qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29
  30/* register banks for CPU modes */
  31#define BANK_USRSYS 0
  32#define BANK_SVC    1
  33#define BANK_ABT    2
  34#define BANK_UND    3
  35#define BANK_IRQ    4
  36#define BANK_FIQ    5
  37#define BANK_HYP    6
  38#define BANK_MON    7
  39
  40static inline bool excp_is_internal(int excp)
  41{
  42    /* Return true if this exception number represents a QEMU-internal
  43     * exception that will not be passed to the guest.
  44     */
  45    return excp == EXCP_INTERRUPT
  46        || excp == EXCP_HLT
  47        || excp == EXCP_DEBUG
  48        || excp == EXCP_HALTED
  49        || excp == EXCP_EXCEPTION_EXIT
  50        || excp == EXCP_KERNEL_TRAP
  51        || excp == EXCP_SEMIHOST;
  52}
  53
  54/* Scale factor for generic timers, ie number of ns per tick.
  55 * This gives a 62.5MHz timer.
  56 */
  57#define GTIMER_SCALE 16
  58
  59/* Bit definitions for the v7M CONTROL register */
  60FIELD(V7M_CONTROL, NPRIV, 0, 1)
  61FIELD(V7M_CONTROL, SPSEL, 1, 1)
  62FIELD(V7M_CONTROL, FPCA, 2, 1)
  63FIELD(V7M_CONTROL, SFPA, 3, 1)
  64
  65/* Bit definitions for v7M exception return payload */
  66FIELD(V7M_EXCRET, ES, 0, 1)
  67FIELD(V7M_EXCRET, RES0, 1, 1)
  68FIELD(V7M_EXCRET, SPSEL, 2, 1)
  69FIELD(V7M_EXCRET, MODE, 3, 1)
  70FIELD(V7M_EXCRET, FTYPE, 4, 1)
  71FIELD(V7M_EXCRET, DCRS, 5, 1)
  72FIELD(V7M_EXCRET, S, 6, 1)
  73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  74
  75/* Minimum value which is a magic number for exception return */
  76#define EXC_RETURN_MIN_MAGIC 0xff000000
  77/* Minimum number which is a magic number for function or exception return
  78 * when using v8M security extension
  79 */
  80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  81
  82/* We use a few fake FSR values for internal purposes in M profile.
  83 * M profile cores don't have A/R format FSRs, but currently our
  84 * get_phys_addr() code assumes A/R profile and reports failures via
  85 * an A/R format FSR value. We then translate that into the proper
  86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  87 * Mostly the FSR values we use for this are those defined for v7PMSA,
  88 * since we share some of that codepath. A few kinds of fault are
  89 * only for M profile and have no A/R equivalent, though, so we have
  90 * to pick a value from the reserved range (which we never otherwise
  91 * generate) to use for these.
  92 * These values will never be visible to the guest.
  93 */
  94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  96
  97/**
  98 * raise_exception: Raise the specified exception.
  99 * Raise a guest exception with the specified value, syndrome register
 100 * and target exception level. This should be called from helper functions,
 101 * and never returns because we will longjump back up to the CPU main loop.
 102 */
 103void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
 104                                   uint32_t syndrome, uint32_t target_el);
 105
 106/*
 107 * For AArch64, map a given EL to an index in the banked_spsr array.
 108 * Note that this mapping and the AArch32 mapping defined in bank_number()
 109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 110 * mandated mapping between each other.
