qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4@include version.texi
   5
   6@documentlanguage en
   7@documentencoding UTF-8
   8
   9@settitle QEMU version @value{VERSION} User Documentation
  10@exampleindent 0
  11@paragraphindent 0
  12@c %**end of header
  13
  14@ifinfo
  15@direntry
  16* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  17@end direntry
  18@end ifinfo
  19
  20@iftex
  21@titlepage
  22@sp 7
  23@center @titlefont{QEMU version @value{VERSION}}
  24@sp 1
  25@center @titlefont{User Documentation}
  26@sp 3
  27@end titlepage
  28@end iftex
  29
  30@ifnottex
  31@node Top
  32@top
  33
  34@menu
  35* Introduction::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU Guest Agent::
  39* QEMU User space emulator::
  40* Implementation notes::
  41* Deprecated features::
  42* Supported build platforms::
  43* License::
  44* Index::
  45@end menu
  46@end ifnottex
  47
  48@contents
  49
  50@node Introduction
  51@chapter Introduction
  52
  53@menu
  54* intro_features:: Features
  55@end menu
  56
  57@node intro_features
  58@section Features
  59
  60QEMU is a FAST! processor emulator using dynamic translation to
  61achieve good emulation speed.
  62
  63@cindex operating modes
  64QEMU has two operating modes:
  65
  66@itemize
  67@cindex system emulation
  68@item Full system emulation. In this mode, QEMU emulates a full system (for
  69example a PC), including one or several processors and various
  70peripherals. It can be used to launch different Operating Systems
  71without rebooting the PC or to debug system code.
  72
  73@cindex user mode emulation
  74@item User mode emulation. In this mode, QEMU can launch
  75processes compiled for one CPU on another CPU. It can be used to
  76launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
  77to ease cross-compilation and cross-debugging.
  78
  79@end itemize
  80
  81QEMU has the following features:
  82
  83@itemize
  84@item QEMU can run without a host kernel driver and yet gives acceptable
  85performance.  It uses dynamic translation to native code for reasonable speed,
  86with support for self-modifying code and precise exceptions.
  87
  88@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
  89Windows) and architectures.
  90
  91@item It performs accurate software emulation of the FPU.
  92@end itemize
  93
  94QEMU user mode emulation has the following features:
  95@itemize
  96@item Generic Linux system call converter, including most ioctls.
  97
  98@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
  99
 100@item Accurate signal handling by remapping host signals to target signals.
 101@end itemize
 102
 103QEMU full system emulation has the following features:
 104@itemize
 105@item
 106QEMU uses a full software MMU for maximum portability.
 107
 108@item
 109QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
 110execute most of the guest code natively, while
 111continuing to emulate the rest of the machine.
 112
 113@item
 114Various hardware devices can be emulated and in some cases, host
 115devices (e.g. serial and parallel ports, USB, drives) can be used
 116transparently by the guest Operating System. Host device passthrough
 117can be used for talking to external physical peripherals (e.g. a
 118webcam, modem or tape drive).
 119
 120@item
 121Symmetric multiprocessing (SMP) support.  Currently, an in-kernel
 122accelerator is required to use more than one host CPU for emulation.
 123
 124@end itemize
 125
 126
 127@node QEMU PC System emulator
 128@chapter QEMU PC System emulator
 129@cindex system emulation (PC)
 130
 131@menu
 132* pcsys_introduction:: Introduction
 133* pcsys_quickstart::   Quick Start
 134* sec_invocation::     Invocation
 135* pcsys_keys::         Keys in the graphical frontends
 136* mux_keys::           Keys in the character backend multiplexer
 137* pcsys_monitor::      QEMU Monitor
 138* cpu_models::         CPU models
 139* disk_images::        Disk Images
 140* pcsys_network::      Network emulation
 141* pcsys_other_devs::   Other Devices
 142* direct_linux_boot::  Direct Linux Boot
 143* pcsys_usb::          USB emulation
 144* vnc_security::       VNC security
 145* network_tls::        TLS setup for network services
 146* gdb_usage::          GDB usage
 147* pcsys_os_specific::  Target OS specific information
 148@end menu
 149
 150@node pcsys_introduction
 151@section Introduction
 152
 153@c man begin DESCRIPTION
 154
 155The QEMU PC System emulator simulates the
 156following peripherals:
 157
 158@itemize @minus
 159@item
 160i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 161@item
 162Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 163extensions (hardware level, including all non standard modes).
 164@item
 165PS/2 mouse and keyboard
 166@item
 1672 PCI IDE interfaces with hard disk and CD-ROM support
 168@item
 169Floppy disk
 170@item
 171PCI and ISA network adapters
 172@item
 173Serial ports
 174@item
 175IPMI BMC, either and internal or external one
 176@item
 177Creative SoundBlaster 16 sound card
 178@item
 179ENSONIQ AudioPCI ES1370 sound card
 180@item
 181Intel 82801AA AC97 Audio compatible sound card
 182@item
 183Intel HD Audio Controller and HDA codec
 184@item
 185Adlib (OPL2) - Yamaha YM3812 compatible chip
 186@item
 187Gravis Ultrasound GF1 sound card
 188@item
 189CS4231A compatible sound card
 190@item
 191PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
 192@end itemize
 193
 194SMP is supported with up to 255 CPUs.
 195
 196QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 197VGA BIOS.
 198
 199QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 200
 201QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 202by Tibor "TS" Schütz.
 203
 204Note that, by default, GUS shares IRQ(7) with parallel ports and so
 205QEMU must be told to not have parallel ports to have working GUS.
 206
 207@example
 208qemu-system-i386 dos.img -soundhw gus -parallel none
 209@end example
 210
 211Alternatively:
 212@example
 213qemu-system-i386 dos.img -device gus,irq=5
 214@end example
 215
 216Or some other unclaimed IRQ.
 217
 218CS4231A is the chip used in Windows Sound System and GUSMAX products
 219
 220@c man end
 221
 222@node pcsys_quickstart
 223@section Quick Start
 224@cindex quick start
 225
 226Download and uncompress the linux image (@file{linux.img}) and type:
 227
 228@example
 229qemu-system-i386 linux.img
 230@end example
 231
 232Linux should boot and give you a prompt.
 233
 234@node sec_invocation
 235@section Invocation
 236
 237@example
 238@c man begin SYNOPSIS
 239@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
 240@c man end
 241@end example
 242
 243@c man begin OPTIONS
 244@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 245targets do not need a disk image.
 246
 247@include qemu-options.texi
 248
 249@c man end
 250
 251@subsection Device URL Syntax
 252@c TODO merge this with section Disk Images
 253
 254@c man begin NOTES
 255
 256In addition to using normal file images for the emulated storage devices,
 257QEMU can also use networked resources such as iSCSI devices. These are
 258specified using a special URL syntax.
 259
 260@table @option
 261@item iSCSI
 262iSCSI support allows QEMU to access iSCSI resources directly and use as
 263images for the guest storage. Both disk and cdrom images are supported.
 264
 265Syntax for specifying iSCSI LUNs is
 266``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
 267
 268By default qemu will use the iSCSI initiator-name
 269'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
 270line or a configuration file.
 271
 272Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
 273stalled requests and force a reestablishment of the session. The timeout
 274is specified in seconds. The default is 0 which means no timeout. Libiscsi
 2751.15.0 or greater is required for this feature.
 276
 277Example (without authentication):
 278@example
 279qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
 280                 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
 281                 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
 282@end example
 283
 284Example (CHAP username/password via URL):
 285@example
 286qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
 287@end example
 288
 289Example (CHAP username/password via environment variables):
 290@example
 291LIBISCSI_CHAP_USERNAME="user" \
 292LIBISCSI_CHAP_PASSWORD="password" \
 293qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
 294@end example
 295
 296@item NBD
 297QEMU supports NBD (Network Block Devices) both using TCP protocol as well
 298as Unix Domain Sockets.
 299
 300Syntax for specifying a NBD device using TCP
 301``nbd:<server-ip>:<port>[:exportname=<export>]''
 302
 303Syntax for specifying a NBD device using Unix Domain Sockets
 304``nbd:unix:<domain-socket>[:exportname=<export>]''
 305
 306Example for TCP
 307@example
 308qemu-system-i386 --drive file=nbd:192.0.2.1:30000
 309@end example
 310
 311Example for Unix Domain Sockets
 312@example
 313qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
 314@end example
 315
 316@item SSH
 317QEMU supports SSH (Secure Shell) access to remote disks.
 318
 319Examples:
 320@example
 321qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
 322qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
 323@end example
 324
 325Currently authentication must be done using ssh-agent.  Other
 326authentication methods may be supported in future.
 327
 328@item Sheepdog
 329Sheepdog is a distributed storage system for QEMU.
 330QEMU supports using either local sheepdog devices or remote networked
 331devices.
 332
 333Syntax for specifying a sheepdog device
 334@example
 335sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
 336@end example
 337
 338Example
 339@example
 340qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
 341@end example
 342
 343See also @url{https://sheepdog.github.io/sheepdog/}.
 344
 345@item GlusterFS
 346GlusterFS is a user space distributed file system.
 347QEMU supports the use of GlusterFS volumes for hosting VM disk images using
 348TCP, Unix Domain Sockets and RDMA transport protocols.
 349
 350Syntax for specifying a VM disk image on GlusterFS volume is
 351@example
 352
 353URI:
 354gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
 355
 356JSON:
 357'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
 358@                                 "server":[@{"type":"tcp","host":"...","port":"..."@},
 359@                                           @{"type":"unix","socket":"..."@}]@}@}'
 360@end example
 361
 362
 363Example
 364@example
 365URI:
 366qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
 367@                               file.debug=9,file.logfile=/var/log/qemu-gluster.log
 368
 369JSON:
 370qemu-system-x86_64 'json:@{"driver":"qcow2",
 371@                          "file":@{"driver":"gluster",
 372@                                   "volume":"testvol","path":"a.img",
 373@                                   "debug":9,"logfile":"/var/log/qemu-gluster.log",
 374@                                   "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
 375@                                             @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
 376qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
 377@                                      file.debug=9,file.logfile=/var/log/qemu-gluster.log,
 378@                                      file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
 379@                                      file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
 380@end example
 381
 382See also @url{http://www.gluster.org}.
 383
 384@item HTTP/HTTPS/FTP/FTPS
 385QEMU supports read-only access to files accessed over http(s) and ftp(s).
 386
 387Syntax using a single filename:
 388@example
 389<protocol>://[<username>[:<password>]@@]<host>/<path>
 390@end example
 391
 392where:
 393@table @option
 394@item protocol
 395'http', 'https', 'ftp', or 'ftps'.
 396
 397@item username
 398Optional username for authentication to the remote server.
 399
 400@item password
 401Optional password for authentication to the remote server.
 402
 403@item host
 404Address of the remote server.
