU implementation must use the IOMMU notifier infrastructure
 218 * to report whenever mappings are changed, by calling
 219 * memory_region_notify_iommu() (or, if necessary, by calling
 220 * memory_region_notify_one() for each registered notifier).
 221 *
 222 * Conceptually an IOMMU provides a mapping from input address
 223 * to an output TLB entry. If the IOMMU is aware of memory transaction
 224 * attributes and the output TLB entry depends on the transaction
 225 * attributes, we represent this using IOMMU indexes. Each index
 226 * selects a particular translation table that the IOMMU has:
 227 *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
 228 *   @translate takes an input address and an IOMMU index
 229 * and the mapping returned can only depend on the input address and the
 230 * IOMMU index.
 231 *
 232 * Most IOMMUs don't care about the transaction attributes and support
 233 * only a single IOMMU index. A more complex IOMMU might have one index
 234 * for secure transactions and one for non-secure transactions.
 235 */
 236typedef struct IOMMUMemoryRegionClass {
 237    /* private */
 238    struct DeviceClass parent_class;
 239
 240    /*
 241     * Return a TLB entry that contains a given address.
 242     *
 243     * The IOMMUAccessFlags indicated via @flag are optional and may
 244     * be specified as IOMMU_NONE to indicate that the caller needs
 245     * the full translation information for both reads and writes. If
 246     * the access flags are specified then the IOMMU implementation
 247     * may use this as an optimization, to stop doing a page table
 248     * walk as soon as it knows that the requested permissions are not
 249     * allowed. If IOMMU_NONE is passed then the IOMMU must do the
 250     * full page table walk and report the permissions in the returned
 251     * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
 252     * return different mappings for reads and writes.)
 253     *
 254     * The returned information remains valid while the caller is
 255     * holding the big QEMU lock or is inside an RCU critical section;
 256     * if the caller wishes to cache the mapping beyond that it must
 257     * register an IOMMU notifier so it can invalidate its cached
 258     * information when the IOMMU mapping changes.
 259     *
 260     * @iommu: the IOMMUMemoryRegion
 261     * @hwaddr: address to be translated within the memory region
 262     * @flag: requested access permissions
 263     * @iommu_idx: IOMMU index for the translation
 264     */
 265    IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
 266                               IOMMUAccessFlags flag, int iommu_idx);
 267    /* Returns minimum supported page size in bytes.
 268     * If this method is not provided then the minimum is assumed to
 269     * be TARGET_PAGE_SIZE.
 270     *
 271     * @iommu: the IOMMUMemoryRegion
 272     */
 273    uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
 274    /* Called when IOMMU Notifier flag changes (ie when the set of
 275     * events which IOMMU users are requesting notification for changes).
 276     * Optional method -- need not be provided if the IOMMU does not
 277     * need to know exactly which events must be notified.
 278     *
 279     * @iommu: the IOMMUMemoryRegion
 280     * @old_flags: events which previously needed to be notified
 281     * @new_flags: events which now need to be notified
 282     */
 283    void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
 284                                IOMMUNotifierFlag old_flags,
 285                                IOMMUNotifierFlag new_flags);
 286    /* Called to handle memory_region_iommu_replay().
 287     *
 288     * The default implementation of memory_region_iommu_replay() is to
 289     * call the IOMMU translate method for every page in the address space
 290     * with flag == IOMMU_NONE and then call the notifier if translate
 291     * returns a valid mapping. If this method is implemented then it
 292     * overrides the default behaviour, and must provide the full semantics
 293     * of memory_region_iommu_replay(), by calling @notifier for every
 294     * translation present in the IOMMU.
 295     *
 296     * Optional method -- an IOMMU only needs to provide this method
 297     * if the default is inefficient or produces undesirable side effects.
 298     *
 299     * Note: this is not related to record-and-replay functionality.
 300     */
 301    void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
 302
 303    /* Get IOMMU misc attributes. This is an optional method that
 304     * can be used to allow users of the IOMMU to get implementation-specific
 305     * information. The IOMMU implements this method to handle calls
 306     * by IOMMU users to memory_region_iommu_get_attr() by filling in
 307     * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
 308     * the IOMMU supports. If the method is unimplemented then
 309     * memory_region_iommu_get_attr() will always return -EINVAL.
 310     *
 311     * @iommu: the IOMMUMemoryRegion
 312     * @attr: attribute being queried
 313     * @data: memory to fill in with the attribute data
 314     *
 315     * Returns 0 on success, or a negative errno; in particular
 316     * returns -EINVAL for unrecognized or unimplemented attribute types.
 317     */
 318    int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
 319                    void *data);
 320
 321    /* Return the IOMMU index to use for a given set of transaction attributes.
 322     *
 323     * Optional method: if an IOMMU only supports a single IOMMU index then
 324     * the default implementation of memory_region_iommu_attrs_to_index()
 325     * will return 0.
 326     *
 327     * The indexes supported by an IOMMU must be contiguous, starting at 0.
 328     *
 329     * @iommu: the IOMMUMemoryRegion
 330     * @attrs: memory transaction attributes
 331     */
 332    int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
 333
 334    /* Return the number of IOMMU indexes this IOMMU supports.
 335     *
 336     * Optional method: if this method is not provided, then
 337     * memory_region_iommu_num_indexes() will return 1, indicating that
 338     * only a single IOMMU index is supported.
 339     *
 340     * @iommu: the IOMMUMemoryRegion
 341     */
 342    int (*num_indexes)(IOMMUMemoryRegion *iommu);
 343} IOMMUMemoryRegionClass;
 344
 345typedef struct CoalescedMemoryRange CoalescedMemoryRange;
 346typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
 347
 348struct MemoryRegion {
 349    Object parent_obj;
 350
 351    /* All fields are private - violators will be prosecuted */
 352
 353    /* The following fields should fit in a cache line */
 354    bool romd_mode;
 355    bool ram;
 356    bool subpage;
 357    bool readonly; /* For RAM regions */
 358    bool nonvolatile;
 359    bool rom_device;
 360    bool flush_coalesced_mmio;
 361    bool global_locking;
 362    uint8_t dirty_log_mask;
 363    bool is_iommu;
 364    RAMBlock *ram_block;
 365    Object *owner;
 366
 367    const MemoryRegionOps *ops;
 368    void *opaque;
 369    MemoryRegion *container;
 370    Int128 size;
 371    hwaddr addr;
 372    void (*destructor)(MemoryRegion *mr);
 373    uint64_t align;
 374    bool terminates;
 375    bool ram_device;
 376    bool enabled;
 377    bool warning_printed; /* For reservations */
 378    uint8_t vga_logging_count;
 379    MemoryRegion *alias;
 380    hwaddr alias_offset;
 381    int32_t priority;
 382    QTAILQ_HEAD(subregions, MemoryRegion) subregions;
 383    QTAILQ_ENTRY(MemoryRegion) subregions_link;
 384    QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
 385    const char *name;
 386    unsigned ioeventfd_nb;
 387    MemoryRegionIoeventfd *ioeventfds;
 388};
 389
 390struct IOMMUMemoryRegion {
 391    MemoryRegion parent_obj;
 392
 393    QLIST_HEAD(, IOMMUNotifier) iommu_notify;
 394    IOMMUNotifierFlag iommu_notify_flags;
 395};
 396
 397#define IOMMU_NOTIFIER_FOREACH(n, mr) \
 398    QLIST_FOREACH((n), &(mr)->iommu_notify, node)
 399
 400/**
 401 * MemoryListener: callbacks structure for updates to the physical memory map
 402 *
 403 * Allows a component to adjust to changes in the guest-visible memory map.
 404 * Use with memory_listener_register() and memory_listener_unregister().