 111 */
 112static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 113{
 114    static const unsigned int map[4] = {
 115        [1] = BANK_SVC, /* EL1.  */
 116        [2] = BANK_HYP, /* EL2.  */
 117        [3] = BANK_MON, /* EL3.  */
 118    };
 119    assert(el >= 1 && el <= 3);
 120    return map[el];
 121}
 122
 123/* Map CPU modes onto saved register banks.  */
 124static inline int bank_number(int mode)
 125{
 126    switch (mode) {
 127    case ARM_CPU_MODE_USR:
 128    case ARM_CPU_MODE_SYS:
 129        return BANK_USRSYS;
 130    case ARM_CPU_MODE_SVC:
 131        return BANK_SVC;
 132    case ARM_CPU_MODE_ABT:
 133        return BANK_ABT;
 134    case ARM_CPU_MODE_UND:
 135        return BANK_UND;
 136    case ARM_CPU_MODE_IRQ:
 137        return BANK_IRQ;
 138    case ARM_CPU_MODE_FIQ:
 139        return BANK_FIQ;
 140    case ARM_CPU_MODE_HYP:
 141        return BANK_HYP;
 142    case ARM_CPU_MODE_MON:
 143        return BANK_MON;
 144    }
 145    g_assert_not_reached();
 146}
 147
 148/**
 149 * r14_bank_number: Map CPU mode onto register bank for r14
 150 *
 151 * Given an AArch32 CPU mode, return the index into the saved register
 152 * banks to use for the R14 (LR) in that mode. This is the same as
 153 * bank_number(), except for the special case of Hyp mode, where
 154 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 155 * This should be used as the index into env->banked_r14[], and
 156 * bank_number() used for the index into env->banked_r13[] and
 157 * env->banked_spsr[].
 158 */
 159static inline int r14_bank_number(int mode)
 160{
 161    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 162}
 163
 164void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 165void arm_translate_init(void);
 166
 167enum arm_fprounding {
 168    FPROUNDING_TIEEVEN,
 169    FPROUNDING_POSINF,
 170    FPROUNDING_NEGINF,
 171    FPROUNDING_ZERO,
 172    FPROUNDING_TIEAWAY,
 173    FPROUNDING_ODD
 174};
 175
 176int arm_rmode_to_sf(int rmode);
 177
 178static inline void aarch64_save_sp(CPUARMState *env, int el)
 179{
 180    if (env->pstate & PSTATE_SP) {
 181        env->sp_el[el] = env->xregs[31];
 182    } else {
 183        env->sp_el[0] = env->xregs[31];
 184    }
 185}
 186
 187static inline void aarch64_restore_sp(CPUARMState *env, int el)
 188{
 189    if (env->pstate & PSTATE_SP) {
 190        env->xregs[31] = env->sp_el[el];
 191    } else {
 192        env->xregs[31] = env->sp_el[0];
 193    }
 194}
 195
 196static inline void update_spsel(CPUARMState *env, uint32_t imm)
 197{
 198    unsigned int cur_el = arm_current_el(env);
 199    /* Update PSTATE SPSel bit; this requires us to update the
 200     * working stack pointer in xregs[31].
 201     */
 202    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 203        return;
 204    }
 205    aarch64_save_sp(env, cur_el);
 206    env->pstate = deposit32(env->pstate, 0, 1, imm);
 207
 208    /* We rely on illegal updates to SPsel from EL0 to get trapped
 209     * at translation time.
 210     */
 211    assert(cur_el >= 1 && cur_el <= 3);
 212    aarch64_restore_sp(env, cur_el);
 213}
 214
 215/*
 216 * arm_pamax
 217 * @cpu: ARMCPU
 218 *
 219 * Returns the implementation defined bit-width of physical addresses.
 220 * The ARMv8 reference manuals refer to this as PAMax().
 221 */
 222static inline unsigned int arm_pamax(ARMCPU *cpu)
 223{
 224    static const unsigned int pamax_map[] = {
 225        [0] = 32,
 226        [1] = 36,
 227        [2] = 40,
 228        [3] = 42,
 229        [4] = 44,
 230        [5] = 48,
 231    };
 232    unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 233
 234    /* id_aa64mmfr0 is a read-only register so values outside of the
 235     * supported mappings can be considered an implementation error.  */
 236    assert(parange < ARRAY_SIZE(pamax_map));
 237    return pamax_map[parange];
 238}
 239
 240/* Return true if extended addresses are enabled.
 241 * This is always the case if our translation regime is 64 bit,
 242 * but depends on TTBCR.EAE for 32 bit.