 405
 406@item path
 407Path on the remote server, including any query string.
 408@end table
 409
 410The following options are also supported:
 411@table @option
 412@item url
 413The full URL when passing options to the driver explicitly.
 414
 415@item readahead
 416The amount of data to read ahead with each range request to the remote server.
 417This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
 418does not have a suffix, it will be assumed to be in bytes. The value must be a
 419multiple of 512 bytes. It defaults to 256k.
 420
 421@item sslverify
 422Whether to verify the remote server's certificate when connecting over SSL. It
 423can have the value 'on' or 'off'. It defaults to 'on'.
 424
 425@item cookie
 426Send this cookie (it can also be a list of cookies separated by ';') with
 427each outgoing request.  Only supported when using protocols such as HTTP
 428which support cookies, otherwise ignored.
 429
 430@item timeout
 431Set the timeout in seconds of the CURL connection. This timeout is the time
 432that CURL waits for a response from the remote server to get the size of the
 433image to be downloaded. If not set, the default timeout of 5 seconds is used.
 434@end table
 435
 436Note that when passing options to qemu explicitly, @option{driver} is the value
 437of <protocol>.
 438
 439Example: boot from a remote Fedora 20 live ISO image
 440@example
 441qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
 442
 443qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
 444@end example
 445
 446Example: boot from a remote Fedora 20 cloud image using a local overlay for
 447writes, copy-on-read, and a readahead of 64k
 448@example
 449qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
 450
 451qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
 452@end example
 453
 454Example: boot from an image stored on a VMware vSphere server with a self-signed
 455certificate using a local overlay for writes, a readahead of 64k and a timeout
 456of 10 seconds.
 457@example
 458qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
 459
 460qemu-system-x86_64 -drive file=/tmp/test.qcow2
 461@end example
 462
 463@end table
 464
 465@c man end
 466
 467@node pcsys_keys
 468@section Keys in the graphical frontends
 469
 470@c man begin OPTIONS
 471
 472During the graphical emulation, you can use special key combinations to change
 473modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 474then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 475@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 476
 477@table @key
 478@item Ctrl-Alt-f
 479@kindex Ctrl-Alt-f
 480Toggle full screen
 481
 482@item Ctrl-Alt-+
 483@kindex Ctrl-Alt-+
 484Enlarge the screen
 485
 486@item Ctrl-Alt--
 487@kindex Ctrl-Alt--
 488Shrink the screen
 489
 490@item Ctrl-Alt-u
 491@kindex Ctrl-Alt-u
 492Restore the screen's un-scaled dimensions
 493
 494@item Ctrl-Alt-n
 495@kindex Ctrl-Alt-n
 496Switch to virtual console 'n'. Standard console mappings are:
 497@table @emph
 498@item 1
 499Target system display
 500@item 2
 501Monitor
 502@item 3
 503Serial port
 504@end table
 505
 506@item Ctrl-Alt
 507@kindex Ctrl-Alt
 508Toggle mouse and keyboard grab.
 509@end table
 510
 511@kindex Ctrl-Up
 512@kindex Ctrl-Down
 513@kindex Ctrl-PageUp
 514@kindex Ctrl-PageDown
 515In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 516@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 517
 518@c man end
 519
 520@node mux_keys
 521@section Keys in the character backend multiplexer
 522
 523@c man begin OPTIONS
 524
 525During emulation, if you are using a character backend multiplexer
 526(which is the default if you are using @option{-nographic}) then
 527several commands are available via an escape sequence. These
 528key sequences all start with an escape character, which is @key{Ctrl-a}
 529by default, but can be changed with @option{-echr}. The list below assumes
 530you're using the default.
 531
 532@table @key
 533@item Ctrl-a h
 534@kindex Ctrl-a h
 535Print this help
 536@item Ctrl-a x
 537@kindex Ctrl-a x
 538Exit emulator
 539@item Ctrl-a s
 540@kindex Ctrl-a s
 541Save disk data back to file (if -snapshot)
 542@item Ctrl-a t
 543@kindex Ctrl-a t
 544Toggle console timestamps
 545@item Ctrl-a b
 546@kindex Ctrl-a b
 547Send break (magic sysrq in Linux)
 548@item Ctrl-a c
 549@kindex Ctrl-a c
 550Rotate between the frontends connected to the multiplexer (usually
 551this switches between the monitor and the console)
 552@item Ctrl-a Ctrl-a
 553@kindex Ctrl-a Ctrl-a
 554Send the escape character to the frontend
 555@end table
 556@c man end
 557
 558@ignore
 559
 560@c man begin SEEALSO
 561The HTML documentation of QEMU for more precise information and Linux
 562user mode emulator invocation.
 563@c man end
 564
 565@c man begin AUTHOR
 566Fabrice Bellard
 567@c man end
 568
 569@end ignore
 570
 571@node pcsys_monitor
 572@section QEMU Monitor
 573@cindex QEMU monitor
 574
 575The QEMU monitor is used to give complex commands to the QEMU
 576emulator. You can use it to:
 577
 578@itemize @minus
 579
 580@item
 581Remove or insert removable media images
 582(such as CD-ROM or floppies).
 583
 584@item
 585Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 586from a disk file.
 587
 588@item Inspect the VM state without an external debugger.
 589
 590@end itemize
 591
 592@subsection Commands
 593
 594The following commands are available:
 595
 596@include qemu-monitor.texi
 597
 598@include qemu-monitor-info.texi
 599
 600@subsection Integer expressions
 601
 602The monitor understands integers expressions for every integer
 603argument. You can use register names to get the value of specifics
 604CPU registers by prefixing them with @emph{$}.
 605
 606@node cpu_models
 607@section CPU models
 608
 609@include docs/qemu-cpu-models.texi
 610
 611@node disk_images
 612@section Disk Images
 613
 614QEMU supports many disk image formats, including growable disk images
 615(their size increase as non empty sectors are written), compressed and
 616encrypted disk images.
 617
 618@menu
 619* disk_images_quickstart::    Quick start for disk image creation
 620* disk_images_snapshot_mode:: Snapshot mode
 621* vm_snapshots::              VM snapshots
 622* qemu_img_invocation::       qemu-img Invocation
 623* qemu_nbd_invocation::       qemu-nbd Invocation
 624* disk_images_formats::       Disk image file formats
 625* host_drives::               Using host drives
 626* disk_images_fat_images::    Virtual FAT disk images
 627* disk_images_nbd::           NBD access
 628* disk_images_sheepdog::      Sheepdog disk images
 629* disk_images_iscsi::         iSCSI LUNs
 630* disk_images_gluster::       GlusterFS disk images
 631* disk_images_ssh::           Secure Shell (ssh) disk images
 632* disk_images_nvme::          NVMe userspace driver
 633* disk_image_locking::        Disk image file locking
 634@end menu
 635
 636@node disk_images_quickstart
 637@subsection Quick start for disk image creation
 638
 639You can create a disk image with the command:
 640@example
 641qemu-img create myimage.img mysize
 642@end example
 643where @var{myimage.img} is the disk image filename and @var{mysize} is its
 644size in kilobytes. You can add an @code{M} suffix to give the size in
 645megabytes and a @code{G} suffix for gigabytes.
 646
 647See @ref{qemu_img_invocation} for more information.
 648
 649@node disk_images_snapshot_mode
 650@subsection Snapshot mode
 651
 652If you use the option @option{-snapshot}, all disk images are
 653considered as read only. When sectors in written, they are written in
 654a temporary file created in @file{/tmp}. You can however force the
 655write back to the raw disk images by using the @code{commit} monitor
 656command (or @key{C-a s} in the serial console).
 657
 658@node vm_snapshots
 659@subsection VM snapshots
 660
 661VM snapshots are snapshots of the complete virtual machine including
 662CPU state, RAM, device state and the content of all the writable
 663disks. In order to use VM snapshots, you must have at least one non
 664removable and writable block device using the @code{qcow2} disk image
 665format. Normally this device is the first virtual hard drive.
 666
 667Use the monitor command @code{savevm} to create a new VM snapshot or
 668replace an existing one. A human readable name can be assigned to each
 669snapshot in addition to its numerical ID.
 670
 671Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 672a VM snapshot. @code{info snapshots} lists the available snapshots
 673with their associated information:
 674
 675@example
 676(qemu) info snapshots
 677Snapshot devices: hda
 678Snapshot list (from hda):
 679ID        TAG                 VM SIZE                DATE       VM CLOCK
 6801         start                   41M 2006-08-06 12:38:02   00:00:14.954
 6812                                 40M 2006-08-06 12:43:29   00:00:18.633
 6823         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 683@end example
 684
 685A VM snapshot is made of a VM state info (its size is shown in
 686@code{info snapshots}) and a snapshot of every writable disk image.
 687The VM state info is stored in the first @code{qcow2} non removable
 688and writable block device. The disk image snapshots are stored in
 689every disk image. The size of a snapshot in a disk image is difficult
 690to evaluate and is not shown by @code{info snapshots} because the
 691associated disk sectors are shared among all the snapshots to save
 692disk space (otherwise each snapshot would need a full copy of all the
 693disk images).
 694
 695When using the (unrelated) @code{-snapshot} option
 696(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 697but they are deleted as soon as you exit QEMU.
 698
 699VM snapshots currently have the following known limitations:
 700@itemize
 701@item
 702They cannot cope with removable devices if they are removed or
 703inserted after a snapshot is done.
 704@item
 705A few device drivers still have incomplete snapshot support so their
 706state is not saved or restored properly (in particular USB).
 707@end itemize
 708
 709@node qemu_img_invocation
 710@subsection @code{qemu-img} Invocation
 711
 712@include qemu-img.texi
 713
 714@node qemu_nbd_invocation
 715@subsection @code{qemu-nbd} Invocation
 716
 717@include qemu-nbd.texi
 718
 719@include docs/qemu-block-drivers.texi
 720
 721@node pcsys_network
 722@section Network emulation
 723
 724QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
 725target) and can connect them to a network backend on the host or an emulated
 726hub. The various host network backends can either be used to connect the NIC of
 727the guest to a real network (e.g. by using a TAP devices or the non-privileged
 728user mode network stack), or to other guest instances running in another QEMU
 729process (e.g. by using the socket host network backend).
 730
 731@subsection Using TAP network interfaces
 732
 733This is the standard way to connect QEMU to a real network. QEMU adds
 734a virtual network device on your host (called @code{tapN}), and you
 735can then configure it as if it was a real ethernet card.
 736
 737@subsubsection Linux host
 738
 739As an example, you can download the @file{linux-test-xxx.tar.gz}
 740archive and copy the script @file{qemu-ifup} in @file{/etc} and
 741configure properly @code{sudo} so that the command @code{ifconfig}
 742contained in @file{qemu-ifup} can be executed as root. You must verify
 743that your host kernel supports the TAP network interfaces: the
 744device @file{/dev/net/tun} must be present.
