qemu/migration/qemu-file.c
<<
>>
Prefs
   1/*
   2 * QEMU System Emulator
   3 *
   4 * Copyright (c) 2003-2008 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include <zlib.h>
  26#include "qemu-common.h"
  27#include "qemu/error-report.h"
  28#include "qemu/iov.h"
  29#include "migration.h"
  30#include "qemu-file.h"
  31#include "trace.h"
  32
  33#define IO_BUF_SIZE 32768
  34#define MAX_IOV_SIZE MIN(IOV_MAX, 64)
  35
  36struct QEMUFile {
  37    const QEMUFileOps *ops;
  38    const QEMUFileHooks *hooks;
  39    void *opaque;
  40
  41    int64_t bytes_xfer;
  42    int64_t xfer_limit;
  43
  44    int64_t pos; /* start of buffer when writing, end of buffer
  45                    when reading */
  46    int buf_index;
  47    int buf_size; /* 0 when writing */
  48    uint8_t buf[IO_BUF_SIZE];
  49
  50    DECLARE_BITMAP(may_free, MAX_IOV_SIZE);
  51    struct iovec iov[MAX_IOV_SIZE];
  52    unsigned int iovcnt;
  53
  54    int last_error;
  55};
  56
  57/*
  58 * Stop a file from being read/written - not all backing files can do this
  59 * typically only sockets can.
  60 */
  61int qemu_file_shutdown(QEMUFile *f)
  62{
  63    if (!f->ops->shut_down) {
  64        return -ENOSYS;
  65    }
  66    return f->ops->shut_down(f->opaque, true, true);
  67}
  68
  69/*
  70 * Result: QEMUFile* for a 'return path' for comms in the opposite direction
  71 *         NULL if not available
  72 */
  73QEMUFile *qemu_file_get_return_path(QEMUFile *f)
  74{
  75    if (!f->ops->get_return_path) {
  76        return NULL;
  77    }
  78    return f->ops->get_return_path(f->opaque);
  79}
  80
  81bool qemu_file_mode_is_not_valid(const char *mode)
  82{
  83    if (mode == NULL ||
  84        (mode[0] != 'r' && mode[0] != 'w') ||
  85        mode[1] != 'b' || mode[2] != 0) {
  86        fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
  87        return true;
  88    }
  89
  90    return false;
  91}
  92
  93QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
  94{
  95    QEMUFile *f;
  96
  97    f = g_new0(QEMUFile, 1);
  98
  99    f->opaque = opaque;
 100    f->ops = ops;
 101    return f;
 102}
 103
 104
 105void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks)
 106{
 107    f->hooks = hooks;
 108}
 109
 110/*
 111 * Get last error for stream f
 112 *
 113 * Return negative error value if there has been an error on previous
 114 * operations, return 0 if no error happened.
 115 *
 116 */
 117int qemu_file_get_error(QEMUFile *f)
 118{
 119    return f->last_error;
 120}
 121
 122void qemu_file_set_error(QEMUFile *f, int ret)
 123{
 124    if (f->last_error == 0) {
 125        f->last_error = ret;
 126    }
 127}
 128
 129bool qemu_file_is_writable(QEMUFile *f)
 130{
 131    return f->ops->writev_buffer;
 132}
 133
 134static void qemu_iovec_release_ram(QEMUFile *f)
 135{
 136    struct iovec iov;
 137    unsigned long idx;
 138
 139    /* Find and release all the contiguous memory ranges marked as may_free. */
 140    idx = find_next_bit(f->may_free, f->iovcnt, 0);
 141    if (idx >= f->iovcnt) {
 142        return;
 143    }
 144    iov = f->iov[idx];
 145
 146    /* The madvise() in the loop is called for iov within a continuous range and
 147     * then reinitialize the iov. And in the end, madvise() is called for the
 148     * last iov.
 149     */
 150    while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) {
 151        /* check for adjacent buffer and coalesce them */
 152        if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) {
 153            iov.iov_len += f->iov[idx].iov_len;
 154            continue;
 155        }
 156        if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 157            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 158                         iov.iov_base, iov.iov_len, strerror(errno));
 159        }
 160        iov = f->iov[idx];
 161    }
 162    if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) {
 163            error_report("migrate: madvise DONTNEED failed %p %zd: %s",
 164                         iov.iov_base, iov.iov_len, strerror(errno));
 165    }
 166    memset(f->may_free, 0, sizeof(f->may_free));
 167}
 168
 169/**
 170 * Flushes QEMUFile buffer
 171 *
 172 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
 173 * put_buffer ops. This will flush all pending data. If data was
 174 * only partially flushed, it will set an error state.
