qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "exec/target_page.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "savevm.h"
  24#include "postcopy-ram.h"
  25#include "ram.h"
  26#include "qapi/error.h"
  27#include "qemu/notify.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/balloon.h"
  30#include "qemu/error-report.h"
  31#include "trace.h"
  32
  33/* Arbitrary limit on size of each discard command,
  34 * keeps them around ~200 bytes
  35 */
  36#define MAX_DISCARDS_PER_COMMAND 12
  37
  38struct PostcopyDiscardState {
  39    const char *ramblock_name;
  40    uint16_t cur_entry;
  41    /*
  42     * Start and length of a discard range (bytes)
  43     */
  44    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  45    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  46    unsigned int nsentwords;
  47    unsigned int nsentcmds;
  48};
  49
  50static NotifierWithReturnList postcopy_notifier_list;
  51
  52void postcopy_infrastructure_init(void)
  53{
  54    notifier_with_return_list_init(&postcopy_notifier_list);
  55}
  56
  57void postcopy_add_notifier(NotifierWithReturn *nn)
  58{
  59    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  60}
  61
  62void postcopy_remove_notifier(NotifierWithReturn *n)
  63{
  64    notifier_with_return_remove(n);
  65}
  66
  67int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  68{
  69    struct PostcopyNotifyData pnd;
  70    pnd.reason = reason;
  71    pnd.errp = errp;
  72
  73    return notifier_with_return_list_notify(&postcopy_notifier_list,
  74                                            &pnd);
  75}
  76
  77/* Postcopy needs to detect accesses to pages that haven't yet been copied
  78 * across, and efficiently map new pages in, the techniques for doing this
  79 * are target OS specific.
  80 */
  81#if defined(__linux__)
  82
  83#include <poll.h>
  84#include <sys/ioctl.h>
  85#include <sys/syscall.h>
  86#include <asm/types.h> /* for __u64 */
  87#endif
  88
  89#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  90#include <sys/eventfd.h>
  91#include <linux/userfaultfd.h>
  92
  93typedef struct PostcopyBlocktimeContext {
  94    /* time when page fault initiated per vCPU */
  95    uint32_t *page_fault_vcpu_time;
  96    /* page address per vCPU */
  97    uintptr_t *vcpu_addr;
  98    uint32_t total_blocktime;
  99    /* blocktime per vCPU */
 100    uint32_t *vcpu_blocktime;
 101    /* point in time when last page fault was initiated */
 102    uint32_t last_begin;
 103    /* number of vCPU are suspended */
 104    int smp_cpus_down;
 105    uint64_t start_time;
 106
 107    /*
 108     * Handler for exit event, necessary for
 109     * releasing whole blocktime_ctx
 110     */
 111    Notifier exit_notifier;
 112} PostcopyBlocktimeContext;
 113
 114static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 115{
 116    g_free(ctx->page_fault_vcpu_time);
 117    g_free(ctx->vcpu_addr);
 118    g_free(ctx->vcpu_blocktime);
 119    g_free(ctx);
 120}
 121
 122static void migration_exit_cb(Notifier *n, void *data)
 123{
 124    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 125                                                 exit_notifier);
 126    destroy_blocktime_context(ctx);
 127}
 128
 129static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 130{
 131    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 132    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 133    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 134    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 135
 136    ctx->exit_notifier.notify = migration_exit_cb;
 137    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 138    qemu_add_exit_notifier(&ctx->exit_notifier);
 139    return ctx;
 140}
 141
 142static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 143{
 144    uint32List *list = NULL, *entry = NULL;
 145    int i;
 146
 147    for (i = smp_cpus - 1; i >= 0; i--) {
 148        entry = g_new0(uint32List, 1);
 149        entry->value = ctx->vcpu_blocktime[i];
 150        entry->next = list;
 151        list = entry;
 152    }
 153
 154    return list;
 155}
 156
 157/*
 158 * This function just populates MigrationInfo from postcopy's
 159 * blocktime context. It will not populate MigrationInfo,
 160 * unless postcopy-blocktime capability was set.
 161 *
 162 * @info: pointer to MigrationInfo to populate
 163 */
 164void fill_destination_postcopy_migration_info(MigrationInfo *info)
 165{
 166    MigrationIncomingState *mis = migration_incoming_get_current();
 167    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 168
 169    if (!bc) {
 170        return;
 171    }
 172
 173    info->has_postcopy_blocktime = true;
 174    info->postcopy_blocktime = bc->total_blocktime;
 175    info->has_postcopy_vcpu_blocktime = true;
 176    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 177}
 178
 179static uint32_t get_postcopy_total_blocktime(void)
 180{
 181    MigrationIncomingState *mis = migration_incoming_get_current();
 182    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 183
 184    if (!bc) {
 185        return 0;
 186    }
 187
 188    return bc->total_blocktime;
 189}
 190
 191/**
 192 * receive_ufd_features: check userfault fd features, to request only supported
 193 * features in the future.
