qemu/target/mips/helper.c
<<
>>
Prefs
   1/*
   2 *  MIPS emulation helpers for qemu.
   3 *
   4 *  Copyright (c) 2004-2005 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20
  21#include "cpu.h"
  22#include "internal.h"
  23#include "exec/exec-all.h"
  24#include "exec/cpu_ldst.h"
  25#include "exec/log.h"
  26#include "hw/mips/cpudevs.h"
  27
  28enum {
  29    TLBRET_XI = -6,
  30    TLBRET_RI = -5,
  31    TLBRET_DIRTY = -4,
  32    TLBRET_INVALID = -3,
  33    TLBRET_NOMATCH = -2,
  34    TLBRET_BADADDR = -1,
  35    TLBRET_MATCH = 0
  36};
  37
  38#if !defined(CONFIG_USER_ONLY)
  39
  40/* no MMU emulation */
  41int no_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
  42                        target_ulong address, int rw, int access_type)
  43{
  44    *physical = address;
  45    *prot = PAGE_READ | PAGE_WRITE;
  46    return TLBRET_MATCH;
  47}
  48
  49/* fixed mapping MMU emulation */
  50int fixed_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
  51                           target_ulong address, int rw, int access_type)
  52{
  53    if (address <= (int32_t)0x7FFFFFFFUL) {
  54        if (!(env->CP0_Status & (1 << CP0St_ERL)))
  55            *physical = address + 0x40000000UL;
  56        else
  57            *physical = address;
  58    } else if (address <= (int32_t)0xBFFFFFFFUL)
  59        *physical = address & 0x1FFFFFFF;
  60    else
  61        *physical = address;
  62
  63    *prot = PAGE_READ | PAGE_WRITE;
  64    return TLBRET_MATCH;
  65}
  66
  67/* MIPS32/MIPS64 R4000-style MMU emulation */
  68int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
  69                     target_ulong address, int rw, int access_type)
  70{
  71    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
  72    int i;
  73
  74    for (i = 0; i < env->tlb->tlb_in_use; i++) {
  75        r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
  76        /* 1k pages are not supported. */
  77        target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
  78        target_ulong tag = address & ~mask;
  79        target_ulong VPN = tlb->VPN & ~mask;
  80#if defined(TARGET_MIPS64)
  81        tag &= env->SEGMask;
  82#endif
  83
  84        /* Check ASID, virtual page number & size */
  85        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
  86            /* TLB match */
  87            int n = !!(address & mask & ~(mask >> 1));
  88            /* Check access rights */
  89            if (!(n ? tlb->V1 : tlb->V0)) {
  90                return TLBRET_INVALID;
  91            }
  92            if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
  93                return TLBRET_XI;
  94            }
  95            if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
  96                return TLBRET_RI;
  97            }
  98            if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
  99                *physical = tlb->PFN[n] | (address & (mask >> 1));
 100                *prot = PAGE_READ;
 101                if (n ? tlb->D1 : tlb->D0)
 102                    *prot |= PAGE_WRITE;
 103                return TLBRET_MATCH;
 104            }
 105            return TLBRET_DIRTY;
 106        }
 107    }
 108    return TLBRET_NOMATCH;
 109}
 110
 111static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
 112{
 113    /*
 114     * Interpret access control mode and mmu_idx.
 115     *           AdE?     TLB?
 116     *      AM  K S U E  K S U E
 117     * UK    0  0 1 1 0  0 - - 0
 118     * MK    1  0 1 1 0  1 - - !eu
 119     * MSK   2  0 0 1 0  1 1 - !eu
 120     * MUSK  3  0 0 0 0  1 1 1 !eu
 121     * MUSUK 4  0 0 0 0  0 1 1 0
 122     * USK   5  0 0 1 0  0 0 - 0
 123     * -     6  - - - -  - - - -
 124     * UUSK  7  0 0 0 0  0 0 0 0
 125     */
 126    int32_t adetlb_mask;
 127
 128    switch (mmu_idx) {
 129    case 3 /* ERL */:
 130        /* If EU is set, always unmapped */
 131        if (eu) {
 132            return 0;
 133        }
 134        /* fall through */
 135    case MIPS_HFLAG_KM:
 136        /* Never AdE, TLB mapped if AM={1,2,3} */
 137        adetlb_mask = 0x70000000;
 138        goto check_tlb;
 139
 140    case MIPS_HFLAG_SM:
 141        /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
 142        adetlb_mask = 0xc0380000;
 143        goto check_ade;
 144
 145    case MIPS_HFLAG_UM:
 146        /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
 147        adetlb_mask = 0xe4180000;
 148        /* fall through */
 149    check_ade:
 150        /* does this AM cause AdE in current execution mode */
 151        if ((adetlb_mask << am) < 0) {
 152            return TLBRET_BADADDR;
 153        }
 154        adetlb_mask <<= 8;
 155        /* fall through */
 156    check_tlb:
 157        /* is this AM mapped in current execution mode */
 158        return ((adetlb_mask << am) < 0);
 159    default:
 160        assert(0);
 161        return TLBRET_BADADDR;
 162    };
 163}
 164
 165static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
 166                                    int *prot, target_ulong real_address,
 167                                    int rw, int access_type, int mmu_idx,
 168                                    unsigned int am, bool eu,
 169                                    target_ulong segmask,
 170                                    hwaddr physical_base)
 171{
 172    int mapped = is_seg_am_mapped(am, eu, mmu_idx);
 173
 174    if (mapped < 0) {
 175        /* is_seg_am_mapped can report TLBRET_BADADDR */
 176        return mapped;
 177    } else if (mapped) {
 178        /* The segment is TLB mapped */
 179        return env->tlb->map_address(env, physical, prot, real_address, rw,
 180                                     access_type);
 181    } else {
 182        /* The segment is unmapped */
 183        *physical = physical_base | (real_address & segmask);
 184        *prot = PAGE_READ | PAGE_WRITE;
 185        return TLBRET_MATCH;
 186    }
 187}
 188
 189static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
 190                                       int *prot, target_ulong real_address,
 191                                       int rw, int access_type, int mmu_idx,
 192                                       uint16_t segctl, target_ulong segmask)
 193{
 194    unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
 195    bool eu = (segctl >> CP0SC_EU) & 1;
 196    hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
 197
 198    return get_seg_physical_address(env, physical, prot, real_address, rw,
 199                                    access_type, mmu_idx, am, eu, segmask,
 200                                    pa & ~(hwaddr)segmask);
 201}
 202
 203static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