 745
 746See @ref{sec_invocation} to have examples of command lines using the
 747TAP network interfaces.
 748
 749@subsubsection Windows host
 750
 751There is a virtual ethernet driver for Windows 2000/XP systems, called
 752TAP-Win32. But it is not included in standard QEMU for Windows,
 753so you will need to get it separately. It is part of OpenVPN package,
 754so download OpenVPN from : @url{https://openvpn.net/}.
 755
 756@subsection Using the user mode network stack
 757
 758By using the option @option{-net user} (default configuration if no
 759@option{-net} option is specified), QEMU uses a completely user mode
 760network stack (you don't need root privilege to use the virtual
 761network). The virtual network configuration is the following:
 762
 763@example
 764
 765     guest (10.0.2.15)  <------>  Firewall/DHCP server <-----> Internet
 766                           |          (10.0.2.2)
 767                           |
 768                           ---->  DNS server (10.0.2.3)
 769                           |
 770                           ---->  SMB server (10.0.2.4)
 771@end example
 772
 773The QEMU VM behaves as if it was behind a firewall which blocks all
 774incoming connections. You can use a DHCP client to automatically
 775configure the network in the QEMU VM. The DHCP server assign addresses
 776to the hosts starting from 10.0.2.15.
 777
 778In order to check that the user mode network is working, you can ping
 779the address 10.0.2.2 and verify that you got an address in the range
 78010.0.2.x from the QEMU virtual DHCP server.
 781
 782Note that ICMP traffic in general does not work with user mode networking.
 783@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
 784however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
 785ping sockets to allow @code{ping} to the Internet. The host admin has to set
 786the ping_group_range in order to grant access to those sockets. To allow ping
 787for GID 100 (usually users group):
 788
 789@example
 790echo 100 100 > /proc/sys/net/ipv4/ping_group_range
 791@end example
 792
 793When using the built-in TFTP server, the router is also the TFTP
 794server.
 795
 796When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
 797connections can be redirected from the host to the guest. It allows for
 798example to redirect X11, telnet or SSH connections.
 799
 800@subsection Hubs
 801
 802QEMU can simulate several hubs. A hub can be thought of as a virtual connection
 803between several network devices. These devices can be for example QEMU virtual
 804ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
 805guest NICs or host network backends to such a hub using the @option{-netdev
 806hubport} or @option{-nic hubport} options. The legacy @option{-net} option
 807also connects the given device to the emulated hub with ID 0 (i.e. the default
 808hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
 809
 810@subsection Connecting emulated networks between QEMU instances
 811
 812Using the @option{-netdev socket} (or @option{-nic socket} or
 813@option{-net socket}) option, it is possible to create emulated
 814networks that span several QEMU instances.
 815See the description of the @option{-netdev socket} option in the
 816@ref{sec_invocation,,Invocation chapter} to have a basic example.
 817
 818@node pcsys_other_devs
 819@section Other Devices
 820
 821@subsection Inter-VM Shared Memory device
 822
 823On Linux hosts, a shared memory device is available.  The basic syntax
 824is:
 825
 826@example
 827qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
 828@end example
 829
 830where @var{hostmem} names a host memory backend.  For a POSIX shared
 831memory backend, use something like
 832
 833@example
 834-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
 835@end example
 836
 837If desired, interrupts can be sent between guest VMs accessing the same shared
 838memory region.  Interrupt support requires using a shared memory server and
 839using a chardev socket to connect to it.  The code for the shared memory server
 840is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
 841memory server is:
 842
 843@example
 844# First start the ivshmem server once and for all
 845ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
 846
 847# Then start your qemu instances with matching arguments
 848qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
 849                 -chardev socket,path=@var{path},id=@var{id}
 850@end example
 851
 852When using the server, the guest will be assigned a VM ID (>=0) that allows guests
 853using the same server to communicate via interrupts.  Guests can read their
 854VM ID from a device register (see ivshmem-spec.txt).
 855
 856@subsubsection Migration with ivshmem
 857
 858With device property @option{master=on}, the guest will copy the shared
 859memory on migration to the destination host.  With @option{master=off},
 860the guest will not be able to migrate with the device attached.  In the
 861latter case, the device should be detached and then reattached after
 862migration using the PCI hotplug support.
 863
 864At most one of the devices sharing the same memory can be master.  The
 865master must complete migration before you plug back the other devices.
 866
 867@subsubsection ivshmem and hugepages
 868
 869Instead of specifying the <shm size> using POSIX shm, you may specify
 870a memory backend that has hugepage support:
 871
 872@example
 873qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
 874                 -device ivshmem-plain,memdev=mb1
 875@end example
 876
 877ivshmem-server also supports hugepages mount points with the
 878@option{-m} memory path argument.
 879
 880@node direct_linux_boot
 881@section Direct Linux Boot
 882
 883This section explains how to launch a Linux kernel inside QEMU without
 884having to make a full bootable image. It is very useful for fast Linux
 885kernel testing.
 886
 887The syntax is:
 888@example
 889qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
 890@end example
 891
 892Use @option{-kernel} to provide the Linux kernel image and
 893@option{-append} to give the kernel command line arguments. The
 894@option{-initrd} option can be used to provide an INITRD image.
 895
 896When using the direct Linux boot, a disk image for the first hard disk
 897@file{hda} is required because its boot sector is used to launch the
 898Linux kernel.
 899
 900If you do not need graphical output, you can disable it and redirect
 901the virtual serial port and the QEMU monitor to the console with the
 902@option{-nographic} option. The typical command line is:
 903@example
 904qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
 905                 -append "root=/dev/hda console=ttyS0" -nographic
 906@end example
 907
 908Use @key{Ctrl-a c} to switch between the serial console and the
 909monitor (@pxref{pcsys_keys}).
 910
 911@node pcsys_usb
 912@section USB emulation
 913
 914QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
 915plug virtual USB devices or real host USB devices (only works with certain
 916host operating systems). QEMU will automatically create and connect virtual
 917USB hubs as necessary to connect multiple USB devices.
 918
 919@menu
 920* usb_devices::
 921* host_usb_devices::
 922@end menu
 923@node usb_devices
 924@subsection Connecting USB devices
 925
 926USB devices can be connected with the @option{-device usb-...} command line
 927option or the @code{device_add} monitor command. Available devices are:
 928
 929@table @code
 930@item usb-mouse
 931Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
 932@item usb-tablet
 933Pointer device that uses absolute coordinates (like a touchscreen).
 934This means QEMU is able to report the mouse position without having
 935to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
 936@item usb-storage,drive=@var{drive_id}
 937Mass storage device backed by @var{drive_id} (@pxref{disk_images})
 938@item usb-uas
 939USB attached SCSI device, see
 940@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
 941for details
 942@item usb-bot
 943Bulk-only transport storage device, see
 944@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
 945for details here, too
 946@item usb-mtp,rootdir=@var{dir}
 947Media transfer protocol device, using @var{dir} as root of the file tree
 948that is presented to the guest.
 949@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
 950Pass through the host device identified by @var{bus} and @var{addr}
 951@item usb-host,vendorid=@var{vendor},productid=@var{product}
 952Pass through the host device identified by @var{vendor} and @var{product} ID
 953@item usb-wacom-tablet
 954Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
 955above but it can be used with the tslib library because in addition to touch
 956coordinates it reports touch pressure.
 957@item usb-kbd
 958Standard USB keyboard.  Will override the PS/2 keyboard (if present).
 959@item usb-serial,chardev=@var{id}
 960Serial converter. This emulates an FTDI FT232BM chip connected to host character
 961device @var{id}.
 962@item usb-braille,chardev=@var{id}
 963Braille device.  This will use BrlAPI to display the braille output on a real
 964or fake device referenced by @var{id}.
 965@item usb-net[,netdev=@var{id}]
 966Network adapter that supports CDC ethernet and RNDIS protocols.  @var{id}
 967specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
 968For instance, user-mode networking can be used with
 969@example
 970qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
 971@end example
 972@item usb-ccid
 973Smartcard reader device
 974@item usb-audio
 975USB audio device
 976@item usb-bt-dongle
 977Bluetooth dongle for the transport layer of HCI. It is connected to HCI
 978scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
 979Note that the syntax for the @code{-device usb-bt-dongle} option is not as
 980useful yet as it was with the legacy @code{-usbdevice} option. So to
 981configure an USB bluetooth device, you might need to use
 982"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
 983bluetooth dongle whose type is specified in the same format as with
 984the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
 985no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
 986This USB device implements the USB Transport Layer of HCI.  Example
 987usage:
 988@example
 989@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
 990@end example
 991@end table
 992
 993@node host_usb_devices
 994@subsection Using host USB devices on a Linux host
 995
 996WARNING: this is an experimental feature. QEMU will slow down when
 997using it. USB devices requiring real time streaming (i.e. USB Video
 998Cameras) are not supported yet.
 999
1000@enumerate
1001@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1002is actually using the USB device. A simple way to do that is simply to
1003disable the corresponding kernel module by renaming it from @file{mydriver.o}
1004to @file{mydriver.o.disabled}.
1005
1006@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1007@example
1008ls /proc/bus/usb
1009001  devices  drivers
1010@end example
1011
1012@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1013@example
1014chown -R myuid /proc/bus/usb
1015@end example
1016
1017@item Launch QEMU and do in the monitor:
1018@example
1019info usbhost
1020  Device 1.2, speed 480 Mb/s
1021    Class 00: USB device 1234:5678, USB DISK
1022@end example
1023You should see the list of the devices you can use (Never try to use
1024hubs, it won't work).
1025
1026@item Add the device in QEMU by using:
1027@example
1028device_add usb-host,vendorid=0x1234,productid=0x5678
1029@end example
1030
1031Normally the guest OS should report that a new USB device is plugged.
1032You can use the option @option{-device usb-host,...} to do the same.
1033
1034@item Now you can try to use the host USB device in QEMU.
1035
1036@end enumerate
1037
1038When relaunching QEMU, you may have to unplug and plug again the USB
1039device to make it work again (this is a bug).
1040
1041@node vnc_security
1042@section VNC security
1043
1044The VNC server capability provides access to the graphical console
1045of the guest VM across the network. This has a number of security
1046considerations depending on the deployment scenarios.
1047
1048@menu
1049* vnc_sec_none::
1050* vnc_sec_password::
1051* vnc_sec_certificate::
1052* vnc_sec_certificate_verify::
1053* vnc_sec_certificate_pw::
1054* vnc_sec_sasl::
1055* vnc_sec_certificate_sasl::
1056* vnc_setup_sasl::
1057@end menu
1058@node vnc_sec_none
1059@subsection Without passwords
1060
1061The simplest VNC server setup does not include any form of authentication.