 405 */
 406struct MemoryListener {
 407    void (*begin)(MemoryListener *listener);
 408    void (*commit)(MemoryListener *listener);
 409    void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
 410    void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
 411    void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
 412    void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
 413                      int old, int new);
 414    void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
 415                     int old, int new);
 416    void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
 417    void (*log_global_start)(MemoryListener *listener);
 418    void (*log_global_stop)(MemoryListener *listener);
 419    void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
 420                        bool match_data, uint64_t data, EventNotifier *e);
 421    void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
 422                        bool match_data, uint64_t data, EventNotifier *e);
 423    void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
 424                               hwaddr addr, hwaddr len);
 425    void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
 426                               hwaddr addr, hwaddr len);
 427    /* Lower = earlier (during add), later (during del) */
 428    unsigned priority;
 429    AddressSpace *address_space;
 430    QTAILQ_ENTRY(MemoryListener) link;
 431    QTAILQ_ENTRY(MemoryListener) link_as;
 432};
 433
 434/**
 435 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
 436 */
 437struct AddressSpace {
 438    /* All fields are private. */
 439    struct rcu_head rcu;
 440    char *name;
 441    MemoryRegion *root;
 442
 443    /* Accessed via RCU.  */
 444    struct FlatView *current_map;
 445
 446    int ioeventfd_nb;
 447    struct MemoryRegionIoeventfd *ioeventfds;
 448    QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
 449    QTAILQ_ENTRY(AddressSpace) address_spaces_link;
 450};
 451
 452typedef struct AddressSpaceDispatch AddressSpaceDispatch;
 453typedef struct FlatRange FlatRange;
 454
 455/* Flattened global view of current active memory hierarchy.  Kept in sorted
 456 * order.
 457 */
 458struct FlatView {
 459    struct rcu_head rcu;
 460    unsigned ref;
 461    FlatRange *ranges;
 462    unsigned nr;
 463    unsigned nr_allocated;
 464    struct AddressSpaceDispatch *dispatch;
 465    MemoryRegion *root;
 466};
 467
 468static inline FlatView *address_space_to_flatview(AddressSpace *as)
 469{
 470    return atomic_rcu_read(&as->current_map);
 471}
 472
 473
 474/**
 475 * MemoryRegionSection: describes a fragment of a #MemoryRegion
 476 *
 477 * @mr: the region, or %NULL if empty
 478 * @fv: the flat view of the address space the region is mapped in
 479 * @offset_within_region: the beginning of the section, relative to @mr's start
 480 * @size: the size of the section; will not exceed @mr's boundaries
 481 * @offset_within_address_space: the address of the first byte of the section
 482 *     relative to the region's address space
 483 * @readonly: writes to this section are ignored
 484 * @nonvolatile: this section is non-volatile
 485 */
 486struct MemoryRegionSection {
 487    MemoryRegion *mr;
 488    FlatView *fv;
 489    hwaddr offset_within_region;
 490    Int128 size;
 491    hwaddr offset_within_address_space;
 492    bool readonly;
 493    bool nonvolatile;
 494};
 495
 496/**
 497 * memory_region_init: Initialize a memory region
 498 *
 499 * The region typically acts as a container for other memory regions.  Use
 500 * memory_region_add_subregion() to add subregions.
 501 *
 502 * @mr: the #MemoryRegion to be initialized
 503 * @owner: the object that tracks the region's reference count
 504 * @name: used for debugging; not visible to the user or ABI
 505 * @size: size of the region; any subregions beyond this size will be clipped
 506 */
 507void memory_region_init(MemoryRegion *mr,
 508                        struct Object *owner,
 509                        const char *name,
 510                        uint64_t size);
 511
 512/**
 513 * memory_region_ref: Add 1 to a memory region's reference count
 514 *
 515 * Whenever memory regions are accessed outside the BQL, they need to be
 516 * preserved against hot-unplug.  MemoryRegions actually do not have their
 517 * own reference count; they piggyback on a QOM object, their "owner".
 518 * This function adds a reference to the owner.
 519 *
 520 * All MemoryRegions must have an owner if they can disappear, even if the
 521 * device they belong to operates exclusively under the BQL.  This is because
 522 * the region could be returned at any time by memory_region_find, and this
 523 * is usually under guest control.
 524 *
 525 * @mr: the #MemoryRegion
 526 */
 527void memory_region_ref(MemoryRegion *mr);
 528
 529/**
 530 * memory_region_unref: Remove 1 to a memory region's reference count
 531 *
 532 * Whenever memory regions are accessed outside the BQL, they need to be
 533 * preserved against hot-unplug.  MemoryRegions actually do not have their
 534 * own reference count; they piggyback on a QOM object, their "owner".
 535 * This function removes a reference to the owner and possibly destroys it.
 536 *
 537 * @mr: the #MemoryRegion
 538 */
 539void memory_region_unref(MemoryRegion *mr);
 540
 541/**
 542 * memory_region_init_io: Initialize an I/O memory region.
 543 *
 544 * Accesses into the region will cause the callbacks in @ops to be called.
 545 * if @size is nonzero, subregions will be clipped to @size.
 546 *
 547 * @mr: the #MemoryRegion to be initialized.
 548 * @owner: the object that tracks the region's reference count
 549 * @ops: a structure containing read and write callbacks to be used when
 550 *       I/O is performed on the region.
 551 * @opaque: passed to the read and write callbacks of the @ops structure.
 552 * @name: used for debugging; not visible to the user or ABI
 553 * @size: size of the region.
 554 */
 555void memory_region_init_io(MemoryRegion *mr,
 556                           struct Object *owner,
 557                           const MemoryRegionOps *ops,
 558                           void *opaque,
 559                           const char *name,
 560                           uint64_t size);
 561
 562/**
 563 * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
 564 *                                    into the region will modify memory
 565 *                                    directly.
 566 *
 567 * @mr: the #MemoryRegion to be initialized.
 568 * @owner: the object that tracks the region's reference count
 569 * @name: Region name, becomes part of RAMBlock name used in migration stream
 570 *        must be unique within any device
 571 * @size: size of the region.
 572 * @errp: pointer to Error*, to store an error if it happens.
 573 *
 574 * Note that this function does not do anything to cause the data in the
 575 * RAM memory region to be migrated; that is the responsibility of the caller.
 576 */
 577void memory_region_init_ram_nomigrate(MemoryRegion *mr,
 578                                      struct Object *owner,
 579                                      const char *name,
 580                                      uint64_t size,
 581                                      Error **errp);
 582
 583/**
 584 * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
 585 *                                           Accesses into the region will
 586 *                                           modify memory directly.
 587 *
 588 * @mr: the #MemoryRegion to be initialized.
 589 * @owner: the object that tracks the region's reference count
 590 * @name: Region name, becomes part of RAMBlock name used in migration stream
 591 *        must be unique within any device
 592 * @size: size of the region.
 593 * @share: allow remapping RAM to different addresses
 594 * @errp: pointer to Error*, to store an error if it happens.
 595 *
 596 * Note that this function is similar to memory_region_init_ram_nomigrate.
 597 * The only difference is part of the RAM region can be remapped.
 598 */
 599void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
 600                                             struct Object *owner,
 601                                             const char *name,
 602                                             uint64_t size,
 603                                             bool share,
 604                                             Error **errp);
 605
 606/**
 607 * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
 608 *                                     RAM.  Accesses into the region will
 609 *                                     modify memory directly.  Only an initial
 610 *                                     portion of this RAM is actually used.
 611 *                                     The used size can change across reboots.
 612 *
 613 * @mr: the #MemoryRegion to be initialized.
 614 * @owner: the object that tracks the region's reference count
 615 * @name: Region name, becomes part of RAMBlock name used in migration stream
 616 *        must be unique within any device
 617 * @size: used size of the region.
 618 * @max_size: max size of the region.
 619 * @resized: callback to notify owner about used size change.
 620 * @errp: pointer to Error*, to store an error if it happens.
 621 *
 622 * Note that this function does not do anything to cause the data in the
 623 * RAM memory region to be migrated; that is the responsibility of the caller.
 624 */
 625void memory_region_init_resizeable_ram(MemoryRegion *mr,
 626                                       struct Object *owner,
 627                                       const char *name,
 628                                       uint64_t size,
 629                                       uint64_t max_size,
 630                                       void (*resized)(const char*,
 631                                                       uint64_t length,
 632                                                       void *host),
 633                                       Error **errp);
 634#ifdef CONFIG_POSIX
 635
 636/**
 637 * memory_region_init_ram_from_file:  Initialize RAM memory region with a
 638 *                                    mmap-ed backend.
 639 *
 640 * @mr: the #MemoryRegion to be initialized.
 641 * @owner: the object that tracks the region's reference count
 642 * @name: Region name, becomes part of RAMBlock name used in migration stream
 643 *        must be unique within any device
 644 * @size: size of the region.
 645 * @align: alignment of the region base address; if 0, the default alignment
 646 *         (getpagesize()) will be used.
 647 * @ram_flags: Memory region features:
 648 *             - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
 649 *             - RAM_PMEM: the memory is persistent memory
 650 *             Other bits are ignored now.
 651 * @path: the path in which to allocate the RAM.
 652 * @errp: pointer to Error*, to store an error if it happens.