 204                                int *prot, target_ulong real_address,
 205                                int rw, int access_type, int mmu_idx)
 206{
 207    /* User mode can only access useg/xuseg */
 208#if defined(TARGET_MIPS64)
 209    int user_mode = mmu_idx == MIPS_HFLAG_UM;
 210    int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
 211    int kernel_mode = !user_mode && !supervisor_mode;
 212    int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
 213    int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
 214    int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
 215#endif
 216    int ret = TLBRET_MATCH;
 217    /* effective address (modified for KVM T&E kernel segments) */
 218    target_ulong address = real_address;
 219
 220#define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
 221#define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
 222#define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
 223#define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
 224#define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)
 225
 226#define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
 227#define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)
 228
 229    if (mips_um_ksegs_enabled()) {
 230        /* KVM T&E adds guest kernel segments in useg */
 231        if (real_address >= KVM_KSEG0_BASE) {
 232            if (real_address < KVM_KSEG2_BASE) {
 233                /* kseg0 */
 234                address += KSEG0_BASE - KVM_KSEG0_BASE;
 235            } else if (real_address <= USEG_LIMIT) {
 236                /* kseg2/3 */
 237                address += KSEG2_BASE - KVM_KSEG2_BASE;
 238            }
 239        }
 240    }
 241
 242    if (address <= USEG_LIMIT) {
 243        /* useg */
 244        uint16_t segctl;
 245
 246        if (address >= 0x40000000UL) {
 247            segctl = env->CP0_SegCtl2;
 248        } else {
 249            segctl = env->CP0_SegCtl2 >> 16;
 250        }
 251        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 252                                          access_type, mmu_idx, segctl,
 253                                          0x3FFFFFFF);
 254#if defined(TARGET_MIPS64)
 255    } else if (address < 0x4000000000000000ULL) {
 256        /* xuseg */
 257        if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
 258            ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
 259        } else {
 260            ret = TLBRET_BADADDR;
 261        }
 262    } else if (address < 0x8000000000000000ULL) {
 263        /* xsseg */
 264        if ((supervisor_mode || kernel_mode) &&
 265            SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
 266            ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
 267        } else {
 268            ret = TLBRET_BADADDR;
 269        }
 270    } else if (address < 0xC000000000000000ULL) {
 271        /* xkphys */
 272        if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
 273            /* KX/SX/UX bit to check for each xkphys EVA access mode */
 274            static const uint8_t am_ksux[8] = {
 275                [CP0SC_AM_UK]    = (1u << CP0St_KX),
 276                [CP0SC_AM_MK]    = (1u << CP0St_KX),
 277                [CP0SC_AM_MSK]   = (1u << CP0St_SX),
 278                [CP0SC_AM_MUSK]  = (1u << CP0St_UX),
 279                [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
 280                [CP0SC_AM_USK]   = (1u << CP0St_SX),
 281                [6]              = (1u << CP0St_KX),
 282                [CP0SC_AM_UUSK]  = (1u << CP0St_UX),
 283            };
 284            unsigned int am = CP0SC_AM_UK;
 285            unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
 286
 287            if (xr & (1 << ((address >> 59) & 0x7))) {
 288                am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
 289            }
 290            /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
 291            if (env->CP0_Status & am_ksux[am]) {
 292                ret = get_seg_physical_address(env, physical, prot,
 293                                               real_address, rw, access_type,
 294                                               mmu_idx, am, false, env->PAMask,
 295                                               0);
 296            } else {
 297                ret = TLBRET_BADADDR;
 298            }
 299        } else {
 300            ret = TLBRET_BADADDR;
 301        }
 302    } else if (address < 0xFFFFFFFF80000000ULL) {
 303        /* xkseg */
 304        if (kernel_mode && KX &&
 305            address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
 306            ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
 307        } else {
 308            ret = TLBRET_BADADDR;
 309        }
 310#endif
 311    } else if (address < KSEG1_BASE) {
 312        /* kseg0 */
 313        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 314                                          access_type, mmu_idx,
 315                                          env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
 316    } else if (address < KSEG2_BASE) {
 317        /* kseg1 */
 318        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 319                                          access_type, mmu_idx,
 320                                          env->CP0_SegCtl1, 0x1FFFFFFF);
 321    } else if (address < KSEG3_BASE) {
 322        /* sseg (kseg2) */
 323        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 324                                          access_type, mmu_idx,
 325                                          env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
 326    } else {
 327        /* kseg3 */
 328        /* XXX: debug segment is not emulated */
 329        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
 330                                          access_type, mmu_idx,
 331                                          env->CP0_SegCtl0, 0x1FFFFFFF);
 332    }
 333    return ret;
 334}
 335
 336void cpu_mips_tlb_flush(CPUMIPSState *env)
 337{
 338    MIPSCPU *cpu = mips_env_get_cpu(env);
 339
 340    /* Flush qemu's TLB and discard all shadowed entries.  */
 341    tlb_flush(CPU(cpu));
 342    env->tlb->tlb_in_use = env->tlb->nb_tlb;
 343}
 344
 345/* Called for updates to CP0_Status.  */
 346void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
 347{
 348    int32_t tcstatus, *tcst;
 349    uint32_t v = cpu->CP0_Status;
 350    uint32_t cu, mx, asid, ksu;
 351    uint32_t mask = ((1 << CP0TCSt_TCU3)
 352                       | (1 << CP0TCSt_TCU2)
 353                       | (1 << CP0TCSt_TCU1)
 354                       | (1 << CP0TCSt_TCU0)
 355                       | (1 << CP0TCSt_TMX)
