qemu/target/s390x/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU S390x KVM implementation
   3 *
   4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
   5 * Copyright IBM Corp. 2012
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * Contributions after 2012-10-29 are licensed under the terms of the
  18 * GNU GPL, version 2 or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU (Lesser) General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include <sys/ioctl.h>
  26
  27#include <linux/kvm.h>
  28#include <asm/ptrace.h>
  29
  30#include "qemu-common.h"
  31#include "cpu.h"
  32#include "internal.h"
  33#include "kvm_s390x.h"
  34#include "qapi/error.h"
  35#include "qemu/error-report.h"
  36#include "qemu/timer.h"
  37#include "qemu/units.h"
  38#include "qemu/mmap-alloc.h"
  39#include "qemu/log.h"
  40#include "sysemu/sysemu.h"
  41#include "sysemu/hw_accel.h"
  42#include "hw/hw.h"
  43#include "sysemu/device_tree.h"
  44#include "exec/gdbstub.h"
  45#include "trace.h"
  46#include "hw/s390x/s390-pci-inst.h"
  47#include "hw/s390x/s390-pci-bus.h"
  48#include "hw/s390x/ipl.h"
  49#include "hw/s390x/ebcdic.h"
  50#include "exec/memattrs.h"
  51#include "hw/s390x/s390-virtio-ccw.h"
  52#include "hw/s390x/s390-virtio-hcall.h"
  53
  54#ifndef DEBUG_KVM
  55#define DEBUG_KVM  0
  56#endif
  57
  58#define DPRINTF(fmt, ...) do {                \
  59    if (DEBUG_KVM) {                          \
  60        fprintf(stderr, fmt, ## __VA_ARGS__); \
  61    }                                         \
  62} while (0)
  63
  64#define kvm_vm_check_mem_attr(s, attr) \
  65    kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
  66
  67#define IPA0_DIAG                       0x8300
  68#define IPA0_SIGP                       0xae00
  69#define IPA0_B2                         0xb200
  70#define IPA0_B9                         0xb900
  71#define IPA0_EB                         0xeb00
  72#define IPA0_E3                         0xe300
  73
  74#define PRIV_B2_SCLP_CALL               0x20
  75#define PRIV_B2_CSCH                    0x30
  76#define PRIV_B2_HSCH                    0x31
  77#define PRIV_B2_MSCH                    0x32
  78#define PRIV_B2_SSCH                    0x33
  79#define PRIV_B2_STSCH                   0x34
  80#define PRIV_B2_TSCH                    0x35
  81#define PRIV_B2_TPI                     0x36
  82#define PRIV_B2_SAL                     0x37
  83#define PRIV_B2_RSCH                    0x38
  84#define PRIV_B2_STCRW                   0x39
  85#define PRIV_B2_STCPS                   0x3a
  86#define PRIV_B2_RCHP                    0x3b
  87#define PRIV_B2_SCHM                    0x3c
  88#define PRIV_B2_CHSC                    0x5f
  89#define PRIV_B2_SIGA                    0x74
  90#define PRIV_B2_XSCH                    0x76
  91
  92#define PRIV_EB_SQBS                    0x8a
  93#define PRIV_EB_PCISTB                  0xd0
  94#define PRIV_EB_SIC                     0xd1
  95
  96#define PRIV_B9_EQBS                    0x9c
  97#define PRIV_B9_CLP                     0xa0
  98#define PRIV_B9_PCISTG                  0xd0
  99#define PRIV_B9_PCILG                   0xd2
 100#define PRIV_B9_RPCIT                   0xd3
 101
 102#define PRIV_E3_MPCIFC                  0xd0
 103#define PRIV_E3_STPCIFC                 0xd4
 104
 105#define DIAG_TIMEREVENT                 0x288
 106#define DIAG_IPL                        0x308
 107#define DIAG_KVM_HYPERCALL              0x500
 108#define DIAG_KVM_BREAKPOINT             0x501
 109
 110#define ICPT_INSTRUCTION                0x04
 111#define ICPT_PROGRAM                    0x08
 112#define ICPT_EXT_INT                    0x14
 113#define ICPT_WAITPSW                    0x1c
 114#define ICPT_SOFT_INTERCEPT             0x24
 115#define ICPT_CPU_STOP                   0x28
 116#define ICPT_OPEREXC                    0x2c
 117#define ICPT_IO                         0x40
 118
 119#define NR_LOCAL_IRQS 32
 120/*
 121 * Needs to be big enough to contain max_cpus emergency signals
 122 * and in addition NR_LOCAL_IRQS interrupts
 123 */
 124#define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
 125                           (max_cpus + NR_LOCAL_IRQS))
 126
 127static CPUWatchpoint hw_watchpoint;
 128/*
 129 * We don't use a list because this structure is also used to transmit the
 130 * hardware breakpoints to the kernel.