 194 *
 195 * Returns: true on success
 196 *
 197 * __NR_userfaultfd - should be checked before
 198 *  @features: out parameter will contain uffdio_api.features provided by kernel
 199 *              in case of success
 200 */
 201static bool receive_ufd_features(uint64_t *features)
 202{
 203    struct uffdio_api api_struct = {0};
 204    int ufd;
 205    bool ret = true;
 206
 207    /* if we are here __NR_userfaultfd should exists */
 208    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 209    if (ufd == -1) {
 210        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 211                     strerror(errno));
 212        return false;
 213    }
 214
 215    /* ask features */
 216    api_struct.api = UFFD_API;
 217    api_struct.features = 0;
 218    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 219        error_report("%s: UFFDIO_API failed: %s", __func__,
 220                     strerror(errno));
 221        ret = false;
 222        goto release_ufd;
 223    }
 224
 225    *features = api_struct.features;
 226
 227release_ufd:
 228    close(ufd);
 229    return ret;
 230}
 231
 232/**
 233 * request_ufd_features: this function should be called only once on a newly
 234 * opened ufd, subsequent calls will lead to error.
 235 *
 236 * Returns: true on succes
 237 *
 238 * @ufd: fd obtained from userfaultfd syscall
 239 * @features: bit mask see UFFD_API_FEATURES
 240 */
 241static bool request_ufd_features(int ufd, uint64_t features)
 242{
 243    struct uffdio_api api_struct = {0};
 244    uint64_t ioctl_mask;
 245
 246    api_struct.api = UFFD_API;
 247    api_struct.features = features;
 248    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 249        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 250                     strerror(errno));
 251        return false;
 252    }
 253
 254    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 255                 (__u64)1 << _UFFDIO_UNREGISTER;
 256    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 257        error_report("Missing userfault features: %" PRIx64,
 258                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 259        return false;
 260    }
 261
 262    return true;
 263}
 264
 265static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 266{
 267    uint64_t asked_features = 0;
 268    static uint64_t supported_features;
 269
 270    /*
 271     * it's not possible to
 272     * request UFFD_API twice per one fd
 273     * userfault fd features is persistent
 274     */
 275    if (!supported_features) {
 276        if (!receive_ufd_features(&supported_features)) {
 277            error_report("%s failed", __func__);
 278            return false;
 279        }
 280    }
 281
 282#ifdef UFFD_FEATURE_THREAD_ID
 283    if (migrate_postcopy_blocktime() && mis &&
 284        UFFD_FEATURE_THREAD_ID & supported_features) {
 285        /* kernel supports that feature */
 286        /* don't create blocktime_context if it exists */
 287        if (!mis->blocktime_ctx) {
 288            mis->blocktime_ctx = blocktime_context_new();
 289        }
 290
 291        asked_features |= UFFD_FEATURE_THREAD_ID;
 292    }
 293#endif
 294
 295    /*
 296     * request features, even if asked_features is 0, due to
 297     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 298     * userfault file descriptor
 299     */
 300    if (!request_ufd_features(ufd, asked_features)) {
 301        error_report("%s failed: features %" PRIu64, __func__,
 302                     asked_features);
 303        return false;
 304    }
 305
 306    if (getpagesize() != ram_pagesize_summary()) {
 307        bool have_hp = false;
 308        /* We've got a huge page */
 309#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 310        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 311#endif
 312        if (!have_hp) {
 313            error_report("Userfault on this host does not support huge pages");
 314            return false;
 315        }
 316    }
 317    return true;
 318}
 319
 320/* Callback from postcopy_ram_supported_by_host block iterator.
 321 */
 322static int test_ramblock_postcopiable(const char *block_name, void *host_addr,
 323                             ram_addr_t offset, ram_addr_t length, void *opaque)
 324{
 325    RAMBlock *rb = qemu_ram_block_by_name(block_name);
 326    size_t pagesize = qemu_ram_pagesize(rb);
 327
 328    if (length % pagesize) {
 329        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 330                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 331                     "page size of 0x%zx", block_name, length, pagesize);
 332        return 1;
 333    }
 334    return 0;
 335}
 336
 337/*
 338 * Note: This has the side effect of munlock'ing all of RAM, that's
 339 * normally fine since if the postcopy succeeds it gets turned back on at the
 340 * end.
 341 */
 342bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 343{
 344    long pagesize = getpagesize();
 345    int ufd = -1;
 346    bool ret = false; /* Error unless we change it */
 347    void *testarea = NULL;
 348    struct uffdio_register reg_struct;
 349    struct uffdio_range range_struct;
 350    uint64_t feature_mask;
 351    Error *local_err = NULL;
 352
 353    if (qemu_target_page_size() > pagesize) {
 354        error_report("Target page size bigger than host page size");
 355        goto out;
 356    }
 357
 358    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 359    if (ufd == -1) {
 360        error_report("%s: userfaultfd not available: %s", __func__,
 361                     strerror(errno));
 362        goto out;
 363    }
 364
 365    /* Give devices a chance to object */
 366    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 367        error_report_err(local_err);
 368        goto out;
 369    }
 370
 371    /* Version and features check */
 372    if (!ufd_check_and_apply(ufd, mis)) {
 373        goto out;
 374    }
 375
 376    /* We don't support postcopy with shared RAM yet */
 377    if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
 378        goto out;
 379    }
 380
 381    /*
 382     * userfault and mlock don't go together; we'll put it back later if
 383     * it was enabled.
 384     */
 385    if (munlockall()) {
 386        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 387        return -1;
 388    }
 389
 390    /*
 391     *  We need to check that the ops we need are supported on anon memory
 392     *  To do that we need to register a chunk and see the flags that
 393     *  are returned.