 356                       | (3 << CP0TCSt_TKSU)
 357                       | (0xff << CP0TCSt_TASID));
 358
 359    cu = (v >> CP0St_CU0) & 0xf;
 360    mx = (v >> CP0St_MX) & 0x1;
 361    ksu = (v >> CP0St_KSU) & 0x3;
 362    asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
 363
 364    tcstatus = cu << CP0TCSt_TCU0;
 365    tcstatus |= mx << CP0TCSt_TMX;
 366    tcstatus |= ksu << CP0TCSt_TKSU;
 367    tcstatus |= asid;
 368
 369    if (tc == cpu->current_tc) {
 370        tcst = &cpu->active_tc.CP0_TCStatus;
 371    } else {
 372        tcst = &cpu->tcs[tc].CP0_TCStatus;
 373    }
 374
 375    *tcst &= ~mask;
 376    *tcst |= tcstatus;
 377    compute_hflags(cpu);
 378}
 379
 380void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
 381{
 382    uint32_t mask = env->CP0_Status_rw_bitmask;
 383    target_ulong old = env->CP0_Status;
 384
 385    if (env->insn_flags & ISA_MIPS32R6) {
 386        bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
 387#if defined(TARGET_MIPS64)
 388        uint32_t ksux = (1 << CP0St_KX) & val;
 389        ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
 390        ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
 391        val = (val & ~(7 << CP0St_UX)) | ksux;
 392#endif
 393        if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
 394            mask &= ~(3 << CP0St_KSU);
 395        }
 396        mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
 397    }
 398
 399    env->CP0_Status = (old & ~mask) | (val & mask);
 400#if defined(TARGET_MIPS64)
 401    if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
 402        /* Access to at least one of the 64-bit segments has been disabled */
 403        tlb_flush(CPU(mips_env_get_cpu(env)));
 404    }
 405#endif
 406    if (env->CP0_Config3 & (1 << CP0C3_MT)) {
 407        sync_c0_status(env, env, env->current_tc);
 408    } else {
 409        compute_hflags(env);
 410    }
 411}
 412
 413void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
 414{
 415    uint32_t mask = 0x00C00300;
 416    uint32_t old = env->CP0_Cause;
 417    int i;
 418
 419    if (env->insn_flags & ISA_MIPS32R2) {
 420        mask |= 1 << CP0Ca_DC;
 421    }
 422    if (env->insn_flags & ISA_MIPS32R6) {
 423        mask &= ~((1 << CP0Ca_WP) & val);
 424    }
 425
 426    env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
 427
 428    if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
 429        if (env->CP0_Cause & (1 << CP0Ca_DC)) {
 430            cpu_mips_stop_count(env);
 431        } else {
 432            cpu_mips_start_count(env);
 433        }
 434    }
 435
 436    /* Set/reset software interrupts */
 437    for (i = 0 ; i < 2 ; i++) {
 438        if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
 439            cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
 440        }
 441    }
 442}
 443#endif
 444
 445static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
 446                                int rw, int tlb_error)
 447{
 448    CPUState *cs = CPU(mips_env_get_cpu(env));
 449    int exception = 0, error_code = 0;
 450
 451    if (rw == MMU_INST_FETCH) {
 452        error_code |= EXCP_INST_NOTAVAIL;
 453    }
 454
 455    switch (tlb_error) {
 456    default:
 457    case TLBRET_BADADDR:
 458        /* Reference to kernel address from user mode or supervisor mode */
 459        /* Reference to supervisor address from user mode */
 460        if (rw == MMU_DATA_STORE) {
 461            exception = EXCP_AdES;
 462        } else {
 463            exception = EXCP_AdEL;
 464        }
 465        break;
 466    case TLBRET_NOMATCH:
 467        /* No TLB match for a mapped address */
 468        if (rw == MMU_DATA_STORE) {
 469            exception = EXCP_TLBS;
 470        } else {
 471            exception = EXCP_TLBL;
 472        }
 473        error_code |= EXCP_TLB_NOMATCH;
 474        break;
 475    case TLBRET_INVALID:
 476        /* TLB match with no valid bit */
 477        if (rw == MMU_DATA_STORE) {
 478            exception = EXCP_TLBS;
 479        } else {
 480            exception = EXCP_TLBL;
 481        }
 482        break;
 483    case TLBRET_DIRTY:
 484        /* TLB match but 'D' bit is cleared */
 485        exception = EXCP_LTLBL;
 486        break;
 487    case TLBRET_XI:
 488        /* Execute-Inhibit Exception */
 489        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
 490            exception = EXCP_TLBXI;
 491        } else {
 492            exception = EXCP_TLBL;
 493        }
 494        break;
 495    case TLBRET_RI:
 496        /* Read-Inhibit Exception */
 497        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
 498            exception = EXCP_TLBRI;
 499        } else {
 500            exception = EXCP_TLBL;
 501        }
 502        break;
 503    }
 504    /* Raise exception */
 505    if (!(env->hflags & MIPS_HFLAG_DM)) {
 506        env->CP0_BadVAddr = address;
 507    }
 508    env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
 509                       ((address >> 9) & 0x007ffff0);
 510    env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
 511                       (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
 512                       (address & (TARGET_PAGE_MASK << 1));
 513#if defined(TARGET_MIPS64)
 514    env->CP0_EntryHi &= env->SEGMask;
 515    env->CP0_XContext =
 516        /* PTEBase */   (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) |
 517        /* R */         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |
 518        /* BadVPN2 */   (extract64(address, 13, env->SEGBITS - 13) << 4);
 519#endif
 520    cs->exception_index = exception;
 521    env->error_code = error_code;
 522}
 523
 524#if !defined(CONFIG_USER_ONLY)
 525hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 526{
 527    MIPSCPU *cpu = MIPS_CPU(cs);
 528    CPUMIPSState *env = &cpu->env;
 529    hwaddr phys_addr;
 530    int prot;
 531
 532    if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
 533                             cpu_mmu_index(env, false)) != 0) {
 534        return -1;
 535    }
 536    return phys_addr;
 537}
 538#endif
 539
 540#if !defined(CONFIG_USER_ONLY)
 541#if !defined(TARGET_MIPS64)
 542
 543/*
 544 * Perform hardware page table walk
 545 *
 546 * Memory accesses are performed using the KERNEL privilege level.
 547 * Synchronous exceptions detected on memory accesses cause a silent exit
 548 * from page table walking, resulting in a TLB or XTLB Refill exception.
 549 *
 550 * Implementations are not required to support page table walk memory
 551 * accesses from mapped memory regions. When an unsupported access is
 552 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
 553 * exception.