 131 */
 132static struct kvm_hw_breakpoint *hw_breakpoints;
 133static int nb_hw_breakpoints;
 134
 135const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 136    KVM_CAP_LAST_INFO
 137};
 138
 139static int cap_sync_regs;
 140static int cap_async_pf;
 141static int cap_mem_op;
 142static int cap_s390_irq;
 143static int cap_ri;
 144static int cap_gs;
 145static int cap_hpage_1m;
 146
 147static int active_cmma;
 148
 149static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
 150
 151static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
 152{
 153    struct kvm_device_attr attr = {
 154        .group = KVM_S390_VM_MEM_CTRL,
 155        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 156        .addr = (uint64_t) memory_limit,
 157    };
 158
 159    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 160}
 161
 162int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
 163{
 164    int rc;
 165
 166    struct kvm_device_attr attr = {
 167        .group = KVM_S390_VM_MEM_CTRL,
 168        .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
 169        .addr = (uint64_t) &new_limit,
 170    };
 171
 172    if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
 173        return 0;
 174    }
 175
 176    rc = kvm_s390_query_mem_limit(hw_limit);
 177    if (rc) {
 178        return rc;
 179    } else if (*hw_limit < new_limit) {
 180        return -E2BIG;
 181    }
 182
 183    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 184}
 185
 186int kvm_s390_cmma_active(void)
 187{
 188    return active_cmma;
 189}
 190
 191static bool kvm_s390_cmma_available(void)
 192{
 193    static bool initialized, value;
 194
 195    if (!initialized) {
 196        initialized = true;
 197        value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
 198                kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
 199    }
 200    return value;
 201}
 202
 203void kvm_s390_cmma_reset(void)
 204{
 205    int rc;
 206    struct kvm_device_attr attr = {
 207        .group = KVM_S390_VM_MEM_CTRL,
 208        .attr = KVM_S390_VM_MEM_CLR_CMMA,
 209    };
 210
 211    if (!kvm_s390_cmma_active()) {
 212        return;
 213    }
 214
 215    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 216    trace_kvm_clear_cmma(rc);
 217}
 218
 219static void kvm_s390_enable_cmma(void)
 220{
 221    int rc;
 222    struct kvm_device_attr attr = {
 223        .group = KVM_S390_VM_MEM_CTRL,
 224        .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
 225    };
 226
 227    if (cap_hpage_1m) {
 228        warn_report("CMM will not be enabled because it is not "
 229                    "compatible with huge memory backings.");
 230        return;
 231    }
 232    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 233    active_cmma = !rc;
 234    trace_kvm_enable_cmma(rc);
 235}
 236
 237static void kvm_s390_set_attr(uint64_t attr)
 238{
 239    struct kvm_device_attr attribute = {
 240        .group = KVM_S390_VM_CRYPTO,
 241        .attr  = attr,
 242    };
 243
 244    int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
 245
 246    if (ret) {
 247        error_report("Failed to set crypto device attribute %lu: %s",
 248                     attr, strerror(-ret));
 249    }
 250}
 251
 252static void kvm_s390_init_aes_kw(void)
 253{
 254    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
 255
 256    if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
 257                                 NULL)) {
 258            attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
 259    }
 260
 261    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 262            kvm_s390_set_attr(attr);
 263    }
 264}
 265
 266static void kvm_s390_init_dea_kw(void)
 267{
 268    uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