 394     */
 395    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 396                                    MAP_ANONYMOUS, -1, 0);
 397    if (testarea == MAP_FAILED) {
 398        error_report("%s: Failed to map test area: %s", __func__,
 399                     strerror(errno));
 400        goto out;
 401    }
 402    g_assert(((size_t)testarea & (pagesize-1)) == 0);
 403
 404    reg_struct.range.start = (uintptr_t)testarea;
 405    reg_struct.range.len = pagesize;
 406    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 407
 408    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 409        error_report("%s userfault register: %s", __func__, strerror(errno));
 410        goto out;
 411    }
 412
 413    range_struct.start = (uintptr_t)testarea;
 414    range_struct.len = pagesize;
 415    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 416        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 417        goto out;
 418    }
 419
 420    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 421                   (__u64)1 << _UFFDIO_COPY |
 422                   (__u64)1 << _UFFDIO_ZEROPAGE;
 423    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 424        error_report("Missing userfault map features: %" PRIx64,
 425                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 426        goto out;
 427    }
 428
 429    /* Success! */
 430    ret = true;
 431out:
 432    if (testarea) {
 433        munmap(testarea, pagesize);
 434    }
 435    if (ufd != -1) {
 436        close(ufd);
 437    }
 438    return ret;
 439}
 440
 441/*
 442 * Setup an area of RAM so that it *can* be used for postcopy later; this
 443 * must be done right at the start prior to pre-copy.
 444 * opaque should be the MIS.
 445 */
 446static int init_range(const char *block_name, void *host_addr,
 447                      ram_addr_t offset, ram_addr_t length, void *opaque)
 448{
 449    trace_postcopy_init_range(block_name, host_addr, offset, length);
 450
 451    /*
 452     * We need the whole of RAM to be truly empty for postcopy, so things
 453     * like ROMs and any data tables built during init must be zero'd
 454     * - we're going to get the copy from the source anyway.
 455     * (Precopy will just overwrite this data, so doesn't need the discard)
 456     */
 457    if (ram_discard_range(block_name, 0, length)) {
 458        return -1;
 459    }
 460
 461    return 0;
 462}
 463
 464/*
 465 * At the end of migration, undo the effects of init_range
 466 * opaque should be the MIS.
 467 */
 468static int cleanup_range(const char *block_name, void *host_addr,
 469                        ram_addr_t offset, ram_addr_t length, void *opaque)
 470{
 471    MigrationIncomingState *mis = opaque;
 472    struct uffdio_range range_struct;
 473    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 474
 475    /*
 476     * We turned off hugepage for the precopy stage with postcopy enabled
 477     * we can turn it back on now.
 478     */
 479    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 480
 481    /*
 482     * We can also turn off userfault now since we should have all the
 483     * pages.   It can be useful to leave it on to debug postcopy
 484     * if you're not sure it's always getting every page.
 485     */
 486    range_struct.start = (uintptr_t)host_addr;
 487    range_struct.len = length;
 488
 489    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 490        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 491
 492        return -1;
 493    }
 494
 495    return 0;
 496}
 497
 498/*
 499 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 500 * postcopy later; must be called prior to any precopy.
 501 * called from arch_init's similarly named ram_postcopy_incoming_init
 502 */
 503int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 504{
 505    if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
 506        return -1;
 507    }
 508
 509    return 0;
 510}
 511
 512/*
 513 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
 514 * last caller wins.
 515 */
 516static void postcopy_balloon_inhibit(bool state)
 517{
 518    static bool cur_state = false;
 519
 520    if (state != cur_state) {
 521        qemu_balloon_inhibit(state);
 522        cur_state = state;
 523    }
 524}
 525
 526/*
 527 * At the end of a migration where postcopy_ram_incoming_init was called.
 528 */
 529int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 530{
 531    trace_postcopy_ram_incoming_cleanup_entry();
 532
 533    if (mis->have_fault_thread) {
 534        Error *local_err = NULL;
 535
 536        /* Let the fault thread quit */
 537        atomic_set(&mis->fault_thread_quit, 1);
 538        postcopy_fault_thread_notify(mis);
 539        trace_postcopy_ram_incoming_cleanup_join();
 540        qemu_thread_join(&mis->fault_thread);
 541
 542        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 543            error_report_err(local_err);
 544            return -1;
 545        }
 546
 547        if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
 548            return -1;
 549        }
 550
 551        trace_postcopy_ram_incoming_cleanup_closeuf();
 552        close(mis->userfault_fd);
 553        close(mis->userfault_event_fd);
 554        mis->have_fault_thread = false;
 555    }
 556
 557    postcopy_balloon_inhibit(false);
 558
 559    if (enable_mlock) {
 560        if (os_mlock() < 0) {
 561            error_report("mlock: %s", strerror(errno));
 562            /*
 563             * It doesn't feel right to fail at this point, we have a valid
 564             * VM state.
 565             */
 566        }
 567    }
 568
 569    postcopy_state_set(POSTCOPY_INCOMING_END);
 570
 571    if (mis->postcopy_tmp_page) {
 572        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 573        mis->postcopy_tmp_page = NULL;
 574    }
 575    if (mis->postcopy_tmp_zero_page) {
 576        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 577        mis->postcopy_tmp_zero_page = NULL;
 578    }
 579    trace_postcopy_ram_incoming_cleanup_blocktime(
 580            get_postcopy_total_blocktime());
 581
 582    trace_postcopy_ram_incoming_cleanup_exit();
 583    return 0;
 584}
 585
 586/*
 587 * Disable huge pages on an area
 588 */
 589static int nhp_range(const char *block_name, void *host_addr,
 590                    ram_addr_t offset, ram_addr_t length, void *opaque)
 591{
 592    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 593
 594    /*
 595     * Before we do discards we need to ensure those discards really
 596     * do delete areas of the page, even if THP thinks a hugepage would
 597     * be a good idea, so force hugepages off.