1062For this setup it is recommended to restrict it to listen on a UNIX domain
1063socket only. For example
1064
1065@example
1066qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1067@end example
1068
1069This ensures that only users on local box with read/write access to that
1070path can access the VNC server. To securely access the VNC server from a
1071remote machine, a combination of netcat+ssh can be used to provide a secure
1072tunnel.
1073
1074@node vnc_sec_password
1075@subsection With passwords
1076
1077The VNC protocol has limited support for password based authentication. Since
1078the protocol limits passwords to 8 characters it should not be considered
1079to provide high security. The password can be fairly easily brute-forced by
1080a client making repeat connections. For this reason, a VNC server using password
1081authentication should be restricted to only listen on the loopback interface
1082or UNIX domain sockets. Password authentication is not supported when operating
1083in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1084authentication is requested with the @code{password} option, and then once QEMU
1085is running the password is set with the monitor. Until the monitor is used to
1086set the password all clients will be rejected.
1087
1088@example
1089qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1090(qemu) change vnc password
1091Password: ********
1092(qemu)
1093@end example
1094
1095@node vnc_sec_certificate
1096@subsection With x509 certificates
1097
1098The QEMU VNC server also implements the VeNCrypt extension allowing use of
1099TLS for encryption of the session, and x509 certificates for authentication.
1100The use of x509 certificates is strongly recommended, because TLS on its
1101own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1102support provides a secure session, but no authentication. This allows any
1103client to connect, and provides an encrypted session.
1104
1105@example
1106qemu-system-i386 [...OPTIONS...] \
1107  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1108  -vnc :1,tls-creds=tls0 -monitor stdio
1109@end example
1110
1111In the above example @code{/etc/pki/qemu} should contain at least three files,
1112@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1113users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1114NB the @code{server-key.pem} file should be protected with file mode 0600 to
1115only be readable by the user owning it.
1116
1117@node vnc_sec_certificate_verify
1118@subsection With x509 certificates and client verification
1119
1120Certificates can also provide a means to authenticate the client connecting.
1121The server will request that the client provide a certificate, which it will
1122then validate against the CA certificate. This is a good choice if deploying
1123in an environment with a private internal certificate authority. It uses the
1124same syntax as previously, but with @code{verify-peer} set to @code{yes}
1125instead.
1126
1127@example
1128qemu-system-i386 [...OPTIONS...] \
1129  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1130  -vnc :1,tls-creds=tls0 -monitor stdio
1131@end example
1132
1133
1134@node vnc_sec_certificate_pw
1135@subsection With x509 certificates, client verification and passwords
1136
1137Finally, the previous method can be combined with VNC password authentication
1138to provide two layers of authentication for clients.
1139
1140@example
1141qemu-system-i386 [...OPTIONS...] \
1142  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1143  -vnc :1,tls-creds=tls0,password -monitor stdio
1144(qemu) change vnc password
1145Password: ********
1146(qemu)
1147@end example
1148
1149
1150@node vnc_sec_sasl
1151@subsection With SASL authentication
1152
1153The SASL authentication method is a VNC extension, that provides an
1154easily extendable, pluggable authentication method. This allows for
1155integration with a wide range of authentication mechanisms, such as
1156PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1157The strength of the authentication depends on the exact mechanism
1158configured. If the chosen mechanism also provides a SSF layer, then
1159it will encrypt the datastream as well.
1160
1161Refer to the later docs on how to choose the exact SASL mechanism
1162used for authentication, but assuming use of one supporting SSF,
1163then QEMU can be launched with:
1164
1165@example
1166qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1167@end example
1168
1169@node vnc_sec_certificate_sasl
1170@subsection With x509 certificates and SASL authentication
1171
1172If the desired SASL authentication mechanism does not supported
1173SSF layers, then it is strongly advised to run it in combination
1174with TLS and x509 certificates. This provides securely encrypted
1175data stream, avoiding risk of compromising of the security
1176credentials. This can be enabled, by combining the 'sasl' option
1177with the aforementioned TLS + x509 options:
1178
1179@example
1180qemu-system-i386 [...OPTIONS...] \
1181  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1182  -vnc :1,tls-creds=tls0,sasl -monitor stdio
1183@end example
1184
1185@node vnc_setup_sasl
1186
1187@subsection Configuring SASL mechanisms
1188
1189The following documentation assumes use of the Cyrus SASL implementation on a
1190Linux host, but the principles should apply to any other SASL implementation
1191or host. When SASL is enabled, the mechanism configuration will be loaded from
1192system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1193unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1194it search alternate locations for the service config file.
1195
1196If the TLS option is enabled for VNC, then it will provide session encryption,
1197otherwise the SASL mechanism will have to provide encryption. In the latter
1198case the list of possible plugins that can be used is drastically reduced. In
1199fact only the GSSAPI SASL mechanism provides an acceptable level of security
1200by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1201mechanism, however, it has multiple serious flaws described in detail in
1202RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1203provides a simple username/password auth facility similar to DIGEST-MD5, but
1204does not support session encryption, so can only be used in combination with
1205TLS.
1206
1207When not using TLS the recommended configuration is
1208
1209@example
1210mech_list: gssapi
1211keytab: /etc/qemu/krb5.tab
1212@end example
1213
1214This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1215the server principal stored in /etc/qemu/krb5.tab. For this to work the
1216administrator of your KDC must generate a Kerberos principal for the server,
1217with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1218'somehost.example.com' with the fully qualified host name of the machine
1219running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1220
1221When using TLS, if username+password authentication is desired, then a
1222reasonable configuration is
1223
1224@example
1225mech_list: scram-sha-1
1226sasldb_path: /etc/qemu/passwd.db
1227@end example
1228
1229The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1230file with accounts.
1231
1232Other SASL configurations will be left as an exercise for the reader. Note that
1233all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1234secure data channel.
1235
1236
1237@node network_tls
1238@section TLS setup for network services
1239
1240Almost all network services in QEMU have the ability to use TLS for
1241session data encryption, along with x509 certificates for simple
1242client authentication. What follows is a description of how to
1243generate certificates suitable for usage with QEMU, and applies to
1244the VNC server, character devices with the TCP backend, NBD server
1245and client, and migration server and client.
1246
1247At a high level, QEMU requires certificates and private keys to be
1248provided in PEM format. Aside from the core fields, the certificates
1249should include various extension data sets, including v3 basic
1250constraints data, key purpose, key usage and subject alt name.
1251
1252The GnuTLS package includes a command called @code{certtool} which can
1253be used to easily generate certificates and keys in the required format
1254with expected data present. Alternatively a certificate management
1255service may be used.
1256
1257At a minimum it is necessary to setup a certificate authority, and
1258issue certificates to each server. If using x509 certificates for
1259authentication, then each client will also need to be issued a
1260certificate.
1261
1262Assuming that the QEMU network services will only ever be exposed to
1263clients on a private intranet, there is no need to use a commercial
1264certificate authority to create certificates. A self-signed CA is
1265sufficient, and in fact likely to be more secure since it removes
1266the ability of malicious 3rd parties to trick the CA into mis-issuing
1267certs for impersonating your services. The only likely exception
1268where a commercial CA might be desirable is if enabling the VNC
1269websockets server and exposing it directly to remote browser clients.
1270In such a case it might be useful to use a commercial CA to avoid
1271needing to install custom CA certs in the web browsers.
1272
1273The recommendation is for the server to keep its certificates in either
1274@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
1275
1276@menu
1277* tls_generate_ca::
1278* tls_generate_server::
1279* tls_generate_client::
1280* tls_creds_setup::
1281* tls_psk::
1282@end menu
1283@node tls_generate_ca
1284@subsection Setup the Certificate Authority
1285
1286This step only needs to be performed once per organization / organizational
1287unit. First the CA needs a private key. This key must be kept VERY secret
1288and secure. If this key is compromised the entire trust chain of the certificates
1289issued with it is lost.
1290
1291@example
1292# certtool --generate-privkey > ca-key.pem
1293@end example
1294
1295To generate a self-signed certificate requires one core piece of information,
1296the name of the organization. A template file @code{ca.info} should be
1297populated with the desired data to avoid having to deal with interactive
1298prompts from certtool:
1299@example
1300# cat > ca.info <<EOF
1301cn = Name of your organization
1302ca
1303cert_signing_key
1304EOF
1305# certtool --generate-self-signed \
1306           --load-privkey ca-key.pem
1307           --template ca.info \
1308           --outfile ca-cert.pem
1309@end example
1310
1311The @code{ca} keyword in the template sets the v3 basic constraints extension
1312to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1313the key usage extension to indicate this will be used for signing other keys.
1314The generated @code{ca-cert.pem} file should be copied to all servers and
1315clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1316must not be disclosed/copied anywhere except the host responsible for issuing
1317certificates.
1318
1319@node tls_generate_server
1320@subsection Issuing server certificates
1321
1322Each server (or host) needs to be issued with a key and certificate. When connecting
1323the certificate is sent to the client which validates it against the CA certificate.
1324The core pieces of information for a server certificate are the hostnames and/or IP
1325addresses that will be used by clients when connecting. The hostname / IP address
1326that the client specifies when connecting will be validated against the hostname(s)
1327and IP address(es) recorded in the server certificate, and if no match is found
1328the client will close the connection.
1329
1330Thus it is recommended that the server certificate include both the fully qualified
1331and unqualified hostnames. If the server will have permanently assigned IP address(es),
1332and clients are likely to use them when connecting, they may also be included in the
1333certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1334only included 1 hostname in the @code{CN} field, however, usage of this field for
1335validation is now deprecated. Instead modern TLS clients will validate against the
1336Subject Alt Name extension data, which allows for multiple entries. In the future
1337usage of the @code{CN} field may be discontinued entirely, so providing SAN
1338extension data is strongly recommended.
1339
1340On the host holding the CA, create template files containing the information
1341for each server, and use it to issue server certificates.
1342
1343@example
1344# cat > server-hostNNN.info <<EOF
1345organization = Name  of your organization
1346cn = hostNNN.foo.example.com
1347dns_name = hostNNN
1348dns_name = hostNNN.foo.example.com
1349ip_address = 10.0.1.87
1350ip_address = 192.8.0.92
1351ip_address = 2620:0:cafe::87
1352ip_address = 2001:24::92
1353tls_www_server
1354encryption_key
1355signing_key
1356EOF
1357# certtool --generate-privkey > server-hostNNN-key.pem
1358# certtool --generate-certificate \
1359           --load-ca-certificate ca-cert.pem \
1360           --load-ca-privkey ca-key.pem \
1361           --load-privkey server-hostNNN-key.pem \
1362           --template server-hostNNN.info \
1363           --outfile server-hostNNN-cert.pem
1364@end example
1365
1366The @code{dns_name} and @code{ip_address} fields in the template are setting
1367the subject alt name extension data. The @code{tls_www_server} keyword is the
1368key purpose extension to indicate this certificate is intended for usage in
1369a web server. Although QEMU network services are not in fact HTTP servers
1370(except for VNC websockets), setting this key purpose is still recommended.