 269
 270    if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
 271                                 NULL)) {
 272            attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
 273    }
 274
 275    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
 276            kvm_s390_set_attr(attr);
 277    }
 278}
 279
 280void kvm_s390_crypto_reset(void)
 281{
 282    if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
 283        kvm_s390_init_aes_kw();
 284        kvm_s390_init_dea_kw();
 285    }
 286}
 287
 288static int kvm_s390_configure_mempath_backing(KVMState *s)
 289{
 290    size_t path_psize = qemu_mempath_getpagesize(mem_path);
 291
 292    if (path_psize == 4 * KiB) {
 293        return 0;
 294    }
 295
 296    if (!hpage_1m_allowed()) {
 297        error_report("This QEMU machine does not support huge page "
 298                     "mappings");
 299        return -EINVAL;
 300    }
 301
 302    if (path_psize != 1 * MiB) {
 303        error_report("Memory backing with 2G pages was specified, "
 304                     "but KVM does not support this memory backing");
 305        return -EINVAL;
 306    }
 307
 308    if (kvm_vm_enable_cap(s, KVM_CAP_S390_HPAGE_1M, 0)) {
 309        error_report("Memory backing with 1M pages was specified, "
 310                     "but KVM does not support this memory backing");
 311        return -EINVAL;
 312    }
 313
 314    cap_hpage_1m = 1;
 315    return 0;
 316}
 317
 318int kvm_arch_init(MachineState *ms, KVMState *s)
 319{
 320    MachineClass *mc = MACHINE_GET_CLASS(ms);
 321
 322    if (mem_path && kvm_s390_configure_mempath_backing(s)) {
 323        return -EINVAL;
 324    }
 325
 326    mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
 327    cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
 328    cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
 329    cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
 330    cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
 331
 332    if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
 333        || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
 334        phys_mem_set_alloc(legacy_s390_alloc);
 335    }
 336
 337    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
 338    kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
 339    kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
 340    if (ri_allowed()) {
 341        if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
 342            cap_ri = 1;
 343        }
 344    }
 345    if (cpu_model_allowed()) {
 346        if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
 347            cap_gs = 1;
 348        }
 349    }
 350
 351    /*
 352     * The migration interface for ais was introduced with kernel 4.13
 353     * but the capability itself had been active since 4.12. As migration
 354     * support is considered necessary let's disable ais in the 2.10
 355     * machine.
 356     */
 357    /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
 358
 359    return 0;
 360}
 361
 362int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 363{
 364    return 0;
 365}
 366
 367unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 368{
 369    return cpu->cpu_index;
 370}
 371
 372int kvm_arch_init_vcpu(CPUState *cs)
 373{
 374    S390CPU *cpu = S390_CPU(cs);
 375    kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
 376    cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
 377    return 0;
 378}
 379
 380void kvm_s390_reset_vcpu(S390CPU *cpu)
 381{
 382    CPUState *cs = CPU(cpu);
 383
 384    /* The initial reset call is needed here to reset in-kernel
 385     * vcpu data that we can't access directly from QEMU
 386     * (i.e. with older kernels which don't support sync_regs/ONE_REG).