 554 *
 555 * Note that if an exception is caused by AddressTranslation or LoadMemory
 556 * functions, the exception is not taken, a silent exit is taken,
 557 * resulting in a TLB or XTLB Refill exception.
 558 */
 559
 560static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
 561        uint64_t *pte)
 562{
 563    if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
 564        return false;
 565    }
 566    if (entry_size == 64) {
 567        *pte = cpu_ldq_code(env, vaddr);
 568    } else {
 569        *pte = cpu_ldl_code(env, vaddr);
 570    }
 571    return true;
 572}
 573
 574static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
 575        int entry_size, int ptei)
 576{
 577    uint64_t result = entry;
 578    uint64_t rixi;
 579    if (ptei > entry_size) {
 580        ptei -= 32;
 581    }
 582    result >>= (ptei - 2);
 583    rixi = result & 3;
 584    result >>= 2;
 585    result |= rixi << CP0EnLo_XI;
 586    return result;
 587}
 588
 589static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
 590        int directory_index, bool *huge_page, bool *hgpg_directory_hit,
 591        uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
 592{
 593    int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
 594    int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
 595    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
 596    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
 597    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
 598    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
 599    int directory_shift = (ptew > 1) ? -1 :
 600            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
 601    int leaf_shift = (ptew > 1) ? -1 :
 602            (ptew == 1) ? native_shift + 1 : native_shift;
 603    uint32_t direntry_size = 1 << (directory_shift + 3);
 604    uint32_t leafentry_size = 1 << (leaf_shift + 3);
 605    uint64_t entry;
 606    uint64_t paddr;
 607    int prot;
 608    uint64_t lsb = 0;
 609    uint64_t w = 0;
 610
 611    if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
 612                             ACCESS_INT, cpu_mmu_index(env, false)) !=
 613                             TLBRET_MATCH) {
 614        /* wrong base address */
 615        return 0;
 616    }
 617    if (!get_pte(env, *vaddr, direntry_size, &entry)) {
 618        return 0;
 619    }
 620
 621    if ((entry & (1 << psn)) && hugepg) {
 622        *huge_page = true;
 623        *hgpg_directory_hit = true;
 624        entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
 625        w = directory_index - 1;
 626        if (directory_index & 0x1) {
 627            /* Generate adjacent page from same PTE for odd TLB page */
 628            lsb = (1 << w) >> 6;
 629            *pw_entrylo0 = entry & ~lsb; /* even page */
 630            *pw_entrylo1 = entry | lsb; /* odd page */
 631        } else if (dph) {
 632            int oddpagebit = 1 << leaf_shift;
 633            uint64_t vaddr2 = *vaddr ^ oddpagebit;
 634            if (*vaddr & oddpagebit) {
 635                *pw_entrylo1 = entry;
 636            } else {
 637                *pw_entrylo0 = entry;
 638            }
 639            if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
 640                                     ACCESS_INT, cpu_mmu_index(env, false)) !=
 641                                     TLBRET_MATCH) {
 642                return 0;
 643            }
 644            if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
 645                return 0;
 646            }
 647            entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
 648            if (*vaddr & oddpagebit) {
 649                *pw_entrylo0 = entry;
 650            } else {
 651                *pw_entrylo1 = entry;
 652            }
 653        } else {
 654            return 0;
 655        }
 656        return 1;
 657    } else {
 658        *vaddr = entry;
 659        return 2;
 660    }
 661}
 662
 663static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
 664        int mmu_idx)
 665{
 666    int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
 667    int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
 668    int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
 669    int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
 670    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
 671
 672    /* Initial values */
 673    bool huge_page = false;
 674    bool hgpg_bdhit = false;
 675    bool hgpg_gdhit = false;
 676    bool hgpg_udhit = false;
 677    bool hgpg_mdhit = false;
 678
 679    int32_t pw_pagemask = 0;
 680    target_ulong pw_entryhi = 0;
 681    uint64_t pw_entrylo0 = 0;
 682    uint64_t pw_entrylo1 = 0;
 683
 684    /* Native pointer size */
 685    /*For the 32-bit architectures, this bit is fixed to 0.*/
 686    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
 687
 688    /* Indices from PWField */
 689    int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
 690    int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
 691    int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
 692    int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
 693    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
 694
 695    /* Indices computed from faulting address */
 696    int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
 697    int uindex = (address >> pf_udw) & ((1 << udw) - 1);
 698    int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
 699    int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
 700
 701    /* Other HTW configs */
 702    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
 703
 704    /* HTW Shift values (depend on entry size) */
 705    int directory_shift = (ptew > 1) ? -1 :
 706            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
 707    int leaf_shift = (ptew > 1) ? -1 :
 708            (ptew == 1) ? native_shift + 1 : native_shift;
 709
 710    /* Offsets into tables */
 711    int goffset = gindex << directory_shift;
 712    int uoffset = uindex << directory_shift;
 713    int moffset = mindex << directory_shift;
 714    int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
 715    int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
 716
 717    uint32_t leafentry_size = 1 << (leaf_shift + 3);
 718
 719    /* Starting address - Page Table Base */
 720    uint64_t vaddr = env->CP0_PWBase;
 721
 722    uint64_t dir_entry;
 723    uint64_t paddr;
 724    int prot;
 725    int m;
 726