 243 */
 244static inline bool extended_addresses_enabled(CPUARMState *env)
 245{
 246    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 247    return arm_el_is_aa64(env, 1) ||
 248           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 249}
 250
 251/* Valid Syndrome Register EC field values */
 252enum arm_exception_class {
 253    EC_UNCATEGORIZED          = 0x00,
 254    EC_WFX_TRAP               = 0x01,
 255    EC_CP15RTTRAP             = 0x03,
 256    EC_CP15RRTTRAP            = 0x04,
 257    EC_CP14RTTRAP             = 0x05,
 258    EC_CP14DTTRAP             = 0x06,
 259    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 260    EC_FPIDTRAP               = 0x08,
 261    EC_CP14RRTTRAP            = 0x0c,
 262    EC_ILLEGALSTATE           = 0x0e,
 263    EC_AA32_SVC               = 0x11,
 264    EC_AA32_HVC               = 0x12,
 265    EC_AA32_SMC               = 0x13,
 266    EC_AA64_SVC               = 0x15,
 267    EC_AA64_HVC               = 0x16,
 268    EC_AA64_SMC               = 0x17,
 269    EC_SYSTEMREGISTERTRAP     = 0x18,
 270    EC_SVEACCESSTRAP          = 0x19,
 271    EC_INSNABORT              = 0x20,
 272    EC_INSNABORT_SAME_EL      = 0x21,
 273    EC_PCALIGNMENT            = 0x22,
 274    EC_DATAABORT              = 0x24,
 275    EC_DATAABORT_SAME_EL      = 0x25,
 276    EC_SPALIGNMENT            = 0x26,
 277    EC_AA32_FPTRAP            = 0x28,
 278    EC_AA64_FPTRAP            = 0x2c,
 279    EC_SERROR                 = 0x2f,
 280    EC_BREAKPOINT             = 0x30,
 281    EC_BREAKPOINT_SAME_EL     = 0x31,
 282    EC_SOFTWARESTEP           = 0x32,
 283    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 284    EC_WATCHPOINT             = 0x34,
 285    EC_WATCHPOINT_SAME_EL     = 0x35,
 286    EC_AA32_BKPT              = 0x38,
 287    EC_VECTORCATCH            = 0x3a,
 288    EC_AA64_BKPT              = 0x3c,
 289};
 290
 291#define ARM_EL_EC_SHIFT 26
 292#define ARM_EL_IL_SHIFT 25
 293#define ARM_EL_ISV_SHIFT 24
 294#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 295#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 296
 297static inline uint32_t syn_get_ec(uint32_t syn)
 298{
 299    return syn >> ARM_EL_EC_SHIFT;
 300}
 301
 302/* Utility functions for constructing various kinds of syndrome value.
 303 * Note that in general we follow the AArch64 syndrome values; in a
 304 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 305 * mode differs slightly, and we fix this up when populating HSR in
 306 * arm_cpu_do_interrupt_aarch32_hyp().
 307 * The exception is FP/SIMD access traps -- these report extra information
 308 * when taking an exception to AArch32. For those we include the extra coproc
 309 * and TA fields, and mask them out when taking the exception to AArch64.