 598     */
 599    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 600
 601    return 0;
 602}
 603
 604/*
 605 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 606 * however leaving it until after precopy means that most of the precopy
 607 * data is still THPd
 608 */
 609int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 610{
 611    if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
 612        return -1;
 613    }
 614
 615    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 616
 617    return 0;
 618}
 619
 620/*
 621 * Mark the given area of RAM as requiring notification to unwritten areas
 622 * Used as a  callback on qemu_ram_foreach_migratable_block.
 623 *   host_addr: Base of area to mark
 624 *   offset: Offset in the whole ram arena
 625 *   length: Length of the section
 626 *   opaque: MigrationIncomingState pointer
 627 * Returns 0 on success
 628 */
 629static int ram_block_enable_notify(const char *block_name, void *host_addr,
 630                                   ram_addr_t offset, ram_addr_t length,
 631                                   void *opaque)
 632{
 633    MigrationIncomingState *mis = opaque;
 634    struct uffdio_register reg_struct;
 635
 636    reg_struct.range.start = (uintptr_t)host_addr;
 637    reg_struct.range.len = length;
 638    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 639
 640    /* Now tell our userfault_fd that it's responsible for this area */
 641    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 642        error_report("%s userfault register: %s", __func__, strerror(errno));
 643        return -1;
 644    }
 645    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 646        error_report("%s userfault: Region doesn't support COPY", __func__);
 647        return -1;
 648    }
 649    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 650        RAMBlock *rb = qemu_ram_block_by_name(block_name);
 651        qemu_ram_set_uf_zeroable(rb);
 652    }
 653
 654    return 0;
 655}
 656
 657int postcopy_wake_shared(struct PostCopyFD *pcfd,
 658                         uint64_t client_addr,
 659                         RAMBlock *rb)
 660{
 661    size_t pagesize = qemu_ram_pagesize(rb);
 662    struct uffdio_range range;
 663    int ret;
 664    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 665    range.start = client_addr & ~(pagesize - 1);
 666    range.len = pagesize;
 667    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 668    if (ret) {
 669        error_report("%s: Failed to wake: %zx in %s (%s)",
 670                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 671                     strerror(errno));
 672    }
 673    return ret;
 674}
 675
 676/*
 677 * Callback from shared fault handlers to ask for a page,
 678 * the page must be specified by a RAMBlock and an offset in that rb
 679 * Note: Only for use by shared fault handlers (in fault thread)
 680 */
 681int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 682                                 uint64_t client_addr, uint64_t rb_offset)
 683{
 684    size_t pagesize = qemu_ram_pagesize(rb);
 685    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 686    MigrationIncomingState *mis = migration_incoming_get_current();
 687
 688    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 689                                       rb_offset);
 690    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 691        trace_postcopy_request_shared_page_present(pcfd->idstr,
 692                                        qemu_ram_get_idstr(rb), rb_offset);
 693        return postcopy_wake_shared(pcfd, client_addr, rb);
 694    }
 695    if (rb != mis->last_rb) {
 696        mis->last_rb = rb;
 697        migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
 698                                  aligned_rbo, pagesize);
 699    } else {
 700        /* Save some space */
 701        migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
 702    }
 703    return 0;
 704}
 705
 706static int get_mem_fault_cpu_index(uint32_t pid)
 707{
 708    CPUState *cpu_iter;
 709
 710    CPU_FOREACH(cpu_iter) {
 711        if (cpu_iter->thread_id == pid) {
 712            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 713            return cpu_iter->cpu_index;
 714        }
 715    }
 716    trace_get_mem_fault_cpu_index(-1, pid);
 717    return -1;
 718}
 719
 720static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 721{
 722    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 723                                    dc->start_time;
 724    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 725}
 726
 727/*
 728 * This function is being called when pagefault occurs. It
 729 * tracks down vCPU blocking time.
 730 *
 731 * @addr: faulted host virtual address
 732 * @ptid: faulted process thread id
 733 * @rb: ramblock appropriate to addr
 734 */
 735static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 736                                          RAMBlock *rb)
 737{
 738    int cpu, already_received;
 739    MigrationIncomingState *mis = migration_incoming_get_current();
 740    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 741    uint32_t low_time_offset;
 742
 743    if (!dc || ptid == 0) {
 744        return;
 745    }
 746    cpu = get_mem_fault_cpu_index(ptid);
 747    if (cpu < 0) {
 748        return;
 749    }
 750
 751    low_time_offset = get_low_time_offset(dc);
 752    if (dc->vcpu_addr[cpu] == 0) {
 753        atomic_inc(&dc->smp_cpus_down);
 754    }
 755
 756    atomic_xchg(&dc->last_begin, low_time_offset);
 757    atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 758    atomic_xchg(&dc->vcpu_addr[cpu], addr);
 759
 760    /* check it here, not at the begining of the function,
 761     * due to, check could accur early than bitmap_set in
 762     * qemu_ufd_copy_ioctl */
 763    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 764    if (already_received) {
 765        atomic_xchg(&dc->vcpu_addr[cpu], 0);
 766        atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 767        atomic_dec(&dc->smp_cpus_down);
 768    }
 769    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 770                                        cpu, already_received);
 771}
 772
 773/*
 774 *  This function just provide calculated blocktime per cpu and trace it.