1371The @code{encryption_key} and @code{signing_key} keyword is the key usage
1372extension to indicate this certificate is intended for usage in the data
1373session.
1374
1375The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1376should now be securely copied to the server for which they were generated,
1377and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1378to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1379file is security sensitive and should be kept protected with file mode 0600
1380to prevent disclosure.
1381
1382@node tls_generate_client
1383@subsection Issuing client certificates
1384
1385The QEMU x509 TLS credential setup defaults to enabling client verification
1386using certificates, providing a simple authentication mechanism. If this
1387default is used, each client also needs to be issued a certificate. The client
1388certificate contains enough metadata to uniquely identify the client with the
1389scope of the certificate authority. The client certificate would typically
1390include fields for organization, state, city, building, etc.
1391
1392Once again on the host holding the CA, create template files containing the
1393information for each client, and use it to issue client certificates.
1394
1395
1396@example
1397# cat > client-hostNNN.info <<EOF
1398country = GB
1399state = London
1400locality = City Of London
1401organization = Name of your organization
1402cn = hostNNN.foo.example.com
1403tls_www_client
1404encryption_key
1405signing_key
1406EOF
1407# certtool --generate-privkey > client-hostNNN-key.pem
1408# certtool --generate-certificate \
1409           --load-ca-certificate ca-cert.pem \
1410           --load-ca-privkey ca-key.pem \
1411           --load-privkey client-hostNNN-key.pem \
1412           --template client-hostNNN.info \
1413           --outfile client-hostNNN-cert.pem
1414@end example
1415
1416The subject alt name extension data is not required for clients, so the
1417the @code{dns_name} and @code{ip_address} fields are not included.
1418The @code{tls_www_client} keyword is the key purpose extension to indicate
1419this certificate is intended for usage in a web client. Although QEMU
1420network clients are not in fact HTTP clients, setting this key purpose is
1421still recommended. The @code{encryption_key} and @code{signing_key} keyword
1422is the key usage extension to indicate this certificate is intended for
1423usage in the data session.
1424
1425The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1426should now be securely copied to the client for which they were generated,
1427and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1428to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1429file is security sensitive and should be kept protected with file mode 0600
1430to prevent disclosure.
1431
1432If a single host is going to be using TLS in both a client and server
1433role, it is possible to create a single certificate to cover both roles.
1434This would be quite common for the migration and NBD services, where a
1435QEMU process will be started by accepting a TLS protected incoming migration,
1436and later itself be migrated out to another host. To generate a single
1437certificate, simply include the template data from both the client and server
1438instructions in one.
1439
1440@example
1441# cat > both-hostNNN.info <<EOF
1442country = GB
1443state = London
1444locality = City Of London
1445organization = Name of your organization
1446cn = hostNNN.foo.example.com
1447dns_name = hostNNN
1448dns_name = hostNNN.foo.example.com
1449ip_address = 10.0.1.87
1450ip_address = 192.8.0.92
1451ip_address = 2620:0:cafe::87
1452ip_address = 2001:24::92
1453tls_www_server
1454tls_www_client
1455encryption_key
1456signing_key
1457EOF
1458# certtool --generate-privkey > both-hostNNN-key.pem
1459# certtool --generate-certificate \
1460           --load-ca-certificate ca-cert.pem \
1461           --load-ca-privkey ca-key.pem \
1462           --load-privkey both-hostNNN-key.pem \
1463           --template both-hostNNN.info \
1464           --outfile both-hostNNN-cert.pem
1465@end example
1466
1467When copying the PEM files to the target host, save them twice,
1468once as @code{server-cert.pem} and @code{server-key.pem}, and
1469again as @code{client-cert.pem} and @code{client-key.pem}.
1470
1471@node tls_creds_setup
1472@subsection TLS x509 credential configuration
1473
1474QEMU has a standard mechanism for loading x509 credentials that will be
1475used for network services and clients. It requires specifying the
1476@code{tls-creds-x509} class name to the @code{--object} command line
1477argument for the system emulators.  Each set of credentials loaded should
1478be given a unique string identifier via the @code{id} parameter. A single
1479set of TLS credentials can be used for multiple network backends, so VNC,
1480migration, NBD, character devices can all share the same credentials. Note,
1481however, that credentials for use in a client endpoint must be loaded
1482separately from those used in a server endpoint.
1483
1484When specifying the object, the @code{dir} parameters specifies which
1485directory contains the credential files. This directory is expected to
1486contain files with the names mentioned previously, @code{ca-cert.pem},
1487@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1488and @code{client-cert.pem} as appropriate. It is also possible to
1489include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1490@code{dh-params.pem}, which can be created using the
1491@code{certtool --generate-dh-params} command. If omitted, QEMU will
1492dynamically generate DH parameters when loading the credentials.
1493
1494The @code{endpoint} parameter indicates whether the credentials will
1495be used for a network client or server, and determines which PEM
1496files are loaded.
1497
1498The @code{verify} parameter determines whether x509 certificate
1499validation should be performed. This defaults to enabled, meaning
1500clients will always validate the server hostname against the
1501certificate subject alt name fields and/or CN field. It also
1502means that servers will request that clients provide a certificate
1503and validate them. Verification should never be turned off for
1504client endpoints, however, it may be turned off for server endpoints
1505if an alternative mechanism is used to authenticate clients. For
1506example, the VNC server can use SASL to authenticate clients
1507instead.
1508
1509To load server credentials with client certificate validation
1510enabled
1511
1512@example
1513$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
1514@end example
1515
1516while to load client credentials use
1517
1518@example
1519$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
1520@end example
1521
1522Network services which support TLS will all have a @code{tls-creds}
1523parameter which expects the ID of the TLS credentials object. For
1524example with VNC:
1525
1526@example
1527$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1528@end example
1529
1530@node tls_psk
1531@subsection TLS Pre-Shared Keys (PSK)
1532
1533Instead of using certificates, you may also use TLS Pre-Shared Keys
1534(TLS-PSK).  This can be simpler to set up than certificates but is
1535less scalable.
1536
1537Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1538file containing one or more usernames and random keys:
1539
1540@example
1541mkdir -m 0700 /tmp/keys
1542psktool -u rich -p /tmp/keys/keys.psk
1543@end example
1544
1545TLS-enabled servers such as qemu-nbd can use this directory like so:
1546
1547@example
1548qemu-nbd \
1549  -t -x / \
1550  --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1551  --tls-creds tls0 \
1552  image.qcow2
1553@end example
1554
1555When connecting from a qemu-based client you must specify the
1556directory containing @code{keys.psk} and an optional @var{username}
1557(defaults to ``qemu''):
1558
1559@example
1560qemu-img info \
1561  --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1562  --image-opts \
1563  file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1564@end example
1565
1566@node gdb_usage
1567@section GDB usage
1568
1569QEMU has a primitive support to work with gdb, so that you can do
1570'Ctrl-C' while the virtual machine is running and inspect its state.
1571
1572In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1573gdb connection:
1574@example
1575qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1576                    -append "root=/dev/hda"
1577Connected to host network interface: tun0
1578Waiting gdb connection on port 1234
1579@end example
1580
1581Then launch gdb on the 'vmlinux' executable:
1582@example
1583> gdb vmlinux
1584@end example
1585
1586In gdb, connect to QEMU:
1587@example
1588(gdb) target remote localhost:1234
1589@end example
1590
1591Then you can use gdb normally. For example, type 'c' to launch the kernel:
1592@example
1593(gdb) c
1594@end example
1595
1596Here are some useful tips in order to use gdb on system code:
1597
1598@enumerate
1599@item
1600Use @code{info reg} to display all the CPU registers.
1601@item
1602Use @code{x/10i $eip} to display the code at the PC position.
1603@item
1604Use @code{set architecture i8086} to dump 16 bit code. Then use
1605@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1606@end enumerate
1607
1608Advanced debugging options:
1609
1610The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1611@table @code
1612@item maintenance packet qqemu.sstepbits
1613
1614This will display the MASK bits used to control the single stepping IE:
1615@example
1616(gdb) maintenance packet qqemu.sstepbits
1617sending: "qqemu.sstepbits"
1618received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1619@end example
1620@item maintenance packet qqemu.sstep
1621
1622This will display the current value of the mask used when single stepping IE:
1623@example
1624(gdb) maintenance packet qqemu.sstep
1625sending: "qqemu.sstep"
1626received: "0x7"
1627@end example
1628@item maintenance packet Qqemu.sstep=HEX_VALUE
1629
1630This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1631@example
1632(gdb) maintenance packet Qqemu.sstep=0x5
1633sending: "qemu.sstep=0x5"
1634received: "OK"
1635@end example
1636@end table
1637
1638@node pcsys_os_specific
1639@section Target OS specific information
1640
1641@subsection Linux
1642
1643To have access to SVGA graphic modes under X11, use the @code{vesa} or
1644the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1645color depth in the guest and the host OS.
1646
1647When using a 2.6 guest Linux kernel, you should add the option
1648@code{clock=pit} on the kernel command line because the 2.6 Linux
1649kernels make very strict real time clock checks by default that QEMU
1650cannot simulate exactly.
1651
1652When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1653not activated because QEMU is slower with this patch. The QEMU
1654Accelerator Module is also much slower in this case. Earlier Fedora
1655Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1656patch by default. Newer kernels don't have it.
1657
1658@subsection Windows
1659
1660If you have a slow host, using Windows 95 is better as it gives the
1661best speed. Windows 2000 is also a good choice.
1662
1663@subsubsection SVGA graphic modes support
1664
1665QEMU emulates a Cirrus Logic GD5446 Video
1666card. All Windows versions starting from Windows 95 should recognize
1667and use this graphic card. For optimal performances, use 16 bit color
1668depth in the guest and the host OS.
1669
1670If you are using Windows XP as guest OS and if you want to use high
1671resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16721280x1024x16), then you should use the VESA VBE virtual graphic card
1673(option @option{-std-vga}).
1674
1675@subsubsection CPU usage reduction
1676
1677Windows 9x does not correctly use the CPU HLT
1678instruction. The result is that it takes host CPU cycles even when
1679idle. You can install the utility from
1680@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1681to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1682
1683@subsubsection Windows 2000 disk full problem
1684
1685Windows 2000 has a bug which gives a disk full problem during its
1686installation. When installing it, use the @option{-win2k-hack} QEMU
1687option to enable a specific workaround. After Windows 2000 is
1688installed, you no longer need this option (this option slows down the
1689IDE transfers).
1690
1691@subsubsection Windows 2000 shutdown
1692
1693Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1694can. It comes from the fact that Windows 2000 does not automatically
1695use the APM driver provided by the BIOS.