 653 *
 654 * Note that this function does not do anything to cause the data in the
 655 * RAM memory region to be migrated; that is the responsibility of the caller.
 656 */
 657void memory_region_init_ram_from_file(MemoryRegion *mr,
 658                                      struct Object *owner,
 659                                      const char *name,
 660                                      uint64_t size,
 661                                      uint64_t align,
 662                                      uint32_t ram_flags,
 663                                      const char *path,
 664                                      Error **errp);
 665
 666/**
 667 * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
 668 *                                  mmap-ed backend.
 669 *
 670 * @mr: the #MemoryRegion to be initialized.
 671 * @owner: the object that tracks the region's reference count
 672 * @name: the name of the region.
 673 * @size: size of the region.
 674 * @share: %true if memory must be mmaped with the MAP_SHARED flag
 675 * @fd: the fd to mmap.
 676 * @errp: pointer to Error*, to store an error if it happens.
 677 *
 678 * Note that this function does not do anything to cause the data in the
 679 * RAM memory region to be migrated; that is the responsibility of the caller.
 680 */
 681void memory_region_init_ram_from_fd(MemoryRegion *mr,
 682                                    struct Object *owner,
 683                                    const char *name,
 684                                    uint64_t size,
 685                                    bool share,
 686                                    int fd,
 687                                    Error **errp);
 688#endif
 689
 690/**
 691 * memory_region_init_ram_ptr:  Initialize RAM memory region from a
 692 *                              user-provided pointer.  Accesses into the
 693 *                              region will modify memory directly.
 694 *
 695 * @mr: the #MemoryRegion to be initialized.
 696 * @owner: the object that tracks the region's reference count
 697 * @name: Region name, becomes part of RAMBlock name used in migration stream
 698 *        must be unique within any device
 699 * @size: size of the region.
 700 * @ptr: memory to be mapped; must contain at least @size bytes.
 701 *
 702 * Note that this function does not do anything to cause the data in the
 703 * RAM memory region to be migrated; that is the responsibility of the caller.
 704 */
 705void memory_region_init_ram_ptr(MemoryRegion *mr,
 706                                struct Object *owner,
 707                                const char *name,
 708                                uint64_t size,
 709                                void *ptr);
 710
 711/**
 712 * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
 713 *                                     a user-provided pointer.
 714 *
 715 * A RAM device represents a mapping to a physical device, such as to a PCI
 716 * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
 717 * into the VM address space and access to the region will modify memory
 718 * directly.  However, the memory region should not be included in a memory
 719 * dump (device may not be enabled/mapped at the time of the dump), and
 720 * operations incompatible with manipulating MMIO should be avoided.  Replaces
 721 * skip_dump flag.
 722 *
 723 * @mr: the #MemoryRegion to be initialized.
 724 * @owner: the object that tracks the region's reference count
 725 * @name: the name of the region.
 726 * @size: size of the region.
 727 * @ptr: memory to be mapped; must contain at least @size bytes.
 728 *
 729 * Note that this function does not do anything to cause the data in the
 730 * RAM memory region to be migrated; that is the responsibility of the caller.
 731 * (For RAM device memory regions, migrating the contents rarely makes sense.)
 732 */
 733void memory_region_init_ram_device_ptr(MemoryRegion *mr,
 734                                       struct Object *owner,
 735                                       const char *name,
 736                                       uint64_t size,
 737                                       void *ptr);
 738
 739/**
 740 * memory_region_init_alias: Initialize a memory region that aliases all or a
 741 *                           part of another memory region.
 742 *
 743 * @mr: the #MemoryRegion to be initialized.
 744 * @owner: the object that tracks the region's reference count
 745 * @name: used for debugging; not visible to the user or ABI
 746 * @orig: the region to be referenced; @mr will be equivalent to
 747 *        @orig between @offset and @offset + @size - 1.
 748 * @offset: start of the section in @orig to be referenced.
 749 * @size: size of the region.
 750 */
 751void memory_region_init_alias(MemoryRegion *mr,
 752                              struct Object *owner,
 753                              const char *name,
 754                              MemoryRegion *orig,
 755                              hwaddr offset,
 756                              uint64_t size);
 757
 758/**
 759 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
 760 *
 761 * This has the same effect as calling memory_region_init_ram_nomigrate()
 762 * and then marking the resulting region read-only with
 763 * memory_region_set_readonly().
 764 *
 765 * Note that this function does not do anything to cause the data in the
 766 * RAM side of the memory region to be migrated; that is the responsibility
 767 * of the caller.
 768 *
 769 * @mr: the #MemoryRegion to be initialized.
 770 * @owner: the object that tracks the region's reference count
 771 * @name: Region name, becomes part of RAMBlock name used in migration stream
 772 *        must be unique within any device
 773 * @size: size of the region.
 774 * @errp: pointer to Error*, to store an error if it happens.
 775 */
 776void memory_region_init_rom_nomigrate(MemoryRegion *mr,
 777                                      struct Object *owner,
 778                                      const char *name,
 779                                      uint64_t size,
 780                                      Error **errp);
 781
 782/**
 783 * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
 784 *                                 Writes are handled via callbacks.
 785 *
 786 * Note that this function does not do anything to cause the data in the
 787 * RAM side of the memory region to be migrated; that is the responsibility
 788 * of the caller.
 789 *
 790 * @mr: the #MemoryRegion to be initialized.
 791 * @owner: the object that tracks the region's reference count
 792 * @ops: callbacks for write access handling (must not be NULL).
 793 * @opaque: passed to the read and write callbacks of the @ops structure.
 794 * @name: Region name, becomes part of RAMBlock name used in migration stream
 795 *        must be unique within any device
 796 * @size: size of the region.
 797 * @errp: pointer to Error*, to store an error if it happens.
 798 */
 799void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
 800                                             struct Object *owner,
 801                                             const MemoryRegionOps *ops,
 802                                             void *opaque,
 803                                             const char *name,
 804                                             uint64_t size,
 805                                             Error **errp);
 806
 807/**
 808 * memory_region_init_iommu: Initialize a memory region of a custom type
 809 * that translates addresses
 810 *
 811 * An IOMMU region translates addresses and forwards accesses to a target
 812 * memory region.
 813 *
 814 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
 815 * @_iommu_mr should be a pointer to enough memory for an instance of
 816 * that subclass, @instance_size is the size of that subclass, and
 817 * @mrtypename is its name. This function will initialize @_iommu_mr as an
 818 * instance of the subclass, and its methods will then be called to handle
 819 * accesses to the memory region. See the documentation of
 820 * #IOMMUMemoryRegionClass for further details.
 821 *
 822 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
 823 * @instance_size: the IOMMUMemoryRegion subclass instance size
 824 * @mrtypename: the type name of the #IOMMUMemoryRegion
 825 * @owner: the object that tracks the region's reference count
 826 * @name: used for debugging; not visible to the user or ABI
 827 * @size: size of the region.
 828 */
 829void memory_region_init_iommu(void *_iommu_mr,
 830                              size_t instance_size,
 831                              const char *mrtypename,
 832                              Object *owner,
 833                              const char *name,
 834                              uint64_t size);
 835
 836/**
 837 * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
 838 *                          region will modify memory directly.
 839 *
 840 * @mr: the #MemoryRegion to be initialized
 841 * @owner: the object that tracks the region's reference count (must be
 842 *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
 843 * @name: name of the memory region
 844 * @size: size of the region in bytes
 845 * @errp: pointer to Error*, to store an error if it happens.
 846 *
 847 * This function allocates RAM for a board model or device, and
 848 * arranges for it to be migrated (by calling vmstate_register_ram()
 849 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 850 * @owner is NULL).
 851 *
 852 * TODO: Currently we restrict @owner to being either NULL (for
 853 * global RAM regions with no owner) or devices, so that we can
 854 * give the RAM block a unique name for migration purposes.
 855 * We should lift this restriction and allow arbitrary Objects.
 856 * If you pass a non-NULL non-device @owner then we will assert.
 857 */
 858void memory_region_init_ram(MemoryRegion *mr,
 859                            struct Object *owner,
 860                            const char *name,
 861                            uint64_t size,
 862                            Error **errp);
 863
 864/**
 865 * memory_region_init_rom: Initialize a ROM memory region.
 866 *
 867 * This has the same effect as calling memory_region_init_ram()
 868 * and then marking the resulting region read-only with
 869 * memory_region_set_readonly(). This includes arranging for the
 870 * contents to be migrated.
 871 *
 872 * TODO: Currently we restrict @owner to being either NULL (for
 873 * global RAM regions with no owner) or devices, so that we can
 874 * give the RAM block a unique name for migration purposes.