 775 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 776 *
 777 *
 778 * Assume we have 3 CPU
 779 *
 780 *      S1        E1           S1               E1
 781 * -----***********------------xxx***************------------------------> CPU1
 782 *
 783 *             S2                E2
 784 * ------------****************xxx---------------------------------------> CPU2
 785 *
 786 *                         S3            E3
 787 * ------------------------****xxx********-------------------------------> CPU3
 788 *
 789 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 790 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 791 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 792 *            it's a part of total blocktime.
 793 * S1 - here is last_begin
 794 * Legend of the picture is following:
 795 *              * - means blocktime per vCPU
 796 *              x - means overlapped blocktime (total blocktime)
 797 *
 798 * @addr: host virtual address
 799 */
 800static void mark_postcopy_blocktime_end(uintptr_t addr)
 801{
 802    MigrationIncomingState *mis = migration_incoming_get_current();
 803    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 804    int i, affected_cpu = 0;
 805    bool vcpu_total_blocktime = false;
 806    uint32_t read_vcpu_time, low_time_offset;
 807
 808    if (!dc) {
 809        return;
 810    }
 811
 812    low_time_offset = get_low_time_offset(dc);
 813    /* lookup cpu, to clear it,
 814     * that algorithm looks straighforward, but it's not
 815     * optimal, more optimal algorithm is keeping tree or hash
 816     * where key is address value is a list of  */
 817    for (i = 0; i < smp_cpus; i++) {
 818        uint32_t vcpu_blocktime = 0;
 819
 820        read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 821        if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 822            read_vcpu_time == 0) {
 823            continue;
 824        }
 825        atomic_xchg(&dc->vcpu_addr[i], 0);
 826        vcpu_blocktime = low_time_offset - read_vcpu_time;
 827        affected_cpu += 1;
 828        /* we need to know is that mark_postcopy_end was due to
 829         * faulted page, another possible case it's prefetched
 830         * page and in that case we shouldn't be here */
 831        if (!vcpu_total_blocktime &&
 832            atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 833            vcpu_total_blocktime = true;
 834        }
 835        /* continue cycle, due to one page could affect several vCPUs */
 836        dc->vcpu_blocktime[i] += vcpu_blocktime;
 837    }
 838
 839    atomic_sub(&dc->smp_cpus_down, affected_cpu);
 840    if (vcpu_total_blocktime) {
 841        dc->total_blocktime += low_time_offset - atomic_fetch_add(
 842                &dc->last_begin, 0);
 843    }
 844    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 845                                      affected_cpu);
 846}
 847
 848static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 849{
 850    trace_postcopy_pause_fault_thread();
 851
 852    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 853
 854    trace_postcopy_pause_fault_thread_continued();
 855
 856    return true;
 857}
 858
 859/*
 860 * Handle faults detected by the USERFAULT markings
 861 */
 862static void *postcopy_ram_fault_thread(void *opaque)
 863{
 864    MigrationIncomingState *mis = opaque;
 865    struct uffd_msg msg;
 866    int ret;
 867    size_t index;
 868    RAMBlock *rb = NULL;
 869
 870    trace_postcopy_ram_fault_thread_entry();
 871    rcu_register_thread();
 872    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 873    qemu_sem_post(&mis->fault_thread_sem);
 874
 875    struct pollfd *pfd;
 876    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 877
 878    pfd = g_new0(struct pollfd, pfd_len);
 879
 880    pfd[0].fd = mis->userfault_fd;
 881    pfd[0].events = POLLIN;
 882    pfd[1].fd = mis->userfault_event_fd;
 883    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 884    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 885    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 886        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 887                                                 struct PostCopyFD, index);
 888        pfd[2 + index].fd = pcfd->fd;
 889        pfd[2 + index].events = POLLIN;
 890        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 891                                                  pcfd->fd);
 892    }
 893
 894    while (true) {
 895        ram_addr_t rb_offset;
 896        int poll_result;
 897
 898        /*
 899         * We're mainly waiting for the kernel to give us a faulting HVA,
 900         * however we can be told to quit via userfault_quit_fd which is
 901         * an eventfd
 902         */
 903
 904        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 905        if (poll_result == -1) {
 906            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 907            break;
 908        }
 909
 910        if (!mis->to_src_file) {
 911            /*
 912             * Possibly someone tells us that the return path is
 913             * broken already using the event. We should hold until
 914             * the channel is rebuilt.
 915             */
 916            if (postcopy_pause_fault_thread(mis)) {
 917                mis->last_rb = NULL;
 918                /* Continue to read the userfaultfd */
 919            } else {
 920                error_report("%s: paused but don't allow to continue",
 921                             __func__);
 922                break;
 923            }
 924        }
 925
 926        if (pfd[1].revents) {
 927            uint64_t tmp64 = 0;
 928
 929            /* Consume the signal */
 930            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 931                /* Nothing obviously nicer than posting this error. */
 932                error_report("%s: read() failed", __func__);
 933            }
 934
 935            if (atomic_read(&mis->fault_thread_quit)) {
 936                trace_postcopy_ram_fault_thread_quit();
 937                break;
 938            }
 939        }
 940
 941        if (pfd[0].revents) {
 942            poll_result--;
 943            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 944            if (ret != sizeof(msg)) {
 945                if (errno == EAGAIN) {
 946                    /*
 947                     * if a wake up happens on the other thread just after
 948                     * the poll, there is nothing to read.