1696
1697In order to correct that, do the following (thanks to Struan
1698Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1699Add/Troubleshoot a device => Add a new device & Next => No, select the
1700hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1701(again) a few times. Now the driver is installed and Windows 2000 now
1702correctly instructs QEMU to shutdown at the appropriate moment.
1703
1704@subsubsection Share a directory between Unix and Windows
1705
1706See @ref{sec_invocation} about the help of the option
1707@option{'-netdev user,smb=...'}.
1708
1709@subsubsection Windows XP security problem
1710
1711Some releases of Windows XP install correctly but give a security
1712error when booting:
1713@example
1714A problem is preventing Windows from accurately checking the
1715license for this computer. Error code: 0x800703e6.
1716@end example
1717
1718The workaround is to install a service pack for XP after a boot in safe
1719mode. Then reboot, and the problem should go away. Since there is no
1720network while in safe mode, its recommended to download the full
1721installation of SP1 or SP2 and transfer that via an ISO or using the
1722vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1723
1724@subsection MS-DOS and FreeDOS
1725
1726@subsubsection CPU usage reduction
1727
1728DOS does not correctly use the CPU HLT instruction. The result is that
1729it takes host CPU cycles even when idle. You can install the utility from
1730@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1731to solve this problem.
1732
1733@node QEMU System emulator for non PC targets
1734@chapter QEMU System emulator for non PC targets
1735
1736QEMU is a generic emulator and it emulates many non PC
1737machines. Most of the options are similar to the PC emulator. The
1738differences are mentioned in the following sections.
1739
1740@menu
1741* PowerPC System emulator::
1742* Sparc32 System emulator::
1743* Sparc64 System emulator::
1744* MIPS System emulator::
1745* ARM System emulator::
1746* ColdFire System emulator::
1747* Cris System emulator::
1748* Microblaze System emulator::
1749* SH4 System emulator::
1750* Xtensa System emulator::
1751@end menu
1752
1753@node PowerPC System emulator
1754@section PowerPC System emulator
1755@cindex system emulation (PowerPC)
1756
1757Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1758or PowerMac PowerPC system.
1759
1760QEMU emulates the following PowerMac peripherals:
1761
1762@itemize @minus
1763@item
1764UniNorth or Grackle PCI Bridge
1765@item
1766PCI VGA compatible card with VESA Bochs Extensions
1767@item
17682 PMAC IDE interfaces with hard disk and CD-ROM support
1769@item
1770NE2000 PCI adapters
1771@item
1772Non Volatile RAM
1773@item
1774VIA-CUDA with ADB keyboard and mouse.
1775@end itemize
1776
1777QEMU emulates the following PREP peripherals:
1778
1779@itemize @minus
1780@item
1781PCI Bridge
1782@item
1783PCI VGA compatible card with VESA Bochs Extensions
1784@item
17852 IDE interfaces with hard disk and CD-ROM support
1786@item
1787Floppy disk
1788@item
1789NE2000 network adapters
1790@item
1791Serial port
1792@item
1793PREP Non Volatile RAM
1794@item
1795PC compatible keyboard and mouse.
1796@end itemize
1797
1798QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1799@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1800
1801Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1802for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1803v2) portable firmware implementation. The goal is to implement a 100%
1804IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1805
1806@c man begin OPTIONS
1807
1808The following options are specific to the PowerPC emulation:
1809
1810@table @option
1811
1812@item -g @var{W}x@var{H}[x@var{DEPTH}]
1813
1814Set the initial VGA graphic mode. The default is 800x600x32.
1815
1816@item -prom-env @var{string}
1817
1818Set OpenBIOS variables in NVRAM, for example:
1819
1820@example
1821qemu-system-ppc -prom-env 'auto-boot?=false' \
1822 -prom-env 'boot-device=hd:2,\yaboot' \
1823 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1824@end example
1825
1826These variables are not used by Open Hack'Ware.
1827
1828@end table
1829
1830@c man end
1831
1832
1833More information is available at
1834@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1835
1836@node Sparc32 System emulator
1837@section Sparc32 System emulator
1838@cindex system emulation (Sparc32)
1839
1840Use the executable @file{qemu-system-sparc} to simulate the following
1841Sun4m architecture machines:
1842@itemize @minus
1843@item
1844SPARCstation 4
1845@item
1846SPARCstation 5
1847@item
1848SPARCstation 10
1849@item
1850SPARCstation 20
1851@item
1852SPARCserver 600MP
1853@item
1854SPARCstation LX
1855@item
1856SPARCstation Voyager
1857@item
1858SPARCclassic
1859@item
1860SPARCbook
1861@end itemize
1862
1863The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1864but Linux limits the number of usable CPUs to 4.
1865
1866QEMU emulates the following sun4m peripherals:
1867
1868@itemize @minus
1869@item
1870IOMMU
1871@item
1872TCX or cgthree Frame buffer
1873@item
1874Lance (Am7990) Ethernet
1875@item
1876Non Volatile RAM M48T02/M48T08
1877@item
1878Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1879and power/reset logic
1880@item
1881ESP SCSI controller with hard disk and CD-ROM support
1882@item
1883Floppy drive (not on SS-600MP)
1884@item
1885CS4231 sound device (only on SS-5, not working yet)
1886@end itemize
1887
1888The number of peripherals is fixed in the architecture.  Maximum
1889memory size depends on the machine type, for SS-5 it is 256MB and for
1890others 2047MB.
1891
1892Since version 0.8.2, QEMU uses OpenBIOS
1893@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1894firmware implementation. The goal is to implement a 100% IEEE
18951275-1994 (referred to as Open Firmware) compliant firmware.
1896
1897A sample Linux 2.6 series kernel and ram disk image are available on
1898the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1899most kernel versions work. Please note that currently older Solaris kernels
1900don't work probably due to interface issues between OpenBIOS and
1901Solaris.
1902
1903@c man begin OPTIONS
1904
1905The following options are specific to the Sparc32 emulation:
1906
1907@table @option
1908
1909@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1910
1911Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1912option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1913of 1152x900x8 for people who wish to use OBP.
1914
1915@item -prom-env @var{string}
1916
1917Set OpenBIOS variables in NVRAM, for example:
1918
1919@example
1920qemu-system-sparc -prom-env 'auto-boot?=false' \
1921 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1922@end example
1923
1924@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1925
1926Set the emulated machine type. Default is SS-5.
1927
1928@end table
1929
1930@c man end
1931
1932@node Sparc64 System emulator
1933@section Sparc64 System emulator
1934@cindex system emulation (Sparc64)
1935
1936Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1937(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1938Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1939able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1940Sun4v emulator is still a work in progress.
1941
1942The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1943of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1944and is able to boot the disk.s10hw2 Solaris image.
1945@example
1946qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1947                    -nographic -m 256 \
1948                    -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1949@end example
1950
1951
1952QEMU emulates the following peripherals:
1953
1954@itemize @minus
1955@item
1956UltraSparc IIi APB PCI Bridge
1957@item
1958PCI VGA compatible card with VESA Bochs Extensions
1959@item
1960PS/2 mouse and keyboard
1961@item
1962Non Volatile RAM M48T59
1963@item
1964PC-compatible serial ports
1965@item
19662 PCI IDE interfaces with hard disk and CD-ROM support
1967@item
1968Floppy disk
1969@end itemize
1970
1971@c man begin OPTIONS
1972
1973The following options are specific to the Sparc64 emulation:
1974
1975@table @option
1976
1977@item -prom-env @var{string}
1978
1979Set OpenBIOS variables in NVRAM, for example:
1980
1981@example
1982qemu-system-sparc64 -prom-env 'auto-boot?=false'
1983@end example
1984
1985@item -M [sun4u|sun4v|niagara]
1986
1987Set the emulated machine type. The default is sun4u.
1988
1989@end table
1990
1991@c man end
1992
1993@node MIPS System emulator
1994@section MIPS System emulator
1995@cindex system emulation (MIPS)
1996
1997Four executables cover simulation of 32 and 64-bit MIPS systems in
1998both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1999@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2000Five different machine types are emulated:
2001
2002@itemize @minus
2003@item
2004A generic ISA PC-like machine "mips"
2005@item
2006The MIPS Malta prototype board "malta"
2007@item
2008An ACER Pica "pica61". This machine needs the 64-bit emulator.
2009@item
2010MIPS emulator pseudo board "mipssim"
2011@item
2012A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2013@end itemize
2014
2015The generic emulation is supported by Debian 'Etch' and is able to
2016install Debian into a virtual disk image. The following devices are
2017emulated:
2018
2019@itemize @minus
2020@item
2021A range of MIPS CPUs, default is the 24Kf
2022@item
2023PC style serial port
2024@item
2025PC style IDE disk
2026@item
2027NE2000 network card
2028@end itemize
2029
2030The Malta emulation supports the following devices:
2031
2032@itemize @minus
2033@item
2034Core board with MIPS 24Kf CPU and Galileo system controller
2035@item
2036PIIX4 PCI/USB/SMbus controller
2037@item
2038The Multi-I/O chip's serial device
2039@item
2040PCI network cards (PCnet32 and others)
2041@item
2042Malta FPGA serial device
2043@item
2044Cirrus (default) or any other PCI VGA graphics card
2045@end itemize
2046
2047The ACER Pica emulation supports:
2048
2049@itemize @minus
2050@item
2051MIPS R4000 CPU
2052@item
2053PC-style IRQ and DMA controllers
2054@item
2055PC Keyboard
2056@item
2057IDE controller
2058@end itemize
2059
2060The mipssim pseudo board emulation provides an environment similar
2061to what the proprietary MIPS emulator uses for running Linux.
2062It supports:
2063
2064@itemize @minus
2065@item
2066A range of MIPS CPUs, default is the 24Kf
2067@item
2068PC style serial port
2069@item
2070MIPSnet network emulation
2071@end itemize
2072
2073The MIPS Magnum R4000 emulation supports:
2074
2075@itemize @minus
2076@item
2077MIPS R4000 CPU
2078@item
2079PC-style IRQ controller
2080@item
2081PC Keyboard
2082@item
2083SCSI controller
2084@item
2085G364 framebuffer
2086@end itemize
2087
2088
2089@node ARM System emulator
2090@section ARM System emulator
2091@cindex system emulation (ARM)
2092
2093Use the executable @file{qemu-system-arm} to simulate a ARM
2094machine. The ARM Integrator/CP board is emulated with the following
2095devices:
2096
2097@itemize @minus
2098@item
2099ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2100@item
2101Two PL011 UARTs
2102@item
2103SMC 91c111 Ethernet adapter
2104@item
2105PL110 LCD controller
2106@item
2107PL050 KMI with PS/2 keyboard and mouse.
2108@item
2109PL181 MultiMedia Card Interface with SD card.