 175 */
 176void qemu_fflush(QEMUFile *f)
 177{
 178    ssize_t ret = 0;
 179    ssize_t expect = 0;
 180
 181    if (!qemu_file_is_writable(f)) {
 182        return;
 183    }
 184
 185    if (f->iovcnt > 0) {
 186        expect = iov_size(f->iov, f->iovcnt);
 187        ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos);
 188
 189        qemu_iovec_release_ram(f);
 190    }
 191
 192    if (ret >= 0) {
 193        f->pos += ret;
 194    }
 195    /* We expect the QEMUFile write impl to send the full
 196     * data set we requested, so sanity check that.
 197     */
 198    if (ret != expect) {
 199        qemu_file_set_error(f, ret < 0 ? ret : -EIO);
 200    }
 201    f->buf_index = 0;
 202    f->iovcnt = 0;
 203}
 204
 205void ram_control_before_iterate(QEMUFile *f, uint64_t flags)
 206{
 207    int ret = 0;
 208
 209    if (f->hooks && f->hooks->before_ram_iterate) {
 210        ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL);
 211        if (ret < 0) {
 212            qemu_file_set_error(f, ret);
 213        }
 214    }
 215}
 216
 217void ram_control_after_iterate(QEMUFile *f, uint64_t flags)
 218{
 219    int ret = 0;
 220
 221    if (f->hooks && f->hooks->after_ram_iterate) {
 222        ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL);
 223        if (ret < 0) {
 224            qemu_file_set_error(f, ret);
 225        }
 226    }
 227}
 228
 229void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data)
 230{
 231    int ret = -EINVAL;
 232
 233    if (f->hooks && f->hooks->hook_ram_load) {
 234        ret = f->hooks->hook_ram_load(f, f->opaque, flags, data);
 235        if (ret < 0) {
 236            qemu_file_set_error(f, ret);
 237        }
 238    } else {
 239        /*
 240         * Hook is a hook specifically requested by the source sending a flag
 241         * that expects there to be a hook on the destination.
 242         */
 243        if (flags == RAM_CONTROL_HOOK) {
 244            qemu_file_set_error(f, ret);
 245        }
 246    }
 247}
 248
 249size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset,
 250                             ram_addr_t offset, size_t size,
 251                             uint64_t *bytes_sent)
 252{
 253    if (f->hooks && f->hooks->save_page) {
 254        int ret = f->hooks->save_page(f, f->opaque, block_offset,
 255                                      offset, size, bytes_sent);
 256        if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 257            f->bytes_xfer += size;
 258        }
 259
 260        if (ret != RAM_SAVE_CONTROL_DELAYED &&
 261            ret != RAM_SAVE_CONTROL_NOT_SUPP) {
 262            if (bytes_sent && *bytes_sent > 0) {
 263                qemu_update_position(f, *bytes_sent);
 264            } else if (ret < 0) {
 265                qemu_file_set_error(f, ret);
 266            }
 267        }
 268
 269        return ret;
 270    }
 271
 272    return RAM_SAVE_CONTROL_NOT_SUPP;
 273}
 274
 275/*
 276 * Attempt to fill the buffer from the underlying file
 277 * Returns the number of bytes read, or negative value for an error.
 278 *
 279 * Note that it can return a partially full buffer even in a not error/not EOF
 280 * case if the underlying file descriptor gives a short read, and that can
 281 * happen even on a blocking fd.
 282 */
 283static ssize_t qemu_fill_buffer(QEMUFile *f)
 284{
 285    int len;
 286    int pending;
 287
 288    assert(!qemu_file_is_writable(f));
 289
 290    pending = f->buf_size - f->buf_index;
 291    if (pending > 0) {
 292        memmove(f->buf, f->buf + f->buf_index, pending);
 293    }
 294    f->buf_index = 0;
 295    f->buf_size = pending;
 296
 297    len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
 298                        IO_BUF_SIZE - pending);
 299    if (len > 0) {
 300        f->buf_size += len;
 301        f->pos += len;
 302    } else if (len == 0) {
 303        qemu_file_set_error(f, -EIO);
 304    } else if (len != -EAGAIN) {
 305        qemu_file_set_error(f, len);
 306    }
 307
 308    return len;
 309}
 310
 311void qemu_update_position(QEMUFile *f, size_t size)
 312{
 313    f->pos += size;
 314}
 315
 316/** Closes the file
 317 *
 318 * Returns negative error value if any error happened on previous operations or
 319 * while closing the file. Returns 0 or positive number on success.
 320 *
 321 * The meaning of return value on success depends on the specific backend
 322 * being used.