 727    if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
 728        /* walker is unimplemented */
 729        return false;
 730    }
 731    if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
 732        /* walker is disabled */
 733        return false;
 734    }
 735    if (!(gdw > 0 || udw > 0 || mdw > 0)) {
 736        /* no structure to walk */
 737        return false;
 738    }
 739    if ((directory_shift == -1) || (leaf_shift == -1)) {
 740        return false;
 741    }
 742
 743    /* Global Directory */
 744    if (gdw > 0) {
 745        vaddr |= goffset;
 746        switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
 747                               &pw_entrylo0, &pw_entrylo1))
 748        {
 749        case 0:
 750            return false;
 751        case 1:
 752            goto refill;
 753        case 2:
 754        default:
 755            break;
 756        }
 757    }
 758
 759    /* Upper directory */
 760    if (udw > 0) {
 761        vaddr |= uoffset;
 762        switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
 763                               &pw_entrylo0, &pw_entrylo1))
 764        {
 765        case 0:
 766            return false;
 767        case 1:
 768            goto refill;
 769        case 2:
 770        default:
 771            break;
 772        }
 773    }
 774
 775    /* Middle directory */
 776    if (mdw > 0) {
 777        vaddr |= moffset;
 778        switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
 779                               &pw_entrylo0, &pw_entrylo1))
 780        {
 781        case 0:
 782            return false;
 783        case 1:
 784            goto refill;
 785        case 2:
 786        default:
 787            break;
 788        }
 789    }
 790
 791    /* Leaf Level Page Table - First half of PTE pair */
 792    vaddr |= ptoffset0;
 793    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
 794                             ACCESS_INT, cpu_mmu_index(env, false)) !=
 795                             TLBRET_MATCH) {
 796        return false;
 797    }
 798    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
 799        return false;
 800    }
 801    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
 802    pw_entrylo0 = dir_entry;
 803
 804    /* Leaf Level Page Table - Second half of PTE pair */
 805    vaddr |= ptoffset1;
 806    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
 807                             ACCESS_INT, cpu_mmu_index(env, false)) !=
 808                             TLBRET_MATCH) {
 809        return false;
 810    }
 811    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
 812        return false;
 813    }
 814    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
 815    pw_entrylo1 = dir_entry;
 816
 817refill:
 818
 819    m = (1 << pf_ptw) - 1;
 820
 821    if (huge_page) {
 822        switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
 823                hgpg_mdhit)
 824        {
 825        case 4:
 826            m = (1 << pf_gdw) - 1;
 827            if (pf_gdw & 1) {
 828                m >>= 1;
 829            }
 830            break;
 831        case 2:
 832            m = (1 << pf_udw) - 1;
 833            if (pf_udw & 1) {
 834                m >>= 1;
 835            }
 836            break;
 837        case 1:
 838            m = (1 << pf_mdw) - 1;
 839            if (pf_mdw & 1) {
 840                m >>= 1;
 841            }
 842            break;
 843        }
 844    }
 845    pw_pagemask = m >> 12;
 846    update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
 847    pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
 848    {
 849        target_ulong tmp_entryhi = env->CP0_EntryHi;
 850        int32_t tmp_pagemask = env->CP0_PageMask;
 851        uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
 852        uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
 853
 854        env->CP0_EntryHi = pw_entryhi;
 855        env->CP0_PageMask = pw_pagemask;
 856        env->CP0_EntryLo0 = pw_entrylo0;
 857        env->CP0_EntryLo1 = pw_entrylo1;
 858
 859        /*
 860         * The hardware page walker inserts a page into the TLB in a manner
 861         * identical to a TLBWR instruction as executed by the software refill
 862         * handler.
 863         */
 864        r4k_helper_tlbwr(env);
 865
 866        env->CP0_EntryHi = tmp_entryhi;
 867        env->CP0_PageMask = tmp_pagemask;
 868        env->CP0_EntryLo0 = tmp_entrylo0;
 869        env->CP0_EntryLo1 = tmp_entrylo1;
 870    }
 871    return true;
 872}
 873#endif
 874#endif
 875
 876int mips_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
 877                              int mmu_idx)
 878{
 879    MIPSCPU *cpu = MIPS_CPU(cs);
 880    CPUMIPSState *env = &cpu->env;
 881#if !defined(CONFIG_USER_ONLY)
 882    hwaddr physical;
 883    int prot;
 884    int access_type;
 885#endif
 886    int ret = 0;
 887
 888#if 0
 889    log_cpu_state(cs, 0);
 890#endif
 891    qemu_log_mask(CPU_LOG_MMU,
 892              "%s pc " TARGET_FMT_lx " ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
 893              __func__, env->active_tc.PC, address, rw, mmu_idx);
 894
 895    /* data access */
 896#if !defined(CONFIG_USER_ONLY)
 897    /* XXX: put correct access by using cpu_restore_state() correctly */
 898    access_type = ACCESS_INT;
 899    ret = get_physical_address(env, &physical, &prot,
 900                               address, rw, access_type, mmu_idx);
 901    switch (ret) {
 902    case TLBRET_MATCH:
 903        qemu_log_mask(CPU_LOG_MMU,
 904                      "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
 905                      " prot %d\n", __func__, address, physical, prot);
 906        break;
 907    default:
 908        qemu_log_mask(CPU_LOG_MMU,
 909                      "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
 910                      ret);
 911        break;
 912    }
 913    if (ret == TLBRET_MATCH) {
 914        tlb_set_page(cs, address & TARGET_PAGE_MASK,
 915                     physical & TARGET_PAGE_MASK, prot | PAGE_EXEC,
 916                     mmu_idx, TARGET_PAGE_SIZE);
 917        ret = 0;
 918    } else if (ret < 0)
 919#endif
 920    {
 921#if !defined(CONFIG_USER_ONLY)
 922#if !defined(TARGET_MIPS64)
 923        if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
 924            /*
 925             * Memory reads during hardware page table walking are performed
 926             * as if they were kernel-mode load instructions.