 875 * We should lift this restriction and allow arbitrary Objects.
 876 * If you pass a non-NULL non-device @owner then we will assert.
 877 *
 878 * @mr: the #MemoryRegion to be initialized.
 879 * @owner: the object that tracks the region's reference count
 880 * @name: Region name, becomes part of RAMBlock name used in migration stream
 881 *        must be unique within any device
 882 * @size: size of the region.
 883 * @errp: pointer to Error*, to store an error if it happens.
 884 */
 885void memory_region_init_rom(MemoryRegion *mr,
 886                            struct Object *owner,
 887                            const char *name,
 888                            uint64_t size,
 889                            Error **errp);
 890
 891/**
 892 * memory_region_init_rom_device:  Initialize a ROM memory region.
 893 *                                 Writes are handled via callbacks.
 894 *
 895 * This function initializes a memory region backed by RAM for reads
 896 * and callbacks for writes, and arranges for the RAM backing to
 897 * be migrated (by calling vmstate_register_ram()
 898 * if @owner is a DeviceState, or vmstate_register_ram_global() if
 899 * @owner is NULL).
 900 *
 901 * TODO: Currently we restrict @owner to being either NULL (for
 902 * global RAM regions with no owner) or devices, so that we can
 903 * give the RAM block a unique name for migration purposes.
 904 * We should lift this restriction and allow arbitrary Objects.
 905 * If you pass a non-NULL non-device @owner then we will assert.
 906 *
 907 * @mr: the #MemoryRegion to be initialized.
 908 * @owner: the object that tracks the region's reference count
 909 * @ops: callbacks for write access handling (must not be NULL).
 910 * @name: Region name, becomes part of RAMBlock name used in migration stream
 911 *        must be unique within any device
 912 * @size: size of the region.
 913 * @errp: pointer to Error*, to store an error if it happens.
 914 */
 915void memory_region_init_rom_device(MemoryRegion *mr,
 916                                   struct Object *owner,
 917                                   const MemoryRegionOps *ops,
 918                                   void *opaque,
 919                                   const char *name,
 920                                   uint64_t size,
 921                                   Error **errp);
 922
 923
 924/**
 925 * memory_region_owner: get a memory region's owner.
 926 *
 927 * @mr: the memory region being queried.
 928 */
 929struct Object *memory_region_owner(MemoryRegion *mr);
 930
 931/**
 932 * memory_region_size: get a memory region's size.
 933 *
 934 * @mr: the memory region being queried.
 935 */
 936uint64_t memory_region_size(MemoryRegion *mr);
 937
 938/**
 939 * memory_region_is_ram: check whether a memory region is random access
 940 *
 941 * Returns %true if a memory region is random access.
 942 *
 943 * @mr: the memory region being queried
 944 */
 945static inline bool memory_region_is_ram(MemoryRegion *mr)
 946{
 947    return mr->ram;
 948}
 949
 950/**
 951 * memory_region_is_ram_device: check whether a memory region is a ram device
 952 *
 953 * Returns %true if a memory region is a device backed ram region
 954 *
 955 * @mr: the memory region being queried
 956 */
 957bool memory_region_is_ram_device(MemoryRegion *mr);
 958
 959/**
 960 * memory_region_is_romd: check whether a memory region is in ROMD mode
 961 *
 962 * Returns %true if a memory region is a ROM device and currently set to allow
 963 * direct reads.
 964 *
 965 * @mr: the memory region being queried
 966 */
 967static inline bool memory_region_is_romd(MemoryRegion *mr)
 968{
 969    return mr->rom_device && mr->romd_mode;
 970}
 971
 972/**
 973 * memory_region_get_iommu: check whether a memory region is an iommu
 974 *
 975 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
 976 * otherwise NULL.
 977 *
 978 * @mr: the memory region being queried
 979 */
 980static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
 981{
 982    if (mr->alias) {
 983        return memory_region_get_iommu(mr->alias);
 984    }
 985    if (mr->is_iommu) {
 986        return (IOMMUMemoryRegion *) mr;
 987    }
 988    return NULL;
 989}
 990
 991/**
 992 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
 993 *   if an iommu or NULL if not
 994 *
 995 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
 996 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
 997 *
 998 * @mr: the memory region being queried
 999 */
1000static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1001        IOMMUMemoryRegion *iommu_mr)
1002{
1003    return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1004}
1005
1006#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1007
1008/**
1009 * memory_region_iommu_get_min_page_size: get minimum supported page size
1010 * for an iommu
1011 *
1012 * Returns minimum supported page size for an iommu.
1013 *
1014 * @iommu_mr: the memory region being queried
1015 */
1016uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1017
1018/**
1019 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1020 *
1021 * The notification type will be decided by entry.perm bits:
1022 *
1023 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1024 * - For MAP (newly added entry) notifies: set entry.perm to the
1025 *   permission of the page (which is definitely !IOMMU_NONE).
1026 *
1027 * Note: for any IOMMU implementation, an in-place mapping change
1028 * should be notified with an UNMAP followed by a MAP.
1029 *
1030 * @iommu_mr: the memory region that was changed
1031 * @iommu_idx: the IOMMU index for the translation table which has changed
1032 * @entry: the new entry in the IOMMU translation table.  The entry
1033 *         replaces all old entries for the same virtual I/O address range.
1034 *         Deleted entries have .@perm == 0.
1035 */
1036void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1037                                int iommu_idx,
1038                                IOMMUTLBEntry entry);
1039
1040/**
1041 * memory_region_notify_one: notify a change in an IOMMU translation
1042 *                           entry to a single notifier
1043 *
1044 * This works just like memory_region_notify_iommu(), but it only
1045 * notifies a specific notifier, not all of them.
1046 *
1047 * @notifier: the notifier to be notified
1048 * @entry: the new entry in the IOMMU translation table.  The entry
1049 *         replaces all old entries for the same virtual I/O address range.
1050 *         Deleted entries have .@perm == 0.
1051 */
1052void memory_region_notify_one(IOMMUNotifier *notifier,
1053                              IOMMUTLBEntry *entry);
1054
1055/**
1056 * memory_region_register_iommu_notifier: register a notifier for changes to
1057 * IOMMU translation entries.
1058 *
1059 * @mr: the memory region to observe
1060 * @n: the IOMMUNotifier to be added; the notify callback receives a
1061 *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1062 *     ceases to be valid on exit from the notifier.
1063 */
1064void memory_region_register_iommu_notifier(MemoryRegion *mr,
1065                                           IOMMUNotifier *n);
1066
1067/**
1068 * memory_region_iommu_replay: replay existing IOMMU translations to
1069 * a notifier with the minimum page granularity returned by
1070 * mr->iommu_ops->get_page_size().
1071 *
1072 * Note: this is not related to record-and-replay functionality.
1073 *
1074 * @iommu_mr: the memory region to observe
1075 * @n: the notifier to which to replay iommu mappings
1076 */
1077void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1078
1079/**
1080 * memory_region_iommu_replay_all: replay existing IOMMU translations
1081 * to all the notifiers registered.
1082 *
1083 * Note: this is not related to record-and-replay functionality.
1084 *
1085 * @iommu_mr: the memory region to observe
1086 */
1087void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1088
1089/**
1090 * memory_region_unregister_iommu_notifier: unregister a notifier for
1091 * changes to IOMMU translation entries.
1092 *
1093 * @mr: the memory region which was observed and for which notity_stopped()
1094 *      needs to be called
1095 * @n: the notifier to be removed.
1096 */
1097void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1098                                             IOMMUNotifier *n);
1099
1100/**
1101 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1102 * defined on the IOMMU.
1103 *
1104 * Returns 0 on success, or a negative errno otherwise. In particular,
1105 * -EINVAL indicates that the IOMMU does not support the requested
1106 * attribute.
1107 *
1108 * @iommu_mr: the memory region
1109 * @attr: the requested attribute
1110 * @data: a pointer to the requested attribute data
1111 */
1112int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1113                                 enum IOMMUMemoryRegionAttr attr,
1114                                 void *data);
1115
1116/**
1117 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1118 * use for translations with the given memory transaction attributes.
1119 *
1120 * @iommu_mr: the memory region
1121 * @attrs: the memory transaction attributes
1122 */
1123int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1124                                       MemTxAttrs attrs);
1125
1126/**
1127 * memory_region_iommu_num_indexes: return the total number of IOMMU
1128 * indexes that this IOMMU supports.