 323 */
 324int qemu_fclose(QEMUFile *f)
 325{
 326    int ret;
 327    qemu_fflush(f);
 328    ret = qemu_file_get_error(f);
 329
 330    if (f->ops->close) {
 331        int ret2 = f->ops->close(f->opaque);
 332        if (ret >= 0) {
 333            ret = ret2;
 334        }
 335    }
 336    /* If any error was spotted before closing, we should report it
 337     * instead of the close() return value.
 338     */
 339    if (f->last_error) {
 340        ret = f->last_error;
 341    }
 342    g_free(f);
 343    trace_qemu_file_fclose();
 344    return ret;
 345}
 346
 347static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size,
 348                         bool may_free)
 349{
 350    /* check for adjacent buffer and coalesce them */
 351    if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
 352        f->iov[f->iovcnt - 1].iov_len &&
 353        may_free == test_bit(f->iovcnt - 1, f->may_free))
 354    {
 355        f->iov[f->iovcnt - 1].iov_len += size;
 356    } else {
 357        if (may_free) {
 358            set_bit(f->iovcnt, f->may_free);
 359        }
 360        f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
 361        f->iov[f->iovcnt++].iov_len = size;
 362    }
 363
 364    if (f->iovcnt >= MAX_IOV_SIZE) {
 365        qemu_fflush(f);
 366    }
 367}
 368
 369void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size,
 370                           bool may_free)
 371{
 372    if (f->last_error) {
 373        return;
 374    }
 375
 376    f->bytes_xfer += size;
 377    add_to_iovec(f, buf, size, may_free);
 378}
 379
 380void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size)
 381{
 382    size_t l;
 383
 384    if (f->last_error) {
 385        return;
 386    }
 387
 388    while (size > 0) {
 389        l = IO_BUF_SIZE - f->buf_index;
 390        if (l > size) {
 391            l = size;
 392        }
 393        memcpy(f->buf + f->buf_index, buf, l);
 394        f->bytes_xfer += l;
 395        add_to_iovec(f, f->buf + f->buf_index, l, false);
 396        f->buf_index += l;
 397        if (f->buf_index == IO_BUF_SIZE) {
 398            qemu_fflush(f);
 399        }
 400        if (qemu_file_get_error(f)) {
 401            break;
 402        }
 403        buf += l;
 404        size -= l;
 405    }
 406}
 407
 408void qemu_put_byte(QEMUFile *f, int v)
 409{
 410    if (f->last_error) {
 411        return;
 412    }
 413
 414    f->buf[f->buf_index] = v;
 415    f->bytes_xfer++;
 416    add_to_iovec(f, f->buf + f->buf_index, 1, false);
 417    f->buf_index++;
 418    if (f->buf_index == IO_BUF_SIZE) {
 419        qemu_fflush(f);
 420    }
 421}
 422
 423void qemu_file_skip(QEMUFile *f, int size)
 424{
 425    if (f->buf_index + size <= f->buf_size) {
 426        f->buf_index += size;
 427    }
 428}
 429
 430/*
 431 * Read 'size' bytes from file (at 'offset') without moving the
 432 * pointer and set 'buf' to point to that data.
 433 *
 434 * It will return size bytes unless there was an error, in which case it will
 435 * return as many as it managed to read (assuming blocking fd's which
 436 * all current QEMUFile are)
 437 */
 438size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset)
 439{
 440    ssize_t pending;
 441    size_t index;
 442
 443    assert(!qemu_file_is_writable(f));
 444    assert(offset < IO_BUF_SIZE);
 445    assert(size <= IO_BUF_SIZE - offset);
 446
 447    /* The 1st byte to read from */
 448    index = f->buf_index + offset;
 449    /* The number of available bytes starting at index */
 450    pending = f->buf_size - index;
 451
 452    /*
 453     * qemu_fill_buffer might return just a few bytes, even when there isn't
 454     * an error, so loop collecting them until we get enough.
 455     */
 456    while (pending < size) {
 457        int received = qemu_fill_buffer(f);
 458
 459        if (received <= 0) {
 460            break;
 461        }
 462
 463        index = f->buf_index + offset;
 464        pending = f->buf_size - index;
 465    }
 466
 467    if (pending <= 0) {
 468        return 0;
 469    }
 470    if (size > pending) {
 471        size = pending;
 472    }
 473
 474    *buf = f->buf + index;
 475    return size;
 476}
 477
 478/*
 479 * Read 'size' bytes of data from the file into buf.
 480 * 'size' can be larger than the internal buffer.