 387     * Before this ioctl cpu_synchronize_state() is called in common kvm
 388     * code (kvm-all) */
 389    if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
 390        error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
 391    }
 392}
 393
 394static int can_sync_regs(CPUState *cs, int regs)
 395{
 396    return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
 397}
 398
 399int kvm_arch_put_registers(CPUState *cs, int level)
 400{
 401    S390CPU *cpu = S390_CPU(cs);
 402    CPUS390XState *env = &cpu->env;
 403    struct kvm_sregs sregs;
 404    struct kvm_regs regs;
 405    struct kvm_fpu fpu = {};
 406    int r;
 407    int i;
 408
 409    /* always save the PSW  and the GPRS*/
 410    cs->kvm_run->psw_addr = env->psw.addr;
 411    cs->kvm_run->psw_mask = env->psw.mask;
 412
 413    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 414        for (i = 0; i < 16; i++) {
 415            cs->kvm_run->s.regs.gprs[i] = env->regs[i];
 416            cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
 417        }
 418    } else {
 419        for (i = 0; i < 16; i++) {
 420            regs.gprs[i] = env->regs[i];
 421        }
 422        r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 423        if (r < 0) {
 424            return r;
 425        }
 426    }
 427
 428    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 429        for (i = 0; i < 32; i++) {
 430            cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
 431            cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
 432        }
 433        cs->kvm_run->s.regs.fpc = env->fpc;
 434        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
 435    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 436        for (i = 0; i < 16; i++) {
 437            cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
 438        }
 439        cs->kvm_run->s.regs.fpc = env->fpc;
 440        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
 441    } else {
 442        /* Floating point */
 443        for (i = 0; i < 16; i++) {
 444            fpu.fprs[i] = get_freg(env, i)->ll;
 445        }
 446        fpu.fpc = env->fpc;
 447
 448        r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
 449        if (r < 0) {
 450            return r;
 451        }
 452    }
 453
 454    /* Do we need to save more than that? */
 455    if (level == KVM_PUT_RUNTIME_STATE) {
 456        return 0;
 457    }
 458
 459    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 460        cs->kvm_run->s.regs.cputm = env->cputm;
 461        cs->kvm_run->s.regs.ckc = env->ckc;
 462        cs->kvm_run->s.regs.todpr = env->todpr;
 463        cs->kvm_run->s.regs.gbea = env->gbea;
 464        cs->kvm_run->s.regs.pp = env->pp;
 465        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
 466    } else {
 467        /*
 468         * These ONE_REGS are not protected by a capability. As they are only
 469         * necessary for migration we just trace a possible error, but don't
 470         * return with an error return code.
 471         */
 472        kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 473        kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 474        kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 475        kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 476        kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 477    }
 478
 479    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 480        memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
 481        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
 482    }
 483
 484    /* pfault parameters */
 485    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 486        cs->kvm_run->s.regs.pft = env->pfault_token;
 487        cs->kvm_run->s.regs.pfs = env->pfault_select;
 488        cs->kvm_run->s.regs.pfc = env->pfault_compare;
 489        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
 490    } else if (cap_async_pf) {
 491        r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 492        if (r < 0) {
 493            return r;
 494        }
 495        r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 496        if (r < 0) {
 497            return r;
 498        }
 499        r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 500        if (r < 0) {
 501            return r;
 502        }
 503    }
 504
 505    /* access registers and control registers*/
 506    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 507        for (i = 0; i < 16; i++) {