 927             */
 928            int mode = (env->hflags & MIPS_HFLAG_KSU);
 929            bool ret_walker;
 930            env->hflags &= ~MIPS_HFLAG_KSU;
 931            ret_walker = page_table_walk_refill(env, address, rw, mmu_idx);
 932            env->hflags |= mode;
 933            if (ret_walker) {
 934                ret = get_physical_address(env, &physical, &prot,
 935                                           address, rw, access_type, mmu_idx);
 936                if (ret == TLBRET_MATCH) {
 937                    tlb_set_page(cs, address & TARGET_PAGE_MASK,
 938                            physical & TARGET_PAGE_MASK, prot | PAGE_EXEC,
 939                            mmu_idx, TARGET_PAGE_SIZE);
 940                    ret = 0;
 941                    return ret;
 942                }
 943            }
 944        }
 945#endif
 946#endif
 947        raise_mmu_exception(env, address, rw, ret);
 948        ret = 1;
 949    }
 950
 951    return ret;
 952}
 953
 954#if !defined(CONFIG_USER_ONLY)
 955hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, int rw)
 956{
 957    hwaddr physical;
 958    int prot;
 959    int access_type;
 960    int ret = 0;
 961
 962    /* data access */
 963    access_type = ACCESS_INT;
 964    ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
 965                               cpu_mmu_index(env, false));
 966    if (ret != TLBRET_MATCH) {
 967        raise_mmu_exception(env, address, rw, ret);
 968        return -1LL;
 969    } else {
 970        return physical;
 971    }
 972}
 973
 974static const char * const excp_names[EXCP_LAST + 1] = {
 975    [EXCP_RESET] = "reset",
 976    [EXCP_SRESET] = "soft reset",
 977    [EXCP_DSS] = "debug single step",
 978    [EXCP_DINT] = "debug interrupt",
 979    [EXCP_NMI] = "non-maskable interrupt",
 980    [EXCP_MCHECK] = "machine check",
 981    [EXCP_EXT_INTERRUPT] = "interrupt",
 982    [EXCP_DFWATCH] = "deferred watchpoint",
 983    [EXCP_DIB] = "debug instruction breakpoint",
 984    [EXCP_IWATCH] = "instruction fetch watchpoint",
 985    [EXCP_AdEL] = "address error load",
 986    [EXCP_AdES] = "address error store",
 987    [EXCP_TLBF] = "TLB refill",
 988    [EXCP_IBE] = "instruction bus error",
 989    [EXCP_DBp] = "debug breakpoint",
 990    [EXCP_SYSCALL] = "syscall",
 991    [EXCP_BREAK] = "break",
 992    [EXCP_CpU] = "coprocessor unusable",
 993    [EXCP_RI] = "reserved instruction",
 994    [EXCP_OVERFLOW] = "arithmetic overflow",
 995    [EXCP_TRAP] = "trap",
 996    [EXCP_FPE] = "floating point",
 997    [EXCP_DDBS] = "debug data break store",
 998    [EXCP_DWATCH] = "data watchpoint",
 999    [EXCP_LTLBL] = "TLB modify",
1000    [EXCP_TLBL] = "TLB load",
1001    [EXCP_TLBS] = "TLB store",
1002    [EXCP_DBE] = "data bus error",
1003    [EXCP_DDBL] = "debug data break load",
1004    [EXCP_THREAD] = "thread",
1005    [EXCP_MDMX] = "MDMX",
1006    [EXCP_C2E] = "precise coprocessor 2",
1007    [EXCP_CACHE] = "cache error",
1008    [EXCP_TLBXI] = "TLB execute-inhibit",
1009    [EXCP_TLBRI] = "TLB read-inhibit",
1010    [EXCP_MSADIS] = "MSA disabled",
1011    [EXCP_MSAFPE] = "MSA floating point",
1012};
1013#endif
1014
1015target_ulong exception_resume_pc (CPUMIPSState *env)
1016{
1017    target_ulong bad_pc;
1018    target_ulong isa_mode;
1019
1020    isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
1021    bad_pc = env->active_tc.PC | isa_mode;
1022    if (env->hflags & MIPS_HFLAG_BMASK) {
1023        /* If the exception was raised from a delay slot, come back to
1024           the jump.  */
1025        bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1026    }
1027
1028    return bad_pc;
1029}
1030
1031#if !defined(CONFIG_USER_ONLY)
1032static void set_hflags_for_handler (CPUMIPSState *env)
1033{
1034    /* Exception handlers are entered in 32-bit mode.  */
1035    env->hflags &= ~(MIPS_HFLAG_M16);
1036    /* ...except that microMIPS lets you choose.  */
1037    if (env->insn_flags & ASE_MICROMIPS) {
1038        env->hflags |= (!!(env->CP0_Config3
1039                           & (1 << CP0C3_ISA_ON_EXC))
1040                        << MIPS_HFLAG_M16_SHIFT);
1041    }
1042}
1043
1044static inline void set_badinstr_registers(CPUMIPSState *env)
1045{
1046    if (env->insn_flags & ISA_NANOMIPS32) {
1047        if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1048            uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1049            if ((instr & 0x10000000) == 0) {
1050                instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1051            }
1052            env->CP0_BadInstr = instr;
1053
1054            if ((instr & 0xFC000000) == 0x60000000) {
1055                instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1056                env->CP0_BadInstrX = instr;
1057            }
1058        }
1059        return;
1060    }
1061
1062    if (env->hflags & MIPS_HFLAG_M16) {
1063        /* TODO: add BadInstr support for microMIPS */
1064        return;
1065    }
1066    if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1067        env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1068    }
1069    if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1070        (env->hflags & MIPS_HFLAG_BMASK)) {
1071        env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1072    }
1073}
1074#endif
1075
1076void mips_cpu_do_interrupt(CPUState *cs)
1077{
1078#if !defined(CONFIG_USER_ONLY)
1079    MIPSCPU *cpu = MIPS_CPU(cs);
1080    CPUMIPSState *env = &cpu->env;
1081    bool update_badinstr = 0;
1082    target_ulong offset;
1083    int cause = -1;
1084    const char *name;
1085
1086    if (qemu_loglevel_mask(CPU_LOG_INT)
1087        && cs->exception_index != EXCP_EXT_INTERRUPT) {
1088        if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
1089            name = "unknown";
1090        } else {
1091            name = excp_names[cs->exception_index];
1092        }
1093
1094        qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1095                 " %s exception\n",
1096                 __func__, env->active_tc.PC, env->CP0_EPC, name);
1097    }
1098    if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1099        (env->hflags & MIPS_HFLAG_DM)) {
1100        cs->exception_index = EXCP_DINT;
1101    }
1102    offset = 0x180;
1103    switch (cs->exception_index) {
1104    case EXCP_DSS:
1105        env->CP0_Debug |= 1 << CP0DB_DSS;
1106        /* Debug single step cannot be raised inside a delay slot and
1107           resume will always occur on the next instruction
1108           (but we assume the pc has always been updated during