 949                     */
 950                    continue;
 951                }
 952                if (ret < 0) {
 953                    error_report("%s: Failed to read full userfault "
 954                                 "message: %s",
 955                                 __func__, strerror(errno));
 956                    break;
 957                } else {
 958                    error_report("%s: Read %d bytes from userfaultfd "
 959                                 "expected %zd",
 960                                 __func__, ret, sizeof(msg));
 961                    break; /* Lost alignment, don't know what we'd read next */
 962                }
 963            }
 964            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 965                error_report("%s: Read unexpected event %ud from userfaultfd",
 966                             __func__, msg.event);
 967                continue; /* It's not a page fault, shouldn't happen */
 968            }
 969
 970            rb = qemu_ram_block_from_host(
 971                     (void *)(uintptr_t)msg.arg.pagefault.address,
 972                     true, &rb_offset);
 973            if (!rb) {
 974                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 975                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 976                break;
 977            }
 978
 979            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 980            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 981                                                qemu_ram_get_idstr(rb),
 982                                                rb_offset,
 983                                                msg.arg.pagefault.feat.ptid);
 984            mark_postcopy_blocktime_begin(
 985                    (uintptr_t)(msg.arg.pagefault.address),
 986                                msg.arg.pagefault.feat.ptid, rb);
 987
 988retry:
 989            /*
 990             * Send the request to the source - we want to request one
 991             * of our host page sizes (which is >= TPS)
 992             */
 993            if (rb != mis->last_rb) {
 994                mis->last_rb = rb;
 995                ret = migrate_send_rp_req_pages(mis,
 996                                                qemu_ram_get_idstr(rb),
 997                                                rb_offset,
 998                                                qemu_ram_pagesize(rb));
 999            } else {
1000                /* Save some space */
1001                ret = migrate_send_rp_req_pages(mis,
1002                                                NULL,
1003                                                rb_offset,
1004                                                qemu_ram_pagesize(rb));
1005            }
1006
1007            if (ret) {
1008                /* May be network failure, try to wait for recovery */
1009                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1010                    /* We got reconnected somehow, try to continue */
1011                    mis->last_rb = NULL;
1012                    goto retry;
1013                } else {
1014                    /* This is a unavoidable fault */
1015                    error_report("%s: migrate_send_rp_req_pages() get %d",
1016                                 __func__, ret);
1017                    break;
1018                }
1019            }
1020        }
1021
1022        /* Now handle any requests from external processes on shared memory */
1023        /* TODO: May need to handle devices deregistering during postcopy */
1024        for (index = 2; index < pfd_len && poll_result; index++) {
1025            if (pfd[index].revents) {
1026                struct PostCopyFD *pcfd =
1027                    &g_array_index(mis->postcopy_remote_fds,
1028                                   struct PostCopyFD, index - 2);
1029
1030                poll_result--;
1031                if (pfd[index].revents & POLLERR) {
1032                    error_report("%s: POLLERR on poll %zd fd=%d",
1033                                 __func__, index, pcfd->fd);
1034                    pfd[index].events = 0;
1035                    continue;
1036                }
1037
1038                ret = read(pcfd->fd, &msg, sizeof(msg));
1039                if (ret != sizeof(msg)) {
1040                    if (errno == EAGAIN) {
1041                        /*
1042                         * if a wake up happens on the other thread just after
1043                         * the poll, there is nothing to read.
1044                         */
1045                        continue;
1046                    }
1047                    if (ret < 0) {
1048                        error_report("%s: Failed to read full userfault "
1049                                     "message: %s (shared) revents=%d",
1050                                     __func__, strerror(errno),
1051                                     pfd[index].revents);
1052                        /*TODO: Could just disable this sharer */
1053                        break;
1054                    } else {
1055                        error_report("%s: Read %d bytes from userfaultfd "
1056                                     "expected %zd (shared)",
1057                                     __func__, ret, sizeof(msg));
1058                        /*TODO: Could just disable this sharer */
1059                        break; /*Lost alignment,don't know what we'd read next*/
1060                    }
1061                }
1062                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1063                    error_report("%s: Read unexpected event %ud "
1064                                 "from userfaultfd (shared)",
1065                                 __func__, msg.event);
1066                    continue; /* It's not a page fault, shouldn't happen */
1067                }
1068                /* Call the device handler registered with us */
1069                ret = pcfd->handler(pcfd, &msg);
1070                if (ret) {
1071                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1072                                 __func__, index, pcfd->idstr);
1073                    /* TODO: Fail? Disable this sharer? */
1074                }
1075            }
1076        }
1077    }
1078    rcu_unregister_thread();
1079    trace_postcopy_ram_fault_thread_exit();
1080    g_free(pfd);
1081    return NULL;
1082}
1083
1084int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1085{
1086    /* Open the fd for the kernel to give us userfaults */
1087    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1088    if (mis->userfault_fd == -1) {
1089        error_report("%s: Failed to open userfault fd: %s", __func__,
1090                     strerror(errno));
1091        return -1;
1092    }
1093
1094    /*
1095     * Although the host check already tested the API, we need to
1096     * do the check again as an ABI handshake on the new fd.