 508            cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
 509            cs->kvm_run->s.regs.crs[i] = env->cregs[i];
 510        }
 511        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
 512        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
 513    } else {
 514        for (i = 0; i < 16; i++) {
 515            sregs.acrs[i] = env->aregs[i];
 516            sregs.crs[i] = env->cregs[i];
 517        }
 518        r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 519        if (r < 0) {
 520            return r;
 521        }
 522    }
 523
 524    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 525        memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
 526        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
 527    }
 528
 529    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 530        cs->kvm_run->s.regs.bpbc = env->bpbc;
 531        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
 532    }
 533
 534    if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
 535        cs->kvm_run->s.regs.etoken = env->etoken;
 536        cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
 537        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
 538    }
 539
 540    /* Finally the prefix */
 541    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 542        cs->kvm_run->s.regs.prefix = env->psa;
 543        cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
 544    } else {
 545        /* prefix is only supported via sync regs */
 546    }
 547    return 0;
 548}
 549
 550int kvm_arch_get_registers(CPUState *cs)
 551{
 552    S390CPU *cpu = S390_CPU(cs);
 553    CPUS390XState *env = &cpu->env;
 554    struct kvm_sregs sregs;
 555    struct kvm_regs regs;
 556    struct kvm_fpu fpu;
 557    int i, r;
 558
 559    /* get the PSW */
 560    env->psw.addr = cs->kvm_run->psw_addr;
 561    env->psw.mask = cs->kvm_run->psw_mask;
 562
 563    /* the GPRS */
 564    if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
 565        for (i = 0; i < 16; i++) {
 566            env->regs[i] = cs->kvm_run->s.regs.gprs[i];
 567        }
 568    } else {
 569        r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 570        if (r < 0) {
 571            return r;
 572        }
 573         for (i = 0; i < 16; i++) {
 574            env->regs[i] = regs.gprs[i];
 575        }
 576    }
 577
 578    /* The ACRS and CRS */
 579    if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
 580        for (i = 0; i < 16; i++) {
 581            env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
 582            env->cregs[i] = cs->kvm_run->s.regs.crs[i];
 583        }
 584    } else {
 585        r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 586        if (r < 0) {
 587            return r;
 588        }
 589         for (i = 0; i < 16; i++) {
 590            env->aregs[i] = sregs.acrs[i];
 591            env->cregs[i] = sregs.crs[i];
 592        }
 593    }
 594
 595    /* Floating point and vector registers */
 596    if (can_sync_regs(cs, KVM_SYNC_VRS)) {
 597        for (i = 0; i < 32; i++) {
 598            env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
 599            env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
 600        }
 601        env->fpc = cs->kvm_run->s.regs.fpc;
 602    } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
 603        for (i = 0; i < 16; i++) {
 604            get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
 605        }
 606        env->fpc = cs->kvm_run->s.regs.fpc;
 607    } else {
 608        r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
 609        if (r < 0) {
 610            return r;
 611        }
 612        for (i = 0; i < 16; i++) {
 613            get_freg(env, i)->ll = fpu.fprs[i];
 614        }
 615        env->fpc = fpu.fpc;
 616    }
 617
 618    /* The prefix */
 619    if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
 620        env->psa = cs->kvm_run->s.regs.prefix;
 621    }
 622
 623    if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
 624        env->cputm = cs->kvm_run->s.regs.cputm;
 625        env->ckc = cs->kvm_run->s.regs.ckc;
 626        env->todpr = cs->kvm_run->s.regs.todpr;
 627        env->gbea = cs->kvm_run->s.regs.gbea;
 628        env->pp = cs->kvm_run->s.regs.pp;
 629    } else {
 630        /*
 631         * These ONE_REGS are not protected by a capability. As they are only
 632         * necessary for migration we just trace a possible error, but don't
 633         * return with an error return code.