2110@end itemize
2111
2112The ARM Versatile baseboard is emulated with the following devices:
2113
2114@itemize @minus
2115@item
2116ARM926E, ARM1136 or Cortex-A8 CPU
2117@item
2118PL190 Vectored Interrupt Controller
2119@item
2120Four PL011 UARTs
2121@item
2122SMC 91c111 Ethernet adapter
2123@item
2124PL110 LCD controller
2125@item
2126PL050 KMI with PS/2 keyboard and mouse.
2127@item
2128PCI host bridge.  Note the emulated PCI bridge only provides access to
2129PCI memory space.  It does not provide access to PCI IO space.
2130This means some devices (eg. ne2k_pci NIC) are not usable, and others
2131(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2132mapped control registers.
2133@item
2134PCI OHCI USB controller.
2135@item
2136LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2137@item
2138PL181 MultiMedia Card Interface with SD card.
2139@end itemize
2140
2141Several variants of the ARM RealView baseboard are emulated,
2142including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2143bootloader, only certain Linux kernel configurations work out
2144of the box on these boards.
2145
2146Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2147enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2148should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2149disabled and expect 1024M RAM.
2150
2151The following devices are emulated:
2152
2153@itemize @minus
2154@item
2155ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2156@item
2157ARM AMBA Generic/Distributed Interrupt Controller
2158@item
2159Four PL011 UARTs
2160@item
2161SMC 91c111 or SMSC LAN9118 Ethernet adapter
2162@item
2163PL110 LCD controller
2164@item
2165PL050 KMI with PS/2 keyboard and mouse
2166@item
2167PCI host bridge
2168@item
2169PCI OHCI USB controller
2170@item
2171LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2172@item
2173PL181 MultiMedia Card Interface with SD card.
2174@end itemize
2175
2176The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2177and "Terrier") emulation includes the following peripherals:
2178
2179@itemize @minus
2180@item
2181Intel PXA270 System-on-chip (ARM V5TE core)
2182@item
2183NAND Flash memory
2184@item
2185IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2186@item
2187On-chip OHCI USB controller
2188@item
2189On-chip LCD controller
2190@item
2191On-chip Real Time Clock
2192@item
2193TI ADS7846 touchscreen controller on SSP bus
2194@item
2195Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2196@item
2197GPIO-connected keyboard controller and LEDs
2198@item
2199Secure Digital card connected to PXA MMC/SD host
2200@item
2201Three on-chip UARTs
2202@item
2203WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2204@end itemize
2205
2206The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2207following elements:
2208
2209@itemize @minus
2210@item
2211Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2212@item
2213ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2214@item
2215On-chip LCD controller
2216@item
2217On-chip Real Time Clock
2218@item
2219TI TSC2102i touchscreen controller / analog-digital converter / Audio
2220CODEC, connected through MicroWire and I@math{^2}S busses
2221@item
2222GPIO-connected matrix keypad
2223@item
2224Secure Digital card connected to OMAP MMC/SD host
2225@item
2226Three on-chip UARTs
2227@end itemize
2228
2229Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2230emulation supports the following elements:
2231
2232@itemize @minus
2233@item
2234Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2235@item
2236RAM and non-volatile OneNAND Flash memories
2237@item
2238Display connected to EPSON remote framebuffer chip and OMAP on-chip
2239display controller and a LS041y3 MIPI DBI-C controller
2240@item
2241TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2242driven through SPI bus
2243@item
2244National Semiconductor LM8323-controlled qwerty keyboard driven
2245through I@math{^2}C bus
2246@item
2247Secure Digital card connected to OMAP MMC/SD host
2248@item
2249Three OMAP on-chip UARTs and on-chip STI debugging console
2250@item
2251A Bluetooth(R) transceiver and HCI connected to an UART
2252@item
2253Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2254TUSB6010 chip - only USB host mode is supported
2255@item
2256TI TMP105 temperature sensor driven through I@math{^2}C bus
2257@item
2258TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2259@item
2260Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2261through CBUS
2262@end itemize
2263
2264The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2265devices:
2266
2267@itemize @minus
2268@item
2269Cortex-M3 CPU core.
2270@item
227164k Flash and 8k SRAM.
2272@item
2273Timers, UARTs, ADC and I@math{^2}C interface.
2274@item
2275OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2276@end itemize
2277
2278The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2279devices:
2280
2281@itemize @minus
2282@item
2283Cortex-M3 CPU core.
2284@item
2285256k Flash and 64k SRAM.
2286@item
2287Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2288@item
2289OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2290@end itemize
2291
2292The Freecom MusicPal internet radio emulation includes the following
2293elements:
2294
2295@itemize @minus
2296@item
2297Marvell MV88W8618 ARM core.
2298@item
229932 MB RAM, 256 KB SRAM, 8 MB flash.
2300@item
2301Up to 2 16550 UARTs
2302@item
2303MV88W8xx8 Ethernet controller
2304@item
2305MV88W8618 audio controller, WM8750 CODEC and mixer
2306@item
2307128×64 display with brightness control
2308@item
23092 buttons, 2 navigation wheels with button function
2310@end itemize
2311
2312The Siemens SX1 models v1 and v2 (default) basic emulation.
2313The emulation includes the following elements:
2314
2315@itemize @minus
2316@item
2317Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2318@item
2319ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2320V1
23211 Flash of 16MB and 1 Flash of 8MB
2322V2
23231 Flash of 32MB
2324@item
2325On-chip LCD controller
2326@item
2327On-chip Real Time Clock
2328@item
2329Secure Digital card connected to OMAP MMC/SD host
2330@item
2331Three on-chip UARTs
2332@end itemize
2333
2334A Linux 2.6 test image is available on the QEMU web site. More
2335information is available in the QEMU mailing-list archive.
2336
2337@c man begin OPTIONS
2338
2339The following options are specific to the ARM emulation:
2340
2341@table @option
2342
2343@item -semihosting
2344Enable semihosting syscall emulation.
2345
2346On ARM this implements the "Angel" interface.
2347
2348Note that this allows guest direct access to the host filesystem,
2349so should only be used with trusted guest OS.
2350
2351@end table
2352
2353@c man end
2354
2355@node ColdFire System emulator
2356@section ColdFire System emulator
2357@cindex system emulation (ColdFire)
2358@cindex system emulation (M68K)
2359
2360Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2361The emulator is able to boot a uClinux kernel.
2362
2363The M5208EVB emulation includes the following devices:
2364
2365@itemize @minus
2366@item
2367MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2368@item
2369Three Two on-chip UARTs.
2370@item
2371Fast Ethernet Controller (FEC)
2372@end itemize
2373
2374The AN5206 emulation includes the following devices:
2375
2376@itemize @minus
2377@item
2378MCF5206 ColdFire V2 Microprocessor.
2379@item
2380Two on-chip UARTs.
2381@end itemize
2382
2383@c man begin OPTIONS
2384
2385The following options are specific to the ColdFire emulation:
2386
2387@table @option
2388
2389@item -semihosting
2390Enable semihosting syscall emulation.
2391
2392On M68K this implements the "ColdFire GDB" interface used by libgloss.
2393
2394Note that this allows guest direct access to the host filesystem,
2395so should only be used with trusted guest OS.
2396
2397@end table
2398
2399@c man end
2400
2401@node Cris System emulator
2402@section Cris System emulator
2403@cindex system emulation (Cris)
2404
2405TODO
2406
2407@node Microblaze System emulator
2408@section Microblaze System emulator
2409@cindex system emulation (Microblaze)
2410
2411TODO
2412
2413@node SH4 System emulator
2414@section SH4 System emulator
2415@cindex system emulation (SH4)
2416
2417TODO
2418
2419@node Xtensa System emulator
2420@section Xtensa System emulator
2421@cindex system emulation (Xtensa)
2422
2423Two executables cover simulation of both Xtensa endian options,
2424@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2425Two different machine types are emulated:
2426
2427@itemize @minus
2428@item
2429Xtensa emulator pseudo board "sim"
2430@item
2431Avnet LX60/LX110/LX200 board
2432@end itemize
2433
2434The sim pseudo board emulation provides an environment similar
2435to one provided by the proprietary Tensilica ISS.
2436It supports:
2437
2438@itemize @minus
2439@item
2440A range of Xtensa CPUs, default is the DC232B
2441@item
2442Console and filesystem access via semihosting calls
2443@end itemize
2444
2445The Avnet LX60/LX110/LX200 emulation supports:
2446
2447@itemize @minus
2448@item
2449A range of Xtensa CPUs, default is the DC232B
2450@item
245116550 UART
2452@item
2453OpenCores 10/100 Mbps Ethernet MAC
2454@end itemize
2455
2456@c man begin OPTIONS
2457
2458The following options are specific to the Xtensa emulation:
2459
2460@table @option
2461
2462@item -semihosting
2463Enable semihosting syscall emulation.
2464
2465Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2466Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2467
2468Note that this allows guest direct access to the host filesystem,
2469so should only be used with trusted guest OS.
2470
2471@end table
2472
2473@c man end
2474
2475@node QEMU Guest Agent
2476@chapter QEMU Guest Agent invocation
2477
2478@include qemu-ga.texi
2479
2480@node QEMU User space emulator
2481@chapter QEMU User space emulator
2482
2483@menu
2484* Supported Operating Systems ::
2485* Features::
2486* Linux User space emulator::
2487* BSD User space emulator ::
2488@end menu
2489
2490@node Supported Operating Systems
2491@section Supported Operating Systems
2492
2493The following OS are supported in user space emulation:
2494
2495@itemize @minus
2496@item
2497Linux (referred as qemu-linux-user)
2498@item
2499BSD (referred as qemu-bsd-user)
2500@end itemize
2501
2502@node Features
2503@section Features
2504
2505QEMU user space emulation has the following notable features:
2506
2507@table @strong
2508@item System call translation:
2509QEMU includes a generic system call translator.  This means that
2510the parameters of the system calls can be converted to fix
2511endianness and 32/64-bit mismatches between hosts and targets.
2512IOCTLs can be converted too.
2513
2514@item POSIX signal handling:
2515QEMU can redirect to the running program all signals coming from
2516the host (such as @code{SIGALRM}), as well as synthesize signals from
2517virtual CPU exceptions (for example @code{SIGFPE} when the program
2518executes a division by zero).
2519
2520QEMU relies on the host kernel to emulate most signal system
2521calls, for example to emulate the signal mask.  On Linux, QEMU
2522supports both normal and real-time signals.
2523
2524@item Threading:
2525On Linux, QEMU can emulate the @code{clone} syscall and create a real
2526host thread (with a separate virtual CPU) for each emulated thread.
2527Note that not all targets currently emulate atomic operations correctly.
2528x86 and ARM use a global lock in order to preserve their semantics.
2529@end table
2530
2531QEMU was conceived so that ultimately it can emulate itself. Although
2532it is not very useful, it is an important test to show the power of the
2533emulator.