1129 *
1130 * @iommu_mr: the memory region
1131 */
1132int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1133
1134/**
1135 * memory_region_name: get a memory region's name
1136 *
1137 * Returns the string that was used to initialize the memory region.
1138 *
1139 * @mr: the memory region being queried
1140 */
1141const char *memory_region_name(const MemoryRegion *mr);
1142
1143/**
1144 * memory_region_is_logging: return whether a memory region is logging writes
1145 *
1146 * Returns %true if the memory region is logging writes for the given client
1147 *
1148 * @mr: the memory region being queried
1149 * @client: the client being queried
1150 */
1151bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1152
1153/**
1154 * memory_region_get_dirty_log_mask: return the clients for which a
1155 * memory region is logging writes.
1156 *
1157 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1158 * are the bit indices.
1159 *
1160 * @mr: the memory region being queried
1161 */
1162uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1163
1164/**
1165 * memory_region_is_rom: check whether a memory region is ROM
1166 *
1167 * Returns %true if a memory region is read-only memory.
1168 *
1169 * @mr: the memory region being queried
1170 */
1171static inline bool memory_region_is_rom(MemoryRegion *mr)
1172{
1173    return mr->ram && mr->readonly;
1174}
1175
1176/**
1177 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1178 *
1179 * Returns %true is a memory region is non-volatile memory.
1180 *
1181 * @mr: the memory region being queried
1182 */
1183static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1184{
1185    return mr->nonvolatile;
1186}
1187
1188/**
1189 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1190 *
1191 * Returns a file descriptor backing a file-based RAM memory region,
1192 * or -1 if the region is not a file-based RAM memory region.
1193 *
1194 * @mr: the RAM or alias memory region being queried.
1195 */
1196int memory_region_get_fd(MemoryRegion *mr);
1197
1198/**
1199 * memory_region_from_host: Convert a pointer into a RAM memory region
1200 * and an offset within it.
1201 *
1202 * Given a host pointer inside a RAM memory region (created with
1203 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1204 * the MemoryRegion and the offset within it.
1205 *
1206 * Use with care; by the time this function returns, the returned pointer is
1207 * not protected by RCU anymore.  If the caller is not within an RCU critical
1208 * section and does not hold the iothread lock, it must have other means of
1209 * protecting the pointer, such as a reference to the region that includes
1210 * the incoming ram_addr_t.
1211 *
1212 * @ptr: the host pointer to be converted
1213 * @offset: the offset within memory region
1214 */
1215MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1216
1217/**
1218 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1219 *
1220 * Returns a host pointer to a RAM memory region (created with
1221 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1222 *
1223 * Use with care; by the time this function returns, the returned pointer is
1224 * not protected by RCU anymore.  If the caller is not within an RCU critical
1225 * section and does not hold the iothread lock, it must have other means of
1226 * protecting the pointer, such as a reference to the region that includes
1227 * the incoming ram_addr_t.
1228 *
1229 * @mr: the memory region being queried.
1230 */
1231void *memory_region_get_ram_ptr(MemoryRegion *mr);
1232
1233/* memory_region_ram_resize: Resize a RAM region.
1234 *
1235 * Only legal before guest might have detected the memory size: e.g. on
1236 * incoming migration, or right after reset.
1237 *
1238 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1239 * @newsize: the new size the region
1240 * @errp: pointer to Error*, to store an error if it happens.
1241 */
1242void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1243                              Error **errp);
1244
1245/**
1246 * memory_region_set_log: Turn dirty logging on or off for a region.
1247 *
1248 * Turns dirty logging on or off for a specified client (display, migration).
1249 * Only meaningful for RAM regions.
1250 *
1251 * @mr: the memory region being updated.
1252 * @log: whether dirty logging is to be enabled or disabled.
1253 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1254 */
1255void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1256
1257/**
1258 * memory_region_get_dirty: Check whether a range of bytes is dirty
1259 *                          for a specified client.
1260 *
1261 * Checks whether a range of bytes has been written to since the last
1262 * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1263 * must be enabled.
1264 *
1265 * @mr: the memory region being queried.
1266 * @addr: the address (relative to the start of the region) being queried.
1267 * @size: the size of the range being queried.
1268 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1269 *          %DIRTY_MEMORY_VGA.
1270 */
1271bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1272                             hwaddr size, unsigned client);
1273
1274/**
1275 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1276 *
1277 * Marks a range of bytes as dirty, after it has been dirtied outside
1278 * guest code.
1279 *
1280 * @mr: the memory region being dirtied.
1281 * @addr: the address (relative to the start of the region) being dirtied.
1282 * @size: size of the range being dirtied.
1283 */
1284void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1285                             hwaddr size);
1286
1287/**
1288 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1289 *                                         bitmap and clear it.
1290 *
1291 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1292 * returns the snapshot.  The snapshot can then be used to query dirty
1293 * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1294 * querying the same page multiple times, which is especially useful for
1295 * display updates where the scanlines often are not page aligned.
1296 *
1297 * The dirty bitmap region which gets copyed into the snapshot (and
1298 * cleared afterwards) can be larger than requested.  The boundaries
1299 * are rounded up/down so complete bitmap longs (covering 64 pages on
1300 * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1301 * isn't a problem for display updates as the extra pages are outside
1302 * the visible area, and in case the visible area changes a full
1303 * display redraw is due anyway.  Should other use cases for this
1304 * function emerge we might have to revisit this implementation
1305 * detail.
1306 *
1307 * Use g_free to release DirtyBitmapSnapshot.
1308 *
1309 * @mr: the memory region being queried.
1310 * @addr: the address (relative to the start of the region) being queried.
1311 * @size: the size of the range being queried.
1312 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1313 */
1314DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1315                                                            hwaddr addr,
1316                                                            hwaddr size,
1317                                                            unsigned client);
1318
1319/**
1320 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1321 *                                   in the specified dirty bitmap snapshot.
1322 *
1323 * @mr: the memory region being queried.
1324 * @snap: the dirty bitmap snapshot
1325 * @addr: the address (relative to the start of the region) being queried.
1326 * @size: the size of the range being queried.
1327 */
1328bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1329                                      DirtyBitmapSnapshot *snap,
1330                                      hwaddr addr, hwaddr size);
1331
1332/**
1333 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1334 *                            client.
1335 *
1336 * Marks a range of pages as no longer dirty.
1337 *
1338 * @mr: the region being updated.
1339 * @addr: the start of the subrange being cleaned.
1340 * @size: the size of the subrange being cleaned.
1341 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1342 *          %DIRTY_MEMORY_VGA.
1343 */
1344void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1345                               hwaddr size, unsigned client);
1346
1347/**
1348 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1349 *
1350 * Allows a memory region to be marked as read-only (turning it into a ROM).
1351 * only useful on RAM regions.
1352 *
1353 * @mr: the region being updated.
1354 * @readonly: whether rhe region is to be ROM or RAM.
1355 */
1356void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1357
1358/**
1359 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1360 *
1361 * Allows a memory region to be marked as non-volatile.
1362 * only useful on RAM regions.
1363 *
1364 * @mr: the region being updated.
1365 * @nonvolatile: whether rhe region is to be non-volatile.
1366 */
1367void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1368
1369/**
1370 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1371 *
1372 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1373 * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1374 * device is mapped to guest memory and satisfies read access directly.
1375 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1376 * Writes are always handled by the #MemoryRegion.write function.
1377 *
1378 * @mr: the memory region to be updated
1379 * @romd_mode: %true to put the region into ROMD mode
1380 */
1381void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1382
1383/**
1384 * memory_region_set_coalescing: Enable memory coalescing for the region.
1385 *
1386 * Enabled writes to a region to be queued for later processing. MMIO ->write
1387 * callbacks may be delayed until a non-coalesced MMIO is issued.
1388 * Only useful for IO regions.  Roughly similar to write-combining hardware.
1389 *
1390 * @mr: the memory region to be write coalesced
1391 */
1392void memory_region_set_coalescing(MemoryRegion *mr);
1393
1394/**
1395 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1396 *                               a region.
1397 *
1398 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1399 * Multiple calls can be issued coalesced disjoint ranges.
1400 *
1401 * @mr: the memory region to be updated.
1402 * @offset: the start of the range within the region to be coalesced.
1403 * @size: the size of the subrange to be coalesced.
1404 */
1405void memory_region_add_coalescing(MemoryRegion *mr,
1406                                  hwaddr offset,
1407                                  uint64_t size);
1408
1409/**
1410 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1411 *
1412 * Disables any coalescing caused by memory_region_set_coalescing() or
1413 * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1414 * hardware.