 310 */
 311static inline uint32_t syn_uncategorized(void)
 312{
 313    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 314}
 315
 316static inline uint32_t syn_aa64_svc(uint32_t imm16)
 317{
 318    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 319}
 320
 321static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 322{
 323    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 324}
 325
 326static inline uint32_t syn_aa64_smc(uint32_t imm16)
 327{
 328    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 329}
 330
 331static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 332{
 333    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 334        | (is_16bit ? 0 : ARM_EL_IL);
 335}
 336
 337static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 338{
 339    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 340}
 341
 342static inline uint32_t syn_aa32_smc(void)
 343{
 344    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 345}
 346
 347static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 348{
 349    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 350}
 351
 352static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 353{
 354    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 355        | (is_16bit ? 0 : ARM_EL_IL);
 356}
 357
 358static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 359                                           int crn, int crm, int rt,
 360                                           int isread)
 361{
 362    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 363        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 364        | (crm << 1) | isread;
 365}
 366
 367static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 368                                        int crn, int crm, int rt, int isread,
 369                                        bool is_16bit)
 370{
 371    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 372        | (is_16bit ? 0 : ARM_EL_IL)
 373        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 374        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 375}
 376
 377static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 378                                        int crn, int crm, int rt, int isread,
 379                                        bool is_16bit)
 380{
 381    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 382        | (is_16bit ? 0 : ARM_EL_IL)
 383        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 384        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 385}
 386
 387static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 388                                         int rt, int rt2, int isread,
 389                                         bool is_16bit)
 390{
 391    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 392        | (is_16bit ? 0 : ARM_EL_IL)
 393        | (cv << 24) | (cond << 20) | (opc1 << 16)
 394        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 395}
 396
 397static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 398                                         int rt, int rt2, int isread,
 399                                         bool is_16bit)
 400{
 401    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 402        | (is_16bit ? 0 : ARM_EL_IL)
 403        | (cv << 24) | (cond << 20) | (opc1 << 16)
 404        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 405}
 406
 407static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 408{
 409    /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
 410    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 411        | (is_16bit ? 0 : ARM_EL_IL)
 412        | (cv << 24) | (cond << 20) | 0xa;
 413}
 414
 415static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
 416{
 417    /* AArch32 SIMD trap: TA == 1 coproc == 0 */
 418    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 419        | (is_16bit ? 0 : ARM_EL_IL)
 420        | (cv << 24) | (cond << 20) | (1 << 5);
 421}
 422
 423static inline uint32_t syn_sve_access_trap(void)
 424{
 425    return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
 426}
 427
 428static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 429{
 430    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 431        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 432}
 433
 434static inline uint32_t syn_data_abort_no_iss(int same_el,
 435                                             int ea, int cm, int s1ptw,
 436                                             int wnr, int fsc)
 437{
 438    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 439           | ARM_EL_IL
 440           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 441}
 442
 443static inline uint32_t syn_data_abort_with_iss(int same_el,
 444                                               int sas, int sse, int srt,
 445                                               int sf, int ar,
 446                                               int ea, int cm, int s1ptw,
 447                                               int wnr, int fsc,
 448                                               bool is_16bit)
 449{
 450    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 451           | (is_16bit ? 0 : ARM_EL_IL)
 452           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 453           | (sf << 15) | (ar << 14)
 454           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 455}
 456
 457static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 458{
 459    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 460        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 461}
 462
 463static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 464{
 465    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 466        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 467}
 468
 469static inline uint32_t syn_breakpoint(int same_el)
 470{
 471    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 472        | ARM_EL_IL | 0x22;
 473}
 474
 475static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
 476{
 477    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 478           (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
 479           (cv << 24) | (cond << 20) | ti;
 480}
 481
 482/* Update a QEMU watchpoint based on the information the guest has set in the
 483 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 484 */
 485void hw_watchpoint_update(ARMCPU *cpu, int n);
 486/* Update the QEMU watchpoints for every guest watchpoint. This does a
 487 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 488 * suitable for use after migration or on reset.
 489 */
 490void hw_watchpoint_update_all(ARMCPU *cpu);
 491/* Update a QEMU breakpoint based on the information the guest has set in the
 492 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 493 */
 494void hw_breakpoint_update(ARMCPU *cpu, int n);
 495/* Update the QEMU breakpoints for every guest breakpoint. This does a
 496 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 497 * suitable for use after migration or on reset.
 498 */
 499void hw_breakpoint_update_all(ARMCPU *cpu);
 500
 501/* Callback function for checking if a watchpoint should trigger. */
 502bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 503
 504/* Adjust addresses (in BE32 mode) before testing against watchpoint
 505 * addresses.
 506 */
 507vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 508
 509/* Callback function for when a watchpoint or breakpoint triggers. */
 510void arm_debug_excp_handler(CPUState *cs);
 511
 512#ifdef CONFIG_USER_ONLY
 513static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 514{
 515    return false;
 516}
 517#else
 518/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 519bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 520/* Actually handle a PSCI call */
 521void arm_handle_psci_call(ARMCPU *cpu);
 522#endif
 523
 524/**
 525 * arm_clear_exclusive: clear the exclusive monitor
 526 * @env: CPU env
 527 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 528 */
 529static inline void arm_clear_exclusive(CPUARMState *env)
 530{
 531    env->exclusive_addr = -1;
 532}
 533
 534/**
 535 * ARMFaultType: type of an ARM MMU fault
 536 * This corresponds to the v8A pseudocode's Fault enumeration,
 537 * with extensions for QEMU internal conditions.