 481 *
 482 * It will return size bytes unless there was an error, in which case it will
 483 * return as many as it managed to read (assuming blocking fd's which
 484 * all current QEMUFile are)
 485 */
 486size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size)
 487{
 488    size_t pending = size;
 489    size_t done = 0;
 490
 491    while (pending > 0) {
 492        size_t res;
 493        uint8_t *src;
 494
 495        res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0);
 496        if (res == 0) {
 497            return done;
 498        }
 499        memcpy(buf, src, res);
 500        qemu_file_skip(f, res);
 501        buf += res;
 502        pending -= res;
 503        done += res;
 504    }
 505    return done;
 506}
 507
 508/*
 509 * Read 'size' bytes of data from the file.
 510 * 'size' can be larger than the internal buffer.
 511 *
 512 * The data:
 513 *   may be held on an internal buffer (in which case *buf is updated
 514 *     to point to it) that is valid until the next qemu_file operation.
 515 * OR
 516 *   will be copied to the *buf that was passed in.
 517 *
 518 * The code tries to avoid the copy if possible.
 519 *
 520 * It will return size bytes unless there was an error, in which case it will
 521 * return as many as it managed to read (assuming blocking fd's which
 522 * all current QEMUFile are)
 523 *
 524 * Note: Since **buf may get changed, the caller should take care to
 525 *       keep a pointer to the original buffer if it needs to deallocate it.
 526 */
 527size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size)
 528{
 529    if (size < IO_BUF_SIZE) {
 530        size_t res;
 531        uint8_t *src;
 532
 533        res = qemu_peek_buffer(f, &src, size, 0);
 534
 535        if (res == size) {
 536            qemu_file_skip(f, res);
 537            *buf = src;
 538            return res;
 539        }
 540    }
 541
 542    return qemu_get_buffer(f, *buf, size);
 543}
 544
 545/*
 546 * Peeks a single byte from the buffer; this isn't guaranteed to work if
 547 * offset leaves a gap after the previous read/peeked data.
 548 */
 549int qemu_peek_byte(QEMUFile *f, int offset)
 550{
 551    int index = f->buf_index + offset;
 552
 553    assert(!qemu_file_is_writable(f));
 554    assert(offset < IO_BUF_SIZE);
 555
 556    if (index >= f->buf_size) {
 557        qemu_fill_buffer(f);
 558        index = f->buf_index + offset;
 559        if (index >= f->buf_size) {
 560            return 0;
 561        }
 562    }
 563    return f->buf[index];
 564}
 565
 566int qemu_get_byte(QEMUFile *f)
 567{
 568    int result;
 569
 570    result = qemu_peek_byte(f, 0);
 571    qemu_file_skip(f, 1);
 572    return result;
 573}
 574
 575int64_t qemu_ftell_fast(QEMUFile *f)
 576{
 577    int64_t ret = f->pos;
 578    int i;
 579
 580    for (i = 0; i < f->iovcnt; i++) {
 581        ret += f->iov[i].iov_len;
 582    }
 583
 584    return ret;
 585}
 586
 587int64_t qemu_ftell(QEMUFile *f)
 588{
 589    qemu_fflush(f);
 590    return f->pos;
 591}
 592
 593int qemu_file_rate_limit(QEMUFile *f)
 594{
 595    if (qemu_file_get_error(f)) {
 596        return 1;
 597    }
 598    if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
 599        return 1;
 600    }
 601    return 0;
 602}
 603
 604int64_t qemu_file_get_rate_limit(QEMUFile *f)
 605{
 606    return f->xfer_limit;
 607}
 608
 609void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
 610{
 611    f->xfer_limit = limit;
 612}
 613
 614void qemu_file_reset_rate_limit(QEMUFile *f)
 615{
 616    f->bytes_xfer = 0;
 617}
 618
 619void qemu_put_be16(QEMUFile *f, unsigned int v)
 620{
 621    qemu_put_byte(f, v >> 8);
 622    qemu_put_byte(f, v);
 623}
 624
 625void qemu_put_be32(QEMUFile *f, unsigned int v)
 626{
 627    qemu_put_byte(f, v >> 24);
 628    qemu_put_byte(f, v >> 16);
 629    qemu_put_byte(f, v >> 8);
 630    qemu_put_byte(f, v);
 631}
 632
 633void qemu_put_be64(QEMUFile *f, uint64_t v)
 634{
 635    qemu_put_be32(f, v >> 32);
 636    qemu_put_be32(f, v);
 637}
 638
 639unsigned int qemu_get_be16(QEMUFile *f)
 640{
 641    unsigned int v;
 642    v = qemu_get_byte(f) << 8;
 643    v |= qemu_get_byte(f);
 644    return v;
 645}
 646
 647unsigned int qemu_get_be32(QEMUFile *f)
 648{