1415 *
1416 * @mr: the memory region to be updated.
1417 */
1418void memory_region_clear_coalescing(MemoryRegion *mr);
1419
1420/**
1421 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1422 *                                    accesses.
1423 *
1424 * Ensure that pending coalesced MMIO request are flushed before the memory
1425 * region is accessed. This property is automatically enabled for all regions
1426 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1427 *
1428 * @mr: the memory region to be updated.
1429 */
1430void memory_region_set_flush_coalesced(MemoryRegion *mr);
1431
1432/**
1433 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1434 *                                      accesses.
1435 *
1436 * Clear the automatic coalesced MMIO flushing enabled via
1437 * memory_region_set_flush_coalesced. Note that this service has no effect on
1438 * memory regions that have MMIO coalescing enabled for themselves. For them,
1439 * automatic flushing will stop once coalescing is disabled.
1440 *
1441 * @mr: the memory region to be updated.
1442 */
1443void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1444
1445/**
1446 * memory_region_clear_global_locking: Declares that access processing does
1447 *                                     not depend on the QEMU global lock.
1448 *
1449 * By clearing this property, accesses to the memory region will be processed
1450 * outside of QEMU's global lock (unless the lock is held on when issuing the
1451 * access request). In this case, the device model implementing the access
1452 * handlers is responsible for synchronization of concurrency.
1453 *
1454 * @mr: the memory region to be updated.
1455 */
1456void memory_region_clear_global_locking(MemoryRegion *mr);
1457
1458/**
1459 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1460 *                            is written to a location.
1461 *
1462 * Marks a word in an IO region (initialized with memory_region_init_io())
1463 * as a trigger for an eventfd event.  The I/O callback will not be called.
1464 * The caller must be prepared to handle failure (that is, take the required
1465 * action if the callback _is_ called).
1466 *
1467 * @mr: the memory region being updated.
1468 * @addr: the address within @mr that is to be monitored
1469 * @size: the size of the access to trigger the eventfd
1470 * @match_data: whether to match against @data, instead of just @addr
1471 * @data: the data to match against the guest write
1472 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1473 **/
1474void memory_region_add_eventfd(MemoryRegion *mr,
1475                               hwaddr addr,
1476                               unsigned size,
1477                               bool match_data,
1478                               uint64_t data,
1479                               EventNotifier *e);
1480
1481/**
1482 * memory_region_del_eventfd: Cancel an eventfd.
1483 *
1484 * Cancels an eventfd trigger requested by a previous
1485 * memory_region_add_eventfd() call.
1486 *
1487 * @mr: the memory region being updated.
1488 * @addr: the address within @mr that is to be monitored
1489 * @size: the size of the access to trigger the eventfd
1490 * @match_data: whether to match against @data, instead of just @addr
1491 * @data: the data to match against the guest write
1492 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1493 */
1494void memory_region_del_eventfd(MemoryRegion *mr,
1495                               hwaddr addr,
1496                               unsigned size,
1497                               bool match_data,
1498                               uint64_t data,
1499                               EventNotifier *e);
1500
1501/**
1502 * memory_region_add_subregion: Add a subregion to a container.
1503 *
1504 * Adds a subregion at @offset.  The subregion may not overlap with other
1505 * subregions (except for those explicitly marked as overlapping).  A region
1506 * may only be added once as a subregion (unless removed with
1507 * memory_region_del_subregion()); use memory_region_init_alias() if you
1508 * want a region to be a subregion in multiple locations.
1509 *
1510 * @mr: the region to contain the new subregion; must be a container
1511 *      initialized with memory_region_init().
1512 * @offset: the offset relative to @mr where @subregion is added.
1513 * @subregion: the subregion to be added.
1514 */
1515void memory_region_add_subregion(MemoryRegion *mr,
1516                                 hwaddr offset,
1517                                 MemoryRegion *subregion);
1518/**
1519 * memory_region_add_subregion_overlap: Add a subregion to a container
1520 *                                      with overlap.
1521 *
1522 * Adds a subregion at @offset.  The subregion may overlap with other
1523 * subregions.  Conflicts are resolved by having a higher @priority hide a
1524 * lower @priority. Subregions without priority are taken as @priority 0.
1525 * A region may only be added once as a subregion (unless removed with
1526 * memory_region_del_subregion()); use memory_region_init_alias() if you
1527 * want a region to be a subregion in multiple locations.
1528 *
1529 * @mr: the region to contain the new subregion; must be a container
1530 *      initialized with memory_region_init().
1531 * @offset: the offset relative to @mr where @subregion is added.
1532 * @subregion: the subregion to be added.
1533 * @priority: used for resolving overlaps; highest priority wins.
1534 */
1535void memory_region_add_subregion_overlap(MemoryRegion *mr,
1536                                         hwaddr offset,
1537                                         MemoryRegion *subregion,
1538                                         int priority);
1539
1540/**
1541 * memory_region_get_ram_addr: Get the ram address associated with a memory
1542 *                             region
1543 */
1544ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1545
1546uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1547/**
1548 * memory_region_del_subregion: Remove a subregion.
1549 *
1550 * Removes a subregion from its container.
1551 *
1552 * @mr: the container to be updated.
1553 * @subregion: the region being removed; must be a current subregion of @mr.
1554 */
1555void memory_region_del_subregion(MemoryRegion *mr,
1556                                 MemoryRegion *subregion);
1557
1558/*
1559 * memory_region_set_enabled: dynamically enable or disable a region
1560 *
1561 * Enables or disables a memory region.  A disabled memory region
1562 * ignores all accesses to itself and its subregions.  It does not
1563 * obscure sibling subregions with lower priority - it simply behaves as
1564 * if it was removed from the hierarchy.
1565 *
1566 * Regions default to being enabled.
1567 *
1568 * @mr: the region to be updated
1569 * @enabled: whether to enable or disable the region
1570 */
1571void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1572
1573/*
1574 * memory_region_set_address: dynamically update the address of a region
1575 *
1576 * Dynamically updates the address of a region, relative to its container.
1577 * May be used on regions are currently part of a memory hierarchy.
1578 *
1579 * @mr: the region to be updated
1580 * @addr: new address, relative to container region
1581 */
1582void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1583
1584/*
1585 * memory_region_set_size: dynamically update the size of a region.
1586 *
1587 * Dynamically updates the size of a region.
1588 *
1589 * @mr: the region to be updated
1590 * @size: used size of the region.
1591 */
1592void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1593
1594/*
1595 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1596 *
1597 * Dynamically updates the offset into the target region that an alias points
1598 * to, as if the fourth argument to memory_region_init_alias() has changed.
1599 *
1600 * @mr: the #MemoryRegion to be updated; should be an alias.
1601 * @offset: the new offset into the target memory region
1602 */
1603void memory_region_set_alias_offset(MemoryRegion *mr,
1604                                    hwaddr offset);
1605
1606/**
1607 * memory_region_present: checks if an address relative to a @container
1608 * translates into #MemoryRegion within @container
1609 *
1610 * Answer whether a #MemoryRegion within @container covers the address
1611 * @addr.
1612 *
1613 * @container: a #MemoryRegion within which @addr is a relative address
1614 * @addr: the area within @container to be searched
1615 */
1616bool memory_region_present(MemoryRegion *container, hwaddr addr);
1617
1618/**
1619 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1620 * into any address space.
1621 *
1622 * @mr: a #MemoryRegion which should be checked if it's mapped
1623 */
1624bool memory_region_is_mapped(MemoryRegion *mr);
1625
1626/**
1627 * memory_region_find: translate an address/size relative to a
1628 * MemoryRegion into a #MemoryRegionSection.
1629 *
1630 * Locates the first #MemoryRegion within @mr that overlaps the range
1631 * given by @addr and @size.
1632 *
1633 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1634 * It will have the following characteristics:
1635 *    .@size = 0 iff no overlap was found
1636 *    .@mr is non-%NULL iff an overlap was found
1637 *
1638 * Remember that in the return value the @offset_within_region is
1639 * relative to the returned region (in the .@mr field), not to the
1640 * @mr argument.