1109           code translation). */
1110        env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1111        goto enter_debug_mode;
1112    case EXCP_DINT:
1113        env->CP0_Debug |= 1 << CP0DB_DINT;
1114        goto set_DEPC;
1115    case EXCP_DIB:
1116        env->CP0_Debug |= 1 << CP0DB_DIB;
1117        goto set_DEPC;
1118    case EXCP_DBp:
1119        env->CP0_Debug |= 1 << CP0DB_DBp;
1120        /* Setup DExcCode - SDBBP instruction */
1121        env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | 9 << CP0DB_DEC;
1122        goto set_DEPC;
1123    case EXCP_DDBS:
1124        env->CP0_Debug |= 1 << CP0DB_DDBS;
1125        goto set_DEPC;
1126    case EXCP_DDBL:
1127        env->CP0_Debug |= 1 << CP0DB_DDBL;
1128    set_DEPC:
1129        env->CP0_DEPC = exception_resume_pc(env);
1130        env->hflags &= ~MIPS_HFLAG_BMASK;
1131 enter_debug_mode:
1132        if (env->insn_flags & ISA_MIPS3) {
1133            env->hflags |= MIPS_HFLAG_64;
1134            if (!(env->insn_flags & ISA_MIPS64R6) ||
1135                env->CP0_Status & (1 << CP0St_KX)) {
1136                env->hflags &= ~MIPS_HFLAG_AWRAP;
1137            }
1138        }
1139        env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1140        env->hflags &= ~(MIPS_HFLAG_KSU);
1141        /* EJTAG probe trap enable is not implemented... */
1142        if (!(env->CP0_Status & (1 << CP0St_EXL)))
1143            env->CP0_Cause &= ~(1U << CP0Ca_BD);
1144        env->active_tc.PC = env->exception_base + 0x480;
1145        set_hflags_for_handler(env);
1146        break;
1147    case EXCP_RESET:
1148        cpu_reset(CPU(cpu));
1149        break;
1150    case EXCP_SRESET:
1151        env->CP0_Status |= (1 << CP0St_SR);
1152        memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1153        goto set_error_EPC;
1154    case EXCP_NMI:
1155        env->CP0_Status |= (1 << CP0St_NMI);
1156 set_error_EPC:
1157        env->CP0_ErrorEPC = exception_resume_pc(env);
1158        env->hflags &= ~MIPS_HFLAG_BMASK;
1159        env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1160        if (env->insn_flags & ISA_MIPS3) {
1161            env->hflags |= MIPS_HFLAG_64;
1162            if (!(env->insn_flags & ISA_MIPS64R6) ||
1163                env->CP0_Status & (1 << CP0St_KX)) {
1164                env->hflags &= ~MIPS_HFLAG_AWRAP;
1165            }
1166        }
1167        env->hflags |= MIPS_HFLAG_CP0;
1168        env->hflags &= ~(MIPS_HFLAG_KSU);
1169        if (!(env->CP0_Status & (1 << CP0St_EXL)))
1170            env->CP0_Cause &= ~(1U << CP0Ca_BD);
1171        env->active_tc.PC = env->exception_base;
1172        set_hflags_for_handler(env);
1173        break;
1174    case EXCP_EXT_INTERRUPT:
1175        cause = 0;
1176        if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1177            uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1178
1179            if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1180                offset = 0x200;
1181            } else {
1182                uint32_t vector = 0;
1183                uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1184
1185                if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1186                    /* For VEIC mode, the external interrupt controller feeds
1187                     * the vector through the CP0Cause IP lines.  */
1188                    vector = pending;
1189                } else {
1190                    /* Vectored Interrupts
1191                     * Mask with Status.IM7-IM0 to get enabled interrupts. */
1192                    pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1193                    /* Find the highest-priority interrupt. */
1194                    while (pending >>= 1) {
1195                        vector++;
1196                    }
1197                }
1198                offset = 0x200 + (vector * (spacing << 5));
1199            }
1200        }
1201        goto set_EPC;
1202    case EXCP_LTLBL:
1203        cause = 1;
1204        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1205        goto set_EPC;
1206    case EXCP_TLBL:
1207        cause = 2;
1208        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1209        if ((env->error_code & EXCP_TLB_NOMATCH) &&
1210            !(env->CP0_Status & (1 << CP0St_EXL))) {
1211#if defined(TARGET_MIPS64)
1212            int R = env->CP0_BadVAddr >> 62;
1213            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1214            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1215
1216            if ((R != 0 || UX) && (R != 3 || KX) &&
1217                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1218                offset = 0x080;
1219            } else {
1220#endif
1221                offset = 0x000;
1222#if defined(TARGET_MIPS64)
1223            }
1224#endif
1225        }
1226        goto set_EPC;
1227    case EXCP_TLBS:
1228        cause = 3;
1229        update_badinstr = 1;
1230        if ((env->error_code & EXCP_TLB_NOMATCH) &&
1231            !(env->CP0_Status & (1 << CP0St_EXL))) {
1232#if defined(TARGET_MIPS64)
1233            int R = env->CP0_BadVAddr >> 62;
1234            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1235            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1236
1237            if ((R != 0 || UX) && (R != 3 || KX) &&
1238                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1239                offset = 0x080;
1240            } else {
1241#endif
1242                offset = 0x000;
1243#if defined(TARGET_MIPS64)
1244            }
1245#endif
1246        }
1247        goto set_EPC;
1248    case EXCP_AdEL:
1249        cause = 4;
1250        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1251        goto set_EPC;
1252    case EXCP_AdES:
1253        cause = 5;
1254        update_badinstr = 1;
1255        goto set_EPC;
1256    case EXCP_IBE:
1257        cause = 6;
1258        goto set_EPC;
1259    case EXCP_DBE:
1260        cause = 7;
1261        goto set_EPC;
1262    case EXCP_SYSCALL:
1263        cause = 8;
1264        update_badinstr = 1;
1265        goto set_EPC;
1266    case EXCP_BREAK:
1267        cause = 9;
1268        update_badinstr = 1;
1269        goto set_EPC;
1270    case EXCP_RI:
1271        cause = 10;
1272        update_badinstr = 1;
1273        goto set_EPC;
1274    case EXCP_CpU:
1275        cause = 11;
1276        update_badinstr = 1;
1277        env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1278                         (env->error_code << CP0Ca_CE);
1279        goto set_EPC;
1280    case EXCP_OVERFLOW:
1281        cause = 12;