 634         */
 635        kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
 636        kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
 637        kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
 638        kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
 639        kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
 640    }
 641
 642    if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
 643        memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
 644    }
 645
 646    if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
 647        memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
 648    }
 649
 650    if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
 651        env->bpbc = cs->kvm_run->s.regs.bpbc;
 652    }
 653
 654    if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
 655        env->etoken = cs->kvm_run->s.regs.etoken;
 656        env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
 657    }
 658
 659    /* pfault parameters */
 660    if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
 661        env->pfault_token = cs->kvm_run->s.regs.pft;
 662        env->pfault_select = cs->kvm_run->s.regs.pfs;
 663        env->pfault_compare = cs->kvm_run->s.regs.pfc;
 664    } else if (cap_async_pf) {
 665        r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
 666        if (r < 0) {
 667            return r;
 668        }
 669        r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
 670        if (r < 0) {
 671            return r;
 672        }
 673        r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
 674        if (r < 0) {
 675            return r;
 676        }
 677    }
 678
 679    return 0;
 680}
 681
 682int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
 683{
 684    int r;
 685    struct kvm_device_attr attr = {
 686        .group = KVM_S390_VM_TOD,
 687        .attr = KVM_S390_VM_TOD_LOW,
 688        .addr = (uint64_t)tod_low,
 689    };
 690
 691    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 692    if (r) {
 693        return r;
 694    }
 695
 696    attr.attr = KVM_S390_VM_TOD_HIGH;
 697    attr.addr = (uint64_t)tod_high;
 698    return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 699}
 700
 701int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
 702{
 703    int r;
 704    struct kvm_s390_vm_tod_clock gtod;
 705    struct kvm_device_attr attr = {
 706        .group = KVM_S390_VM_TOD,
 707        .attr = KVM_S390_VM_TOD_EXT,
 708        .addr = (uint64_t)&gtod,
 709    };
 710
 711    r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
 712    *tod_high = gtod.epoch_idx;
 713    *tod_low  = gtod.tod;
 714
 715    return r;
 716}
 717
 718int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
 719{
 720    int r;
 721    struct kvm_device_attr attr = {
 722        .group = KVM_S390_VM_TOD,
 723        .attr = KVM_S390_VM_TOD_LOW,
 724        .addr = (uint64_t)&tod_low,
 725    };
 726
 727    r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 728    if (r) {
 729        return r;
 730    }
 731
 732    attr.attr = KVM_S390_VM_TOD_HIGH;
 733    attr.addr = (uint64_t)&tod_high;
 734    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 735}
 736
 737int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
 738{
 739    struct kvm_s390_vm_tod_clock gtod = {
 740        .epoch_idx = tod_high,
 741        .tod  = tod_low,
 742    };
 743    struct kvm_device_attr attr = {
 744        .group = KVM_S390_VM_TOD,
 745        .attr = KVM_S390_VM_TOD_EXT,
 746        .addr = (uint64_t)&gtod,
 747    };
 748
 749    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
 750}
 751
 752/**
 753 * kvm_s390_mem_op:
 754 * @addr:      the logical start address in guest memory
 755 * @ar:        the access register number
 756 * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
 757 * @len:       length that should be transferred
 758 * @is_write:  true = write, false = read
 759 * Returns:    0 on success, non-zero if an exception or error occurred
 760 *
 761 * Use KVM ioctl to read/write from/to guest memory. An access exception
 762 * is injected into the vCPU in case of translation errors.
 763 */
 764int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
 765                    int len, bool is_write)
 766{
 767    struct kvm_s390_mem_op mem_op = {
 768        .gaddr = addr,
 769        .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
 770        .size = len,
 771        .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
 772                       : KVM_S390_MEMOP_LOGICAL_READ,
 773        .buf = (uint64_t)hostbuf,
 774        .ar = ar,
 775    };
 776    int ret;
 777
 778    if (!cap_mem_op) {
 779        return -ENOSYS;
 780    }
 781    if (!hostbuf) {
 782        mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 783    }
 784
 785    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
 786    if (ret < 0) {
 787        error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
 788    }
 789    return ret;
 790}
 791
 792/*
 793 * Legacy layout for s390:
 794 * Older S390 KVM requires the topmost vma of the RAM to be
 795 * smaller than an system defined value, which is at least 256GB.
 796 * Larger systems have larger values. We put the guest between
 797 * the end of data segment (system break) and this value. We
 798 * use 32GB as a base to have enough room for the system break
 799 * to grow. We also have to use MAP parameters that avoid
 800 * read-only mapping of guest pages.