1641 *
1642 * Similarly, the .@offset_within_address_space is relative to the
1643 * address space that contains both regions, the passed and the
1644 * returned one.  However, in the special case where the @mr argument
1645 * has no container (and thus is the root of the address space), the
1646 * following will hold:
1647 *    .@offset_within_address_space >= @addr
1648 *    .@offset_within_address_space + .@size <= @addr + @size
1649 *
1650 * @mr: a MemoryRegion within which @addr is a relative address
1651 * @addr: start of the area within @as to be searched
1652 * @size: size of the area to be searched
1653 */
1654MemoryRegionSection memory_region_find(MemoryRegion *mr,
1655                                       hwaddr addr, uint64_t size);
1656
1657/**
1658 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1659 *
1660 * Synchronizes the dirty page log for all address spaces.
1661 */
1662void memory_global_dirty_log_sync(void);
1663
1664/**
1665 * memory_region_transaction_begin: Start a transaction.
1666 *
1667 * During a transaction, changes will be accumulated and made visible
1668 * only when the transaction ends (is committed).
1669 */
1670void memory_region_transaction_begin(void);
1671
1672/**
1673 * memory_region_transaction_commit: Commit a transaction and make changes
1674 *                                   visible to the guest.
1675 */
1676void memory_region_transaction_commit(void);
1677
1678/**
1679 * memory_listener_register: register callbacks to be called when memory
1680 *                           sections are mapped or unmapped into an address
1681 *                           space
1682 *
1683 * @listener: an object containing the callbacks to be called
1684 * @filter: if non-%NULL, only regions in this address space will be observed
1685 */
1686void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1687
1688/**
1689 * memory_listener_unregister: undo the effect of memory_listener_register()
1690 *
1691 * @listener: an object containing the callbacks to be removed
1692 */
1693void memory_listener_unregister(MemoryListener *listener);
1694
1695/**
1696 * memory_global_dirty_log_start: begin dirty logging for all regions
1697 */
1698void memory_global_dirty_log_start(void);
1699
1700/**
1701 * memory_global_dirty_log_stop: end dirty logging for all regions
1702 */
1703void memory_global_dirty_log_stop(void);
1704
1705void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1706                bool dispatch_tree, bool owner);
1707
1708/**
1709 * memory_region_dispatch_read: perform a read directly to the specified
1710 * MemoryRegion.
1711 *
1712 * @mr: #MemoryRegion to access
1713 * @addr: address within that region
1714 * @pval: pointer to uint64_t which the data is written to
1715 * @size: size of the access in bytes
1716 * @attrs: memory transaction attributes to use for the access
1717 */
1718MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1719                                        hwaddr addr,
1720                                        uint64_t *pval,
1721                                        unsigned size,
1722                                        MemTxAttrs attrs);
1723/**
1724 * memory_region_dispatch_write: perform a write directly to the specified
1725 * MemoryRegion.
1726 *
1727 * @mr: #MemoryRegion to access
1728 * @addr: address within that region
1729 * @data: data to write
1730 * @size: size of the access in bytes
1731 * @attrs: memory transaction attributes to use for the access
1732 */
1733MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1734                                         hwaddr addr,
1735                                         uint64_t data,
1736                                         unsigned size,
1737                                         MemTxAttrs attrs);
1738
1739/**
1740 * address_space_init: initializes an address space
1741 *
1742 * @as: an uninitialized #AddressSpace
1743 * @root: a #MemoryRegion that routes addresses for the address space
1744 * @name: an address space name.  The name is only used for debugging
1745 *        output.
1746 */
1747void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1748
1749/**
1750 * address_space_destroy: destroy an address space
1751 *
1752 * Releases all resources associated with an address space.  After an address space
1753 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1754 * as well.
1755 *
1756 * @as: address space to be destroyed
1757 */
1758void address_space_destroy(AddressSpace *as);
1759
1760/**
1761 * address_space_rw: read from or write to an address space.
1762 *
1763 * Return a MemTxResult indicating whether the operation succeeded
1764 * or failed (eg unassigned memory, device rejected the transaction,
1765 * IOMMU fault).
1766 *
1767 * @as: #AddressSpace to be accessed
1768 * @addr: address within that address space
1769 * @attrs: memory transaction attributes
1770 * @buf: buffer with the data transferred
1771 * @len: the number of bytes to read or write
1772 * @is_write: indicates the transfer direction
1773 */
1774MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1775                             MemTxAttrs attrs, uint8_t *buf,
1776                             int len, bool is_write);
1777
1778/**
1779 * address_space_write: write to address space.
1780 *
1781 * Return a MemTxResult indicating whether the operation succeeded
1782 * or failed (eg unassigned memory, device rejected the transaction,
1783 * IOMMU fault).
1784 *
1785 * @as: #AddressSpace to be accessed
1786 * @addr: address within that address space
1787 * @attrs: memory transaction attributes
1788 * @buf: buffer with the data transferred
1789 * @len: the number of bytes to write
1790 */
1791MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1792                                MemTxAttrs attrs,
1793                                const uint8_t *buf, int len);
1794
1795/* address_space_ld*: load from an address space
1796 * address_space_st*: store to an address space
1797 *
1798 * These functions perform a load or store of the byte, word,
1799 * longword or quad to the specified address within the AddressSpace.
1800 * The _le suffixed functions treat the data as little endian;
1801 * _be indicates big endian; no suffix indicates "same endianness
1802 * as guest CPU".
1803 *
1804 * The "guest CPU endianness" accessors are deprecated for use outside
1805 * target-* code; devices should be CPU-agnostic and use either the LE
1806 * or the BE accessors.
1807 *
1808 * @as #AddressSpace to be accessed
1809 * @addr: address within that address space
1810 * @val: data value, for stores
1811 * @attrs: memory transaction attributes
1812 * @result: location to write the success/failure of the transaction;
1813 *   if NULL, this information is discarded
1814 */
1815
1816#define SUFFIX
1817#define ARG1         as
1818#define ARG1_DECL    AddressSpace *as
1819#include "exec/memory_ldst.inc.h"
1820
1821#define SUFFIX
1822#define ARG1         as
1823#define ARG1_DECL    AddressSpace *as
1824#include "exec/memory_ldst_phys.inc.h"
1825
1826struct MemoryRegionCache {
1827    void *ptr;
1828    hwaddr xlat;
1829    hwaddr len;
1830    FlatView *fv;
1831    MemoryRegionSection mrs;
1832    bool is_write;
1833};
1834
1835#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1836
1837
1838/* address_space_ld*_cached: load from a cached #MemoryRegion
1839 * address_space_st*_cached: store into a cached #MemoryRegion
1840 *
1841 * These functions perform a load or store of the byte, word,
1842 * longword or quad to the specified address.  The address is
1843 * a physical address in the AddressSpace, but it must lie within
1844 * a #MemoryRegion that was mapped with address_space_cache_init.
1845 *
1846 * The _le suffixed functions treat the data as little endian;
1847 * _be indicates big endian; no suffix indicates "same endianness
1848 * as guest CPU".
1849 *
1850 * The "guest CPU endianness" accessors are deprecated for use outside
1851 * target-* code; devices should be CPU-agnostic and use either the LE
1852 * or the BE accessors.
1853 *
1854 * @cache: previously initialized #MemoryRegionCache to be accessed
1855 * @addr: address within the address space
1856 * @val: data value, for stores
1857 * @attrs: memory transaction attributes
1858 * @result: location to write the success/failure of the transaction;
1859 *   if NULL, this information is discarded
1860 */
1861
1862#define SUFFIX       _cached_slow
1863#define ARG1         cache
1864#define ARG1_DECL    MemoryRegionCache *cache
1865#include "exec/memory_ldst.inc.h"
1866
1867/* Inline fast path for direct RAM access.  */
1868static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1869    hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1870{
1871    assert(addr < cache->len);
1872    if (likely(cache->ptr)) {
1873        return ldub_p(cache->ptr + addr);
1874    } else {
1875        return address_space_ldub_cached_slow(cache, addr, attrs, result);
1876    }
1877}
1878
1879static inline void address_space_stb_cached(MemoryRegionCache *cache,
1880    hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1881{
1882    assert(addr < cache->len);
1883    if (likely(cache->ptr)) {
1884        stb_p(cache->ptr + addr, val);
1885    } else {
1886        address_space_stb_cached_slow(cache, addr, val, attrs, result);
1887    }
1888}
1889
1890#define ENDIANNESS   _le
1891#include "exec/memory_ldst_cached.inc.h"
1892
1893#define ENDIANNESS   _be
1894#include "exec/memory_ldst_cached.inc.h"
1895
1896#define SUFFIX       _cached
1897#define ARG1         cache
1898#define ARG1_DECL    MemoryRegionCache *cache
1899#include "exec/memory_ldst_phys.inc.h"
1900
1901/* address_space_cache_init: prepare for repeated access to a physical
1902 * memory region
1903 *
1904 * @cache: #MemoryRegionCache to be filled
1905 * @as: #AddressSpace to be accessed
1906 * @addr: address within that address space
1907 * @len: length of buffer
1908 * @is_write: indicates the transfer direction
1909 *
1910 * Will only work with RAM, and may map a subset of the requested range by
1911 * returning a value that is less than @len.  On failure, return a negative
1912 * errno value.