2534
2535@node Linux User space emulator
2536@section Linux User space emulator
2537
2538@menu
2539* Quick Start::
2540* Wine launch::
2541* Command line options::
2542* Other binaries::
2543@end menu
2544
2545@node Quick Start
2546@subsection Quick Start
2547
2548In order to launch a Linux process, QEMU needs the process executable
2549itself and all the target (x86) dynamic libraries used by it.
2550
2551@itemize
2552
2553@item On x86, you can just try to launch any process by using the native
2554libraries:
2555
2556@example
2557qemu-i386 -L / /bin/ls
2558@end example
2559
2560@code{-L /} tells that the x86 dynamic linker must be searched with a
2561@file{/} prefix.
2562
2563@item Since QEMU is also a linux process, you can launch QEMU with
2564QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2565
2566@example
2567qemu-i386 -L / qemu-i386 -L / /bin/ls
2568@end example
2569
2570@item On non x86 CPUs, you need first to download at least an x86 glibc
2571(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2572@code{LD_LIBRARY_PATH} is not set:
2573
2574@example
2575unset LD_LIBRARY_PATH
2576@end example
2577
2578Then you can launch the precompiled @file{ls} x86 executable:
2579
2580@example
2581qemu-i386 tests/i386/ls
2582@end example
2583You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2584QEMU is automatically launched by the Linux kernel when you try to
2585launch x86 executables. It requires the @code{binfmt_misc} module in the
2586Linux kernel.
2587
2588@item The x86 version of QEMU is also included. You can try weird things such as:
2589@example
2590qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2591          /usr/local/qemu-i386/bin/ls-i386
2592@end example
2593
2594@end itemize
2595
2596@node Wine launch
2597@subsection Wine launch
2598
2599@itemize
2600
2601@item Ensure that you have a working QEMU with the x86 glibc
2602distribution (see previous section). In order to verify it, you must be
2603able to do:
2604
2605@example
2606qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2607@end example
2608
2609@item Download the binary x86 Wine install
2610(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2611
2612@item Configure Wine on your account. Look at the provided script
2613@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2614@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2615
2616@item Then you can try the example @file{putty.exe}:
2617
2618@example
2619qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2620          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2621@end example
2622
2623@end itemize
2624
2625@node Command line options
2626@subsection Command line options
2627
2628@example
2629@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2630@end example
2631
2632@table @option
2633@item -h
2634Print the help
2635@item -L path
2636Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2637@item -s size
2638Set the x86 stack size in bytes (default=524288)
2639@item -cpu model
2640Select CPU model (-cpu help for list and additional feature selection)
2641@item -E @var{var}=@var{value}
2642Set environment @var{var} to @var{value}.
2643@item -U @var{var}
2644Remove @var{var} from the environment.
2645@item -B offset
2646Offset guest address by the specified number of bytes.  This is useful when
2647the address region required by guest applications is reserved on the host.
2648This option is currently only supported on some hosts.
2649@item -R size
2650Pre-allocate a guest virtual address space of the given size (in bytes).
2651"G", "M", and "k" suffixes may be used when specifying the size.
2652@end table
2653
2654Debug options:
2655
2656@table @option
2657@item -d item1,...
2658Activate logging of the specified items (use '-d help' for a list of log items)
2659@item -p pagesize
2660Act as if the host page size was 'pagesize' bytes
2661@item -g port
2662Wait gdb connection to port
2663@item -singlestep
2664Run the emulation in single step mode.
2665@end table
2666
2667Environment variables:
2668
2669@table @env
2670@item QEMU_STRACE
2671Print system calls and arguments similar to the 'strace' program
2672(NOTE: the actual 'strace' program will not work because the user
2673space emulator hasn't implemented ptrace).  At the moment this is
2674incomplete.  All system calls that don't have a specific argument
2675format are printed with information for six arguments.  Many
2676flag-style arguments don't have decoders and will show up as numbers.
2677@end table
2678
2679@node Other binaries
2680@subsection Other binaries
2681
2682@cindex user mode (Alpha)
2683@command{qemu-alpha} TODO.
2684
2685@cindex user mode (ARM)
2686@command{qemu-armeb} TODO.
2687
2688@cindex user mode (ARM)
2689@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2690binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2691configurations), and arm-uclinux bFLT format binaries.
2692
2693@cindex user mode (ColdFire)
2694@cindex user mode (M68K)
2695@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2696(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2697coldfire uClinux bFLT format binaries.
2698
2699The binary format is detected automatically.
2700
2701@cindex user mode (Cris)
2702@command{qemu-cris} TODO.
2703
2704@cindex user mode (i386)
2705@command{qemu-i386} TODO.
2706@command{qemu-x86_64} TODO.
2707
2708@cindex user mode (Microblaze)
2709@command{qemu-microblaze} TODO.
2710
2711@cindex user mode (MIPS)
2712@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2713
2714@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2715
2716@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2717
2718@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2719
2720@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2721
2722@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
2723
2724@cindex user mode (NiosII)
2725@command{qemu-nios2} TODO.
2726
2727@cindex user mode (PowerPC)
2728@command{qemu-ppc64abi32} TODO.
2729@command{qemu-ppc64} TODO.
2730@command{qemu-ppc} TODO.
2731
2732@cindex user mode (SH4)
2733@command{qemu-sh4eb} TODO.
2734@command{qemu-sh4} TODO.
2735
2736@cindex user mode (SPARC)
2737@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2738
2739@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2740(Sparc64 CPU, 32 bit ABI).
2741
2742@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2743SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2744
2745@node BSD User space emulator
2746@section BSD User space emulator
2747
2748@menu
2749* BSD Status::
2750* BSD Quick Start::
2751* BSD Command line options::
2752@end menu
2753
2754@node BSD Status
2755@subsection BSD Status
2756
2757@itemize @minus
2758@item
2759target Sparc64 on Sparc64: Some trivial programs work.
2760@end itemize
2761
2762@node BSD Quick Start
2763@subsection Quick Start
2764
2765In order to launch a BSD process, QEMU needs the process executable
2766itself and all the target dynamic libraries used by it.
2767
2768@itemize
2769
2770@item On Sparc64, you can just try to launch any process by using the native
2771libraries:
2772
2773@example
2774qemu-sparc64 /bin/ls
2775@end example
2776
2777@end itemize
2778
2779@node BSD Command line options
2780@subsection Command line options
2781
2782@example
2783@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2784@end example
2785
2786@table @option
2787@item -h
2788Print the help
2789@item -L path
2790Set the library root path (default=/)
2791@item -s size
2792Set the stack size in bytes (default=524288)
2793@item -ignore-environment
2794Start with an empty environment. Without this option,
2795the initial environment is a copy of the caller's environment.
2796@item -E @var{var}=@var{value}
2797Set environment @var{var} to @var{value}.
2798@item -U @var{var}
2799Remove @var{var} from the environment.
2800@item -bsd type
2801Set the type of the emulated BSD Operating system. Valid values are
2802FreeBSD, NetBSD and OpenBSD (default).
2803@end table
2804
2805Debug options:
2806
2807@table @option
2808@item -d item1,...
2809Activate logging of the specified items (use '-d help' for a list of log items)
2810@item -p pagesize
2811Act as if the host page size was 'pagesize' bytes
2812@item -singlestep
2813Run the emulation in single step mode.
2814@end table
2815
2816
2817@include qemu-tech.texi
2818
2819@include qemu-deprecated.texi
2820
2821@node Supported build platforms
2822@appendix Supported build platforms
2823
2824QEMU aims to support building and executing on multiple host OS platforms.
2825This appendix outlines which platforms are the major build targets. These
2826platforms are used as the basis for deciding upon the minimum required
2827versions of 3rd party software QEMU depends on. The supported platforms
2828are the targets for automated testing performed by the project when patches
2829are submitted for review, and tested before and after merge.
2830
2831If a platform is not listed here, it does not imply that QEMU won't work.
2832If an unlisted platform has comparable software versions to a listed platform,
2833there is every expectation that it will work. Bug reports are welcome for
2834problems encountered on unlisted platforms unless they are clearly older
2835vintage than what is described here.
2836
2837Note that when considering software versions shipped in distros as support
2838targets, QEMU considers only the version number, and assumes the features in
2839that distro match the upstream release with the same version. In other words,
2840if a distro backports extra features to the software in their distro, QEMU
2841upstream code will not add explicit support for those backports, unless the
2842feature is auto-detectable in a manner that works for the upstream releases
2843too.
2844
2845The Repology site @url{https://repology.org} is a useful resource to identify
2846currently shipped versions of software in various operating systems, though
2847it does not cover all distros listed below.
2848
2849@section Linux OS
2850
2851For distributions with frequent, short-lifetime releases, the project will
2852aim to support all versions that are not end of life by their respective
2853vendors. For the purposes of identifying supported software versions, the
2854project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2855lifetime distros will be assumed to ship similar software versions.
2856
2857For distributions with long-lifetime releases, the project will aim to support
2858the most recent major version at all times. Support for the previous major
2859version will be dropped 2 years after the new major version is released. For
2860the purposes of identifying supported software versions, the project will look
2861at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2862be assumed to ship similar software versions.
2863
2864@section Windows
2865
2866The project supports building with current versions of the MinGW toolchain,
2867hosted on Linux.
2868
2869@section macOS
2870
2871The project supports building with the two most recent versions of macOS, with
2872the current homebrew package set available.
2873
2874@section FreeBSD
2875
2876The project aims to support the all the versions which are not end of life.
2877
2878@section NetBSD
2879
2880The project aims to support the most recent major version at all times. Support
2881for the previous major version will be dropped 2 years after the new major
2882version is released.
2883
2884@section OpenBSD
2885
2886The project aims to support the all the versions which are not end of life.
2887
2888@node License
2889@appendix License
2890
2891QEMU is a trademark of Fabrice Bellard.
2892
2893QEMU is released under the
2894@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2895version 2. Parts of QEMU have specific licenses, see file
2896@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2897
2898@node Index
2899@appendix Index
2900@menu
2901* Concept Index::
2902* Function Index::
2903* Keystroke Index::
2904* Program Index::
2905* Data Type Index::
2906* Variable Index::
2907@end menu
2908
2909@node Concept Index
2910@section Concept Index
2911This is the main index. Should we combine all keywords in one index? TODO
2912@printindex cp
2913
2914@node Function Index
2915@section Function Index
2916This index could be used for command line options and monitor functions.
2917@printindex fn
2918
2919@node Keystroke Index
2920@section Keystroke Index
2921
2922This is a list of all keystrokes which have a special function
2923in system emulation.
2924
2925@printindex ky
2926
2927@node Program Index
2928@section Program Index
2929@printindex pg
2930
2931@node Data Type Index
2932@section Data Type Index
2933
2934This index could be used for qdev device names and options.
2935
2936@printindex tp
2937
2938@node Variable Index
2939@section Variable Index
2940@printindex vr
2941
2942@bye
2943