1282        update_badinstr = 1;
1283        goto set_EPC;
1284    case EXCP_TRAP:
1285        cause = 13;
1286        update_badinstr = 1;
1287        goto set_EPC;
1288    case EXCP_MSAFPE:
1289        cause = 14;
1290        update_badinstr = 1;
1291        goto set_EPC;
1292    case EXCP_FPE:
1293        cause = 15;
1294        update_badinstr = 1;
1295        goto set_EPC;
1296    case EXCP_C2E:
1297        cause = 18;
1298        goto set_EPC;
1299    case EXCP_TLBRI:
1300        cause = 19;
1301        update_badinstr = 1;
1302        goto set_EPC;
1303    case EXCP_TLBXI:
1304        cause = 20;
1305        goto set_EPC;
1306    case EXCP_MSADIS:
1307        cause = 21;
1308        update_badinstr = 1;
1309        goto set_EPC;
1310    case EXCP_MDMX:
1311        cause = 22;
1312        goto set_EPC;
1313    case EXCP_DWATCH:
1314        cause = 23;
1315        /* XXX: TODO: manage deferred watch exceptions */
1316        goto set_EPC;
1317    case EXCP_MCHECK:
1318        cause = 24;
1319        goto set_EPC;
1320    case EXCP_THREAD:
1321        cause = 25;
1322        goto set_EPC;
1323    case EXCP_DSPDIS:
1324        cause = 26;
1325        goto set_EPC;
1326    case EXCP_CACHE:
1327        cause = 30;
1328        offset = 0x100;
1329 set_EPC:
1330        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1331            env->CP0_EPC = exception_resume_pc(env);
1332            if (update_badinstr) {
1333                set_badinstr_registers(env);
1334            }
1335            if (env->hflags & MIPS_HFLAG_BMASK) {
1336                env->CP0_Cause |= (1U << CP0Ca_BD);
1337            } else {
1338                env->CP0_Cause &= ~(1U << CP0Ca_BD);
1339            }
1340            env->CP0_Status |= (1 << CP0St_EXL);
1341            if (env->insn_flags & ISA_MIPS3) {
1342                env->hflags |= MIPS_HFLAG_64;
1343                if (!(env->insn_flags & ISA_MIPS64R6) ||
1344                    env->CP0_Status & (1 << CP0St_KX)) {
1345                    env->hflags &= ~MIPS_HFLAG_AWRAP;
1346                }
1347            }
1348            env->hflags |= MIPS_HFLAG_CP0;
1349            env->hflags &= ~(MIPS_HFLAG_KSU);
1350        }
1351        env->hflags &= ~MIPS_HFLAG_BMASK;
1352        if (env->CP0_Status & (1 << CP0St_BEV)) {
1353            env->active_tc.PC = env->exception_base + 0x200;
1354        } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1355                                    env->CP0_Config5 & (1 << CP0C5_CV))) {
1356            /* Force KSeg1 for cache errors */
1357            env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1358        } else {
1359            env->active_tc.PC = env->CP0_EBase & ~0xfff;
1360        }
1361
1362        env->active_tc.PC += offset;
1363        set_hflags_for_handler(env);
1364        env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC);
1365        break;
1366    default:
1367        abort();
1368    }
1369    if (qemu_loglevel_mask(CPU_LOG_INT)
1370        && cs->exception_index != EXCP_EXT_INTERRUPT) {
1371        qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1372                 "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1373                 __func__, env->active_tc.PC, env->CP0_EPC, cause,
1374                 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1375                 env->CP0_DEPC);
1376    }
1377#endif
1378    cs->exception_index = EXCP_NONE;
1379}
1380
1381bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1382{
1383    if (interrupt_request & CPU_INTERRUPT_HARD) {
1384        MIPSCPU *cpu = MIPS_CPU(cs);
1385        CPUMIPSState *env = &cpu->env;
1386
1387        if (cpu_mips_hw_interrupts_enabled(env) &&
1388            cpu_mips_hw_interrupts_pending(env)) {
1389            /* Raise it */
1390            cs->exception_index = EXCP_EXT_INTERRUPT;
1391            env->error_code = 0;
1392            mips_cpu_do_interrupt(cs);
1393            return true;
1394        }
1395    }
1396    return false;
1397}
1398
1399#if !defined(CONFIG_USER_ONLY)
1400void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra)
1401{
1402    MIPSCPU *cpu = mips_env_get_cpu(env);
1403    CPUState *cs;
1404    r4k_tlb_t *tlb;
1405    target_ulong addr;
1406    target_ulong end;
1407    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1408    target_ulong mask;
1409
1410    tlb = &env->tlb->mmu.r4k.tlb[idx];
1411    /* The qemu TLB is flushed when the ASID changes, so no need to
1412       flush these entries again.  */
1413    if (tlb->G == 0 && tlb->ASID != ASID) {
1414        return;
1415    }
1416
1417    if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1418        /* For tlbwr, we can shadow the discarded entry into
1419           a new (fake) TLB entry, as long as the guest can not
1420           tell that it's there.  */
1421        env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1422        env->tlb->tlb_in_use++;
1423        return;
1424    }
1425
1426    /* 1k pages are not supported. */
1427    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1428    if (tlb->V0) {
1429        cs = CPU(cpu);
1430        addr = tlb->VPN & ~mask;
1431#if defined(TARGET_MIPS64)
1432        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1433            addr |= 0x3FFFFF0000000000ULL;
1434        }
1435#endif
1436        end = addr | (mask >> 1);
1437        while (addr < end) {
1438            tlb_flush_page(cs, addr);
1439            addr += TARGET_PAGE_SIZE;
1440        }
1441    }
1442    if (tlb->V1) {
1443        cs = CPU(cpu);
1444        addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1445#if defined(TARGET_MIPS64)
1446        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1447            addr |= 0x3FFFFF0000000000ULL;
1448        }
1449#endif
1450        end = addr | mask;
1451        while (addr - 1 < end) {
1452            tlb_flush_page(cs, addr);
1453            addr += TARGET_PAGE_SIZE;
1454        }
1455    }
1456}
1457#endif
1458
1459void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
1460                                          uint32_t exception,
1461                                          int error_code,
1462                                          uintptr_t pc)
1463{
1464    CPUState *cs = CPU(mips_env_get_cpu(env));
1465
1466    if (exception < EXCP_SC) {
1467        qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
1468                      __func__, exception, error_code);
1469    }
1470    cs->exception_index = exception;
1471    env->error_code = error_code;
1472
1473    cpu_loop_exit_restore(cs, pc);
1474}
1475