1913 *
1914 * Because it only works with RAM, this function can be used for
1915 * read-modify-write operations.  In this case, is_write should be %true.
1916 *
1917 * Note that addresses passed to the address_space_*_cached functions
1918 * are relative to @addr.
1919 */
1920int64_t address_space_cache_init(MemoryRegionCache *cache,
1921                                 AddressSpace *as,
1922                                 hwaddr addr,
1923                                 hwaddr len,
1924                                 bool is_write);
1925
1926/**
1927 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1928 *
1929 * @cache: The #MemoryRegionCache to operate on.
1930 * @addr: The first physical address that was written, relative to the
1931 * address that was passed to @address_space_cache_init.
1932 * @access_len: The number of bytes that were written starting at @addr.
1933 */
1934void address_space_cache_invalidate(MemoryRegionCache *cache,
1935                                    hwaddr addr,
1936                                    hwaddr access_len);
1937
1938/**
1939 * address_space_cache_destroy: free a #MemoryRegionCache
1940 *
1941 * @cache: The #MemoryRegionCache whose memory should be released.
1942 */
1943void address_space_cache_destroy(MemoryRegionCache *cache);
1944
1945/* address_space_get_iotlb_entry: translate an address into an IOTLB
1946 * entry. Should be called from an RCU critical section.
1947 */
1948IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1949                                            bool is_write, MemTxAttrs attrs);
1950
1951/* address_space_translate: translate an address range into an address space
1952 * into a MemoryRegion and an address range into that section.  Should be
1953 * called from an RCU critical section, to avoid that the last reference
1954 * to the returned region disappears after address_space_translate returns.
1955 *
1956 * @fv: #FlatView to be accessed
1957 * @addr: address within that address space
1958 * @xlat: pointer to address within the returned memory region section's
1959 * #MemoryRegion.
1960 * @len: pointer to length
1961 * @is_write: indicates the transfer direction
1962 * @attrs: memory attributes
1963 */
1964MemoryRegion *flatview_translate(FlatView *fv,
1965                                 hwaddr addr, hwaddr *xlat,
1966                                 hwaddr *len, bool is_write,
1967                                 MemTxAttrs attrs);
1968
1969static inline MemoryRegion *address_space_translate(AddressSpace *as,
1970                                                    hwaddr addr, hwaddr *xlat,
1971                                                    hwaddr *len, bool is_write,
1972                                                    MemTxAttrs attrs)
1973{
1974    return flatview_translate(address_space_to_flatview(as),
1975                              addr, xlat, len, is_write, attrs);
1976}
1977
1978/* address_space_access_valid: check for validity of accessing an address
1979 * space range
1980 *
1981 * Check whether memory is assigned to the given address space range, and
1982 * access is permitted by any IOMMU regions that are active for the address
1983 * space.
1984 *
1985 * For now, addr and len should be aligned to a page size.  This limitation
1986 * will be lifted in the future.
1987 *
1988 * @as: #AddressSpace to be accessed
1989 * @addr: address within that address space
1990 * @len: length of the area to be checked
1991 * @is_write: indicates the transfer direction
1992 * @attrs: memory attributes
1993 */
1994bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len,
1995                                bool is_write, MemTxAttrs attrs);
1996
1997/* address_space_map: map a physical memory region into a host virtual address
1998 *
1999 * May map a subset of the requested range, given by and returned in @plen.
2000 * May return %NULL if resources needed to perform the mapping are exhausted.
2001 * Use only for reads OR writes - not for read-modify-write operations.
2002 * Use cpu_register_map_client() to know when retrying the map operation is
2003 * likely to succeed.
2004 *
2005 * @as: #AddressSpace to be accessed
2006 * @addr: address within that address space
2007 * @plen: pointer to length of buffer; updated on return
2008 * @is_write: indicates the transfer direction
2009 * @attrs: memory attributes
2010 */
2011void *address_space_map(AddressSpace *as, hwaddr addr,
2012                        hwaddr *plen, bool is_write, MemTxAttrs attrs);
2013
2014/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2015 *
2016 * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2017 * the amount of memory that was actually read or written by the caller.
2018 *
2019 * @as: #AddressSpace used
2020 * @buffer: host pointer as returned by address_space_map()
2021 * @len: buffer length as returned by address_space_map()
2022 * @access_len: amount of data actually transferred
2023 * @is_write: indicates the transfer direction
2024 */
2025void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2026                         int is_write, hwaddr access_len);
2027
2028
2029/* Internal functions, part of the implementation of address_space_read.  */
2030MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2031                                    MemTxAttrs attrs, uint8_t *buf, int len);
2032MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2033                                   MemTxAttrs attrs, uint8_t *buf,
2034                                   int len, hwaddr addr1, hwaddr l,
2035                                   MemoryRegion *mr);
2036void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2037
2038/* Internal functions, part of the implementation of address_space_read_cached
2039 * and address_space_write_cached.  */
2040void address_space_read_cached_slow(MemoryRegionCache *cache,
2041                                    hwaddr addr, void *buf, int len);
2042void address_space_write_cached_slow(MemoryRegionCache *cache,
2043                                     hwaddr addr, const void *buf, int len);
2044
2045static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2046{
2047    if (is_write) {
2048        return memory_region_is_ram(mr) &&
2049               !mr->readonly && !memory_region_is_ram_device(mr);
2050    } else {
2051        return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2052               memory_region_is_romd(mr);
2053    }
2054}
2055
2056/**
2057 * address_space_read: read from an address space.
2058 *
2059 * Return a MemTxResult indicating whether the operation succeeded
2060 * or failed (eg unassigned memory, device rejected the transaction,
2061 * IOMMU fault).  Called within RCU critical section.
2062 *
2063 * @as: #AddressSpace to be accessed
2064 * @addr: address within that address space
2065 * @attrs: memory transaction attributes
2066 * @buf: buffer with the data transferred
2067 */
2068static inline __attribute__((__always_inline__))
2069MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2070                               MemTxAttrs attrs, uint8_t *buf,
2071                               int len)
2072{
2073    MemTxResult result = MEMTX_OK;
2074    hwaddr l, addr1;
2075    void *ptr;
2076    MemoryRegion *mr;
2077    FlatView *fv;
2078
2079    if (__builtin_constant_p(len)) {
2080        if (len) {
2081            rcu_read_lock();
2082            fv = address_space_to_flatview(as);
2083            l = len;
2084            mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2085            if (len == l && memory_access_is_direct(mr, false)) {
2086                ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2087                memcpy(buf, ptr, len);
2088            } else {
2089                result = flatview_read_continue(fv, addr, attrs, buf, len,
2090                                                addr1, l, mr);
2091            }
2092            rcu_read_unlock();
2093        }
2094    } else {
2095        result = address_space_read_full(as, addr, attrs, buf, len);
2096    }
2097    return result;
2098}
2099
2100/**
2101 * address_space_read_cached: read from a cached RAM region
2102 *
2103 * @cache: Cached region to be addressed
2104 * @addr: address relative to the base of the RAM region
2105 * @buf: buffer with the data transferred
2106 * @len: length of the data transferred
2107 */
2108static inline void
2109address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2110                          void *buf, int len)
2111{
2112    assert(addr < cache->len && len <= cache->len - addr);
2113    if (likely(cache->ptr)) {
2114        memcpy(buf, cache->ptr + addr, len);
2115    } else {
2116        address_space_read_cached_slow(cache, addr, buf, len);
2117    }
2118}
2119
2120/**
2121 * address_space_write_cached: write to a cached RAM region
2122 *
2123 * @cache: Cached region to be addressed
2124 * @addr: address relative to the base of the RAM region
2125 * @buf: buffer with the data transferred
2126 * @len: length of the data transferred
2127 */
2128static inline void
2129address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2130                           void *buf, int len)
2131{
2132    assert(addr < cache->len && len <= cache->len - addr);
2133    if (likely(cache->ptr)) {
2134        memcpy(cache->ptr + addr, buf, len);
2135    } else {
2136        address_space_write_cached_slow(cache, addr, buf, len);
2137    }
2138}
2139
2140#endif
2141
2142#endif
2143