1097     */
1098    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1099        return -1;
1100    }
1101
1102    /* Now an eventfd we use to tell the fault-thread to quit */
1103    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1104    if (mis->userfault_event_fd == -1) {
1105        error_report("%s: Opening userfault_event_fd: %s", __func__,
1106                     strerror(errno));
1107        close(mis->userfault_fd);
1108        return -1;
1109    }
1110
1111    qemu_sem_init(&mis->fault_thread_sem, 0);
1112    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1113                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1114    qemu_sem_wait(&mis->fault_thread_sem);
1115    qemu_sem_destroy(&mis->fault_thread_sem);
1116    mis->have_fault_thread = true;
1117
1118    /* Mark so that we get notified of accesses to unwritten areas */
1119    if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
1120        return -1;
1121    }
1122
1123    /*
1124     * Ballooning can mark pages as absent while we're postcopying
1125     * that would cause false userfaults.
1126     */
1127    postcopy_balloon_inhibit(true);
1128
1129    trace_postcopy_ram_enable_notify();
1130
1131    return 0;
1132}
1133
1134static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1135                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1136{
1137    int ret;
1138    if (from_addr) {
1139        struct uffdio_copy copy_struct;
1140        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1141        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1142        copy_struct.len = pagesize;
1143        copy_struct.mode = 0;
1144        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1145    } else {
1146        struct uffdio_zeropage zero_struct;
1147        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1148        zero_struct.range.len = pagesize;
1149        zero_struct.mode = 0;
1150        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1151    }
1152    if (!ret) {
1153        ramblock_recv_bitmap_set_range(rb, host_addr,
1154                                       pagesize / qemu_target_page_size());
1155        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1156
1157    }
1158    return ret;
1159}
1160
1161int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1162{
1163    int i;
1164    MigrationIncomingState *mis = migration_incoming_get_current();
1165    GArray *pcrfds = mis->postcopy_remote_fds;
1166
1167    for (i = 0; i < pcrfds->len; i++) {
1168        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1169        int ret = cur->waker(cur, rb, offset);
1170        if (ret) {
1171            return ret;
1172        }
1173    }
1174    return 0;
1175}
1176
1177/*
1178 * Place a host page (from) at (host) atomically
1179 * returns 0 on success
1180 */
1181int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1182                        RAMBlock *rb)
1183{
1184    size_t pagesize = qemu_ram_pagesize(rb);
1185
1186    /* copy also acks to the kernel waking the stalled thread up
1187     * TODO: We can inhibit that ack and only do it if it was requested
1188     * which would be slightly cheaper, but we'd have to be careful
1189     * of the order of updating our page state.
1190     */
1191    if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1192        int e = errno;
1193        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1194                     __func__, strerror(e), host, from, pagesize);
1195
1196        return -e;
1197    }
1198
1199    trace_postcopy_place_page(host);
1200    return postcopy_notify_shared_wake(rb,
1201                                       qemu_ram_block_host_offset(rb, host));
1202}
1203
1204/*
1205 * Place a zero page at (host) atomically
1206 * returns 0 on success
1207 */
1208int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1209                             RAMBlock *rb)
1210{
1211    size_t pagesize = qemu_ram_pagesize(rb);
1212    trace_postcopy_place_page_zero(host);
1213
1214    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1215     * but it's not available for everything (e.g. hugetlbpages)
1216     */
1217    if (qemu_ram_is_uf_zeroable(rb)) {
1218        if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1219            int e = errno;
1220            error_report("%s: %s zero host: %p",
1221                         __func__, strerror(e), host);
1222
1223            return -e;
1224        }
1225        return postcopy_notify_shared_wake(rb,
1226                                           qemu_ram_block_host_offset(rb,
1227                                                                      host));
1228    } else {
1229        /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1230        if (!mis->postcopy_tmp_zero_page) {
1231            mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1232                                               PROT_READ | PROT_WRITE,
1233                                               MAP_PRIVATE | MAP_ANONYMOUS,
1234                                               -1, 0);
1235            if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1236                int e = errno;
1237                mis->postcopy_tmp_zero_page = NULL;
1238                error_report("%s: %s mapping large zero page",
1239                             __func__, strerror(e));
1240                return -e;
1241            }
1242            memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1243        }
1244        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1245                                   rb);
1246    }
1247}
1248
1249/*
1250 * Returns a target page of memory that can be mapped at a later point in time
1251 * using postcopy_place_page
1252 * The same address is used repeatedly, postcopy_place_page just takes the
1253 * backing page away.