 649    unsigned int v;
 650    v = (unsigned int)qemu_get_byte(f) << 24;
 651    v |= qemu_get_byte(f) << 16;
 652    v |= qemu_get_byte(f) << 8;
 653    v |= qemu_get_byte(f);
 654    return v;
 655}
 656
 657uint64_t qemu_get_be64(QEMUFile *f)
 658{
 659    uint64_t v;
 660    v = (uint64_t)qemu_get_be32(f) << 32;
 661    v |= qemu_get_be32(f);
 662    return v;
 663}
 664
 665/* return the size after compression, or negative value on error */
 666static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
 667                              const uint8_t *source, size_t source_len)
 668{
 669    int err;
 670
 671    err = deflateReset(stream);
 672    if (err != Z_OK) {
 673        return -1;
 674    }
 675
 676    stream->avail_in = source_len;
 677    stream->next_in = (uint8_t *)source;
 678    stream->avail_out = dest_len;
 679    stream->next_out = dest;
 680
 681    err = deflate(stream, Z_FINISH);
 682    if (err != Z_STREAM_END) {
 683        return -1;
 684    }
 685
 686    return stream->next_out - dest;
 687}
 688
 689/* Compress size bytes of data start at p and store the compressed
 690 * data to the buffer of f.
 691 *
 692 * When f is not writable, return -1 if f has no space to save the
 693 * compressed data.
 694 * When f is wirtable and it has no space to save the compressed data,
 695 * do fflush first, if f still has no space to save the compressed
 696 * data, return -1.
 697 */
 698ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream,
 699                                  const uint8_t *p, size_t size)
 700{
 701    ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t);
 702
 703    if (blen < compressBound(size)) {
 704        if (!qemu_file_is_writable(f)) {
 705            return -1;
 706        }
 707        qemu_fflush(f);
 708        blen = IO_BUF_SIZE - sizeof(int32_t);
 709        if (blen < compressBound(size)) {
 710            return -1;
 711        }
 712    }
 713
 714    blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t),
 715                              blen, p, size);
 716    if (blen < 0) {
 717        return -1;
 718    }
 719
 720    qemu_put_be32(f, blen);
 721    if (f->ops->writev_buffer) {
 722        add_to_iovec(f, f->buf + f->buf_index, blen, false);
 723    }
 724    f->buf_index += blen;
 725    if (f->buf_index == IO_BUF_SIZE) {
 726        qemu_fflush(f);
 727    }
 728    return blen + sizeof(int32_t);
 729}
 730
 731/* Put the data in the buffer of f_src to the buffer of f_des, and
 732 * then reset the buf_index of f_src to 0.
 733 */
 734
 735int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src)
 736{
 737    int len = 0;
 738
 739    if (f_src->buf_index > 0) {
 740        len = f_src->buf_index;
 741        qemu_put_buffer(f_des, f_src->buf, f_src->buf_index);
 742        f_src->buf_index = 0;
 743        f_src->iovcnt = 0;
 744    }
 745    return len;
 746}
 747
 748/*
 749 * Get a string whose length is determined by a single preceding byte
 750 * A preallocated 256 byte buffer must be passed in.
 751 * Returns: len on success and a 0 terminated string in the buffer
 752 *          else 0
 753 *          (Note a 0 length string will return 0 either way)
 754 */
 755size_t qemu_get_counted_string(QEMUFile *f, char buf[256])
 756{
 757    size_t len = qemu_get_byte(f);
 758    size_t res = qemu_get_buffer(f, (uint8_t *)buf, len);
 759
 760    buf[res] = 0;
 761
 762    return res == len ? res : 0;
 763}
 764
 765/*
 766 * Put a string with one preceding byte containing its length. The length of
 767 * the string should be less than 256.
 768 */
 769void qemu_put_counted_string(QEMUFile *f, const char *str)
 770{
 771    size_t len = strlen(str);
 772
 773    assert(len < 256);
 774    qemu_put_byte(f, len);
 775    qemu_put_buffer(f, (const uint8_t *)str, len);
 776}
 777
 778/*
 779 * Set the blocking state of the QEMUFile.
 780 * Note: On some transports the OS only keeps a single blocking state for
 781 *       both directions, and thus changing the blocking on the main
 782 *       QEMUFile can also affect the return path.
 783 */
 784void qemu_file_set_blocking(QEMUFile *f, bool block)
 785{
 786    if (f->ops->set_blocking) {
 787        f->ops->set_blocking(f->opaque, block);
 788    }
 789}
 790