 538 */
 539typedef enum ARMFaultType {
 540    ARMFault_None,
 541    ARMFault_AccessFlag,
 542    ARMFault_Alignment,
 543    ARMFault_Background,
 544    ARMFault_Domain,
 545    ARMFault_Permission,
 546    ARMFault_Translation,
 547    ARMFault_AddressSize,
 548    ARMFault_SyncExternal,
 549    ARMFault_SyncExternalOnWalk,
 550    ARMFault_SyncParity,
 551    ARMFault_SyncParityOnWalk,
 552    ARMFault_AsyncParity,
 553    ARMFault_AsyncExternal,
 554    ARMFault_Debug,
 555    ARMFault_TLBConflict,
 556    ARMFault_Lockdown,
 557    ARMFault_Exclusive,
 558    ARMFault_ICacheMaint,
 559    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 560    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 561} ARMFaultType;
 562
 563/**
 564 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 565 * @type: Type of fault
 566 * @level: Table walk level (for translation, access flag and permission faults)
 567 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 568 * @s2addr: Address that caused a fault at stage 2
 569 * @stage2: True if we faulted at stage 2
 570 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 571 * @ea: True if we should set the EA (external abort type) bit in syndrome
 572 */
 573typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 574struct ARMMMUFaultInfo {
 575    ARMFaultType type;
 576    target_ulong s2addr;
 577    int level;
 578    int domain;
 579    bool stage2;
 580    bool s1ptw;
 581    bool ea;
 582};
 583
 584/**
 585 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 586 * Compare pseudocode EncodeSDFSC(), though unlike that function
 587 * we set up a whole FSR-format code including domain field and
 588 * putting the high bit of the FSC into bit 10.
 589 */
 590static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 591{
 592    uint32_t fsc;
 593
 594    switch (fi->type) {
 595    case ARMFault_None:
 596        return 0;
 597    case ARMFault_AccessFlag:
 598        fsc = fi->level == 1 ? 0x3 : 0x6;
 599        break;
 600    case ARMFault_Alignment:
 601        fsc = 0x1;
 602        break;
 603    case ARMFault_Permission:
 604        fsc = fi->level == 1 ? 0xd : 0xf;
 605        break;
 606    case ARMFault_Domain:
 607        fsc = fi->level == 1 ? 0x9 : 0xb;
 608        break;
 609    case ARMFault_Translation:
 610        fsc = fi->level == 1 ? 0x5 : 0x7;
 611        break;
 612    case ARMFault_SyncExternal:
 613        fsc = 0x8 | (fi->ea << 12);
 614        break;
 615    case ARMFault_SyncExternalOnWalk:
 616        fsc = fi->level == 1 ? 0xc : 0xe;
 617        fsc |= (fi->ea << 12);
 618        break;
 619    case ARMFault_SyncParity:
 620        fsc = 0x409;
 621        break;
 622    case ARMFault_SyncParityOnWalk:
 623        fsc = fi->level == 1 ? 0x40c : 0x40e;
 624        break;
 625    case ARMFault_AsyncParity:
 626        fsc = 0x408;
 627        break;
 628    case ARMFault_AsyncExternal:
 629        fsc = 0x406 | (fi->ea << 12);
 630        break;
 631    case ARMFault_Debug:
 632        fsc = 0x2;
 633        break;
 634    case ARMFault_TLBConflict:
 635        fsc = 0x400;
 636        break;
 637    case ARMFault_Lockdown:
 638        fsc = 0x404;
 639        break;
 640    case ARMFault_Exclusive:
 641        fsc = 0x405;
 642        break;
 643    case ARMFault_ICacheMaint:
 644        fsc = 0x4;
 645        break;
 646    case ARMFault_Background:
 647        fsc = 0x0;
 648        break;
 649    case ARMFault_QEMU_NSCExec:
 650        fsc = M_FAKE_FSR_NSC_EXEC;
 651        break;
 652    case ARMFault_QEMU_SFault:
 653        fsc = M_FAKE_FSR_SFAULT;
 654        break;
 655    default:
 656        /* Other faults can't occur in a context that requires a
 657         * short-format status code.