1254 * Returns: Pointer to allocated page
1255 *
1256 */
1257void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1258{
1259    if (!mis->postcopy_tmp_page) {
1260        mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1261                             PROT_READ | PROT_WRITE, MAP_PRIVATE |
1262                             MAP_ANONYMOUS, -1, 0);
1263        if (mis->postcopy_tmp_page == MAP_FAILED) {
1264            mis->postcopy_tmp_page = NULL;
1265            error_report("%s: %s", __func__, strerror(errno));
1266            return NULL;
1267        }
1268    }
1269
1270    return mis->postcopy_tmp_page;
1271}
1272
1273#else
1274/* No target OS support, stubs just fail */
1275void fill_destination_postcopy_migration_info(MigrationInfo *info)
1276{
1277}
1278
1279bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1280{
1281    error_report("%s: No OS support", __func__);
1282    return false;
1283}
1284
1285int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1286{
1287    error_report("postcopy_ram_incoming_init: No OS support");
1288    return -1;
1289}
1290
1291int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1292{
1293    assert(0);
1294    return -1;
1295}
1296
1297int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1298{
1299    assert(0);
1300    return -1;
1301}
1302
1303int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1304                                 uint64_t client_addr, uint64_t rb_offset)
1305{
1306    assert(0);
1307    return -1;
1308}
1309
1310int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1311{
1312    assert(0);
1313    return -1;
1314}
1315
1316int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1317                        RAMBlock *rb)
1318{
1319    assert(0);
1320    return -1;
1321}
1322
1323int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1324                        RAMBlock *rb)
1325{
1326    assert(0);
1327    return -1;
1328}
1329
1330void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1331{
1332    assert(0);
1333    return NULL;
1334}
1335
1336int postcopy_wake_shared(struct PostCopyFD *pcfd,
1337                         uint64_t client_addr,
1338                         RAMBlock *rb)
1339{
1340    assert(0);
1341    return -1;
1342}
1343#endif
1344
1345/* ------------------------------------------------------------------------- */
1346
1347void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1348{
1349    uint64_t tmp64 = 1;
1350
1351    /*
1352     * Wakeup the fault_thread.  It's an eventfd that should currently
1353     * be at 0, we're going to increment it to 1
1354     */
1355    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1356        /* Not much we can do here, but may as well report it */
1357        error_report("%s: incrementing failed: %s", __func__,
1358                     strerror(errno));
1359    }
1360}
1361
1362/**
1363 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1364 *   asking to discard individual ranges.
1365 *
1366 * @ms: The current migration state.
1367 * @offset: the bitmap offset of the named RAMBlock in the migration
1368 *   bitmap.
1369 * @name: RAMBlock that discards will operate on.
1370 *
1371 * returns: a new PDS.
1372 */
1373PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1374                                                 const char *name)
1375{
1376    PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1377
1378    if (res) {
1379        res->ramblock_name = name;
1380    }
1381
1382    return res;
1383}
1384
1385/**
1386 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1387 *   discard. May send a discard message, may just leave it queued to
1388 *   be sent later.
1389 *
1390 * @ms: Current migration state.
1391 * @pds: Structure initialised by postcopy_discard_send_init().
1392 * @start,@length: a range of pages in the migration bitmap in the
1393 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1394 */
1395void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1396                                unsigned long start, unsigned long length)
1397{
1398    size_t tp_size = qemu_target_page_size();
1399    /* Convert to byte offsets within the RAM block */
1400    pds->start_list[pds->cur_entry] = start  * tp_size;
1401    pds->length_list[pds->cur_entry] = length * tp_size;
1402    trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1403    pds->cur_entry++;
1404    pds->nsentwords++;
1405
1406    if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1407        /* Full set, ship it! */
1408        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1409                                              pds->ramblock_name,
1410                                              pds->cur_entry,
1411                                              pds->start_list,
1412                                              pds->length_list);
1413        pds->nsentcmds++;
1414        pds->cur_entry = 0;
1415    }
1416}
1417
1418/**
1419 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1420 * bitmap code. Sends any outstanding discard messages, frees the PDS
1421 *
1422 * @ms: Current migration state.
1423 * @pds: Structure initialised by postcopy_discard_send_init().
1424 */
1425void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1426{
1427    /* Anything unsent? */
1428    if (pds->cur_entry) {
1429        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1430                                              pds->ramblock_name,
1431                                              pds->cur_entry,
1432                                              pds->start_list,
1433                                              pds->length_list);
1434        pds->nsentcmds++;
1435    }
1436
1437    trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1438                                       pds->nsentcmds);
1439
1440    g_free(pds);
1441}
1442
1443/*
1444 * Current state of incoming postcopy; note this is not part of
1445 * MigrationIncomingState since it's state is used during cleanup
1446 * at the end as MIS is being freed.
1447 */
1448static PostcopyState incoming_postcopy_state;
1449
1450PostcopyState  postcopy_state_get(void)
1451{
1452    return atomic_mb_read(&incoming_postcopy_state);
1453}
1454
1455/* Set the state and return the old state */
1456PostcopyState postcopy_state_set(PostcopyState new_state)
1457{
1458    return atomic_xchg(&incoming_postcopy_state, new_state);
1459}
1460
1461/* Register a handler for external shared memory postcopy
1462 * called on the destination.
1463 */
1464void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1465{
1466    MigrationIncomingState *mis = migration_incoming_get_current();
1467
1468    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1469                                                  *pcfd);
1470}
1471
1472/* Unregister a handler for external shared memory postcopy
1473 */
1474void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1475{
1476    guint i;
1477    MigrationIncomingState *mis = migration_incoming_get_current();
1478    GArray *pcrfds = mis->postcopy_remote_fds;
1479
1480    for (i = 0; i < pcrfds->len; i++) {
1481        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1482        if (cur->fd == pcfd->fd) {
1483            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1484            return;
1485        }
1486    }
1487}
1488