 658         */
 659        g_assert_not_reached();
 660    }
 661
 662    fsc |= (fi->domain << 4);
 663    return fsc;
 664}
 665
 666/**
 667 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 668 * Compare pseudocode EncodeLDFSC(), though unlike that function
 669 * we fill in also the LPAE bit 9 of a DFSR format.
 670 */
 671static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 672{
 673    uint32_t fsc;
 674
 675    switch (fi->type) {
 676    case ARMFault_None:
 677        return 0;
 678    case ARMFault_AddressSize:
 679        fsc = fi->level & 3;
 680        break;
 681    case ARMFault_AccessFlag:
 682        fsc = (fi->level & 3) | (0x2 << 2);
 683        break;
 684    case ARMFault_Permission:
 685        fsc = (fi->level & 3) | (0x3 << 2);
 686        break;
 687    case ARMFault_Translation:
 688        fsc = (fi->level & 3) | (0x1 << 2);
 689        break;
 690    case ARMFault_SyncExternal:
 691        fsc = 0x10 | (fi->ea << 12);
 692        break;
 693    case ARMFault_SyncExternalOnWalk:
 694        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
 695        break;
 696    case ARMFault_SyncParity:
 697        fsc = 0x18;
 698        break;
 699    case ARMFault_SyncParityOnWalk:
 700        fsc = (fi->level & 3) | (0x7 << 2);
 701        break;
 702    case ARMFault_AsyncParity:
 703        fsc = 0x19;
 704        break;
 705    case ARMFault_AsyncExternal:
 706        fsc = 0x11 | (fi->ea << 12);
 707        break;
 708    case ARMFault_Alignment:
 709        fsc = 0x21;
 710        break;
 711    case ARMFault_Debug:
 712        fsc = 0x22;
 713        break;
 714    case ARMFault_TLBConflict:
 715        fsc = 0x30;
 716        break;
 717    case ARMFault_Lockdown:
 718        fsc = 0x34;
 719        break;
 720    case ARMFault_Exclusive:
 721        fsc = 0x35;
 722        break;
 723    default:
 724        /* Other faults can't occur in a context that requires a
 725         * long-format status code.
 726         */
 727        g_assert_not_reached();
 728    }
 729
 730    fsc |= 1 << 9;
 731    return fsc;
 732}
 733
 734static inline bool arm_extabort_type(MemTxResult result)
 735{
 736    /* The EA bit in syndromes and fault status registers is an
 737     * IMPDEF classification of external aborts. ARM implementations
 738     * usually use this to indicate AXI bus Decode error (0) or
 739     * Slave error (1); in QEMU we follow that.
 740     */
 741    return result != MEMTX_DECODE_ERROR;
 742}
 743
 744/* Do a page table walk and add page to TLB if possible */
 745bool arm_tlb_fill(CPUState *cpu, vaddr address,
 746                  MMUAccessType access_type, int mmu_idx,
 747                  ARMMMUFaultInfo *fi);
 748
 749/* Return true if the stage 1 translation regime is using LPAE format page
 750 * tables */
 751bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 752
 753/* Raise a data fault alignment exception for the specified virtual address */
 754void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 755                                 MMUAccessType access_type,
 756                                 int mmu_idx, uintptr_t retaddr);
 757
 758/* arm_cpu_do_transaction_failed: handle a memory system error response
 759 * (eg "no device/memory present at address") by raising an external abort
 760 * exception
 761 */
 762void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 763                                   vaddr addr, unsigned size,
 764                                   MMUAccessType access_type,
 765                                   int mmu_idx, MemTxAttrs attrs,
 766                                   MemTxResult response, uintptr_t retaddr);
 767
 768/* Call any registered EL change hooks */
 769static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 770{
 771    ARMELChangeHook *hook, *next;
 772    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 773        hook->hook(cpu, hook->opaque);
 774    }
 775}
 776static inline void arm_call_el_change_hook(ARMCPU *cpu)
 777{
 778    ARMELChangeHook *hook, *next;
 779    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 780        hook->hook(cpu, hook->opaque);
 781    }
 782}
 783
 784/* Return true if this address translation regime is secure */
 785static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 786{
 787    switch (mmu_idx) {
 788    case ARMMMUIdx_S12NSE0:
 789    case ARMMMUIdx_S12NSE1:
 790    case ARMMMUIdx_S1NSE0:
 791    case ARMMMUIdx_S1NSE1:
 792    case ARMMMUIdx_S1E2:
 793    case ARMMMUIdx_S2NS:
 794    case ARMMMUIdx_MPrivNegPri:
 795    case ARMMMUIdx_MUserNegPri:
 796    case ARMMMUIdx_MPriv:
 797    case ARMMMUIdx_MUser:
 798        return false;
 799    case ARMMMUIdx_S1E3:
 800    case ARMMMUIdx_S1SE0:
 801    case ARMMMUIdx_S1SE1:
 802    case ARMMMUIdx_MSPrivNegPri:
 803    case ARMMMUIdx_MSUserNegPri:
 804    case ARMMMUIdx_MSPriv:
 805    case ARMMMUIdx_MSUser:
 806        return true;
 807    default:
 808        g_assert_not_reached();
 809    }
 810}
 811
 812/* Return the FSR value for a debug exception (watchpoint, hardware
 813 * breakpoint or BKPT insn) targeting the specified exception level.
 814 */
 815static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
 816{
 817    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 818    int target_el = arm_debug_target_el(env);
 819    bool using_lpae = false;
 820
 821    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 822        using_lpae = true;
 823    } else {
 824        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 825            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
 826            using_lpae = true;
 827        }
 828    }
 829
 830    if (using_lpae) {
 831        return arm_fi_to_lfsc(&fi);
 832    } else {
 833        return arm_fi_to_sfsc(&fi);
 834    }
 835}
 836
 837/* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
 838 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
 839 */
 840#define MEMOPIDX_SHIFT  8
 841
 842/**
 843 * v7m_using_psp: Return true if using process stack pointer
 844 * Return true if the CPU is currently using the process stack
 845 * pointer, or false if it is using the main stack pointer.
 846 */
 847static inline bool v7m_using_psp(CPUARMState *env)
 848{
 849    /* Handler mode always uses the main stack; for thread mode
 850     * the CONTROL.SPSEL bit determines the answer.
 851     * Note that in v7M it is not possible to be in Handler mode with
 852     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 853     */
 854    return !arm_v7m_is_handler_mode(env) &&
 855        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 856}
 857
 858/**
 859 * v7m_sp_limit: Return SP limit for current CPU state
 860 * Return the SP limit value for the current CPU security state
 861 * and stack pointer.
 862 */
 863static inline uint32_t v7m_sp_limit(CPUARMState *env)
 864{
 865    if (v7m_using_psp(env)) {
 866        return env->v7m.psplim[env->v7m.secure];
 867    } else {
 868        return env->v7m.msplim[env->v7m.secure];
 869    }
 870}
 871
 872/**
 873 * aarch32_mode_name(): Return name of the AArch32 CPU mode
 874 * @psr: Program Status Register indicating CPU mode
 875 *
 876 * Returns, for debug logging purposes, a printable representation
 877 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 878 * the low bits of the specified PSR.
 879 */
 880static inline const char *aarch32_mode_name(uint32_t psr)
 881{
 882    static const char cpu_mode_names[16][4] = {
 883        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 884        "???", "???", "hyp", "und", "???", "???", "???", "sys"
 885    };
 886
 887    return cpu_mode_names[psr & 0xf];
 888}
 889
 890/**
 891 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 892 *
 893 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 894 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 895 * Must be called with the iothread lock held.
 896 */
 897void arm_cpu_update_virq(ARMCPU *cpu);
 898
 899/**
 900 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 901 *
 902 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 903 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 904 * Must be called with the iothread lock held.
 905 */
 906void arm_cpu_update_vfiq(ARMCPU *cpu);
 907
 908#endif
 909