 801 */
 802static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
 803{
 804    static void *mem;
 805
 806    if (mem) {
 807        /* we only support one allocation, which is enough for initial ram */
 808        return NULL;
 809    }
 810
 811    mem = mmap((void *) 0x800000000ULL, size,
 812               PROT_EXEC|PROT_READ|PROT_WRITE,
 813               MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
 814    if (mem == MAP_FAILED) {
 815        mem = NULL;
 816    }
 817    if (mem && align) {
 818        *align = QEMU_VMALLOC_ALIGN;
 819    }
 820    return mem;
 821}
 822
 823static uint8_t const *sw_bp_inst;
 824static uint8_t sw_bp_ilen;
 825
 826static void determine_sw_breakpoint_instr(void)
 827{
 828        /* DIAG 501 is used for sw breakpoints with old kernels */
 829        static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
 830        /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
 831        static const uint8_t instr_0x0000[] = {0x00, 0x00};
 832
 833        if (sw_bp_inst) {
 834            return;
 835        }
 836        if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
 837            sw_bp_inst = diag_501;
 838            sw_bp_ilen = sizeof(diag_501);
 839            DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
 840        } else {
 841            sw_bp_inst = instr_0x0000;
 842            sw_bp_ilen = sizeof(instr_0x0000);
 843            DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
 844        }
 845}
 846
 847int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 848{
 849    determine_sw_breakpoint_instr();
 850
 851    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 852                            sw_bp_ilen, 0) ||
 853        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
 854        return -EINVAL;
 855    }
 856    return 0;
 857}
 858
 859int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 860{
 861    uint8_t t[MAX_ILEN];
 862
 863    if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
 864        return -EINVAL;
 865    } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
 866        return -EINVAL;
 867    } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
 868                                   sw_bp_ilen, 1)) {
 869        return -EINVAL;
 870    }
 871
 872    return 0;
 873}
 874
 875static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
 876                                                    int len, int type)
 877{
 878    int n;
 879
 880    for (n = 0; n < nb_hw_breakpoints; n++) {
 881        if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
 882            (hw_breakpoints[n].len == len || len == -1)) {
 883            return &hw_breakpoints[n];
 884        }
 885    }
 886
 887    return NULL;
 888}
 889
 890static int insert_hw_breakpoint(target_ulong addr, int len, int type)
 891{
 892    int size;
 893
 894    if (find_hw_breakpoint(addr, len, type)) {
 895        return -EEXIST;
 896    }
 897
 898    size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
 899
 900    if (!hw_breakpoints) {
 901        nb_hw_breakpoints = 0;
 902        hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
 903    } else {
 904        hw_breakpoints =
 905            (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
 906    }
 907
 908    if (!hw_breakpoints) {
 909        nb_hw_breakpoints = 0;
 910        return -ENOMEM;
 911    }
 912
 913    hw_breakpoints[nb_hw_breakpoints].addr = addr;
 914    hw_breakpoints[nb_hw_breakpoints].len = len;
 915    hw_breakpoints[nb_hw_breakpoints].type = type;
 916
 917    nb_hw_breakpoints++;
 918
 919    return 0;
 920}
 921
 922int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 923                                  target_ulong len, int type)
 924{
 925    switch (type) {
 926    case GDB_BREAKPOINT_HW:
 927        type = KVM_HW_BP;
 928        break;
 929    case GDB_WATCHPOINT_WRITE:
 930        if (len < 1) {
 931            return -EINVAL;
 932        }
 933        type = KVM_HW_WP_WRITE;
 934        break;
 935    default:
 936        return -ENOSYS;
 937    }
 938    return insert_hw_breakpoint(addr, len, type);
 939}
 940
 941int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 942                                  target_ulong len, int type)
 943{
 944    int size;
 945    struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
 946
 947    if (bp == NULL) {
 948        return -ENOENT;
 949    }
 950
 951    nb_hw_breakpoints--;
 952    if (nb_hw_breakpoints > 0) {
 953        /*
 954         * In order to trim the array, move the last element to the position to
 955         * be removed - if necessary.
 956         */
 957        if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
 958            *bp = hw_breakpoints[nb_hw_breakpoints];
 959        }
 960        size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
 961        hw_breakpoints =
 962             (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
 963    } else {
 964        g_free(hw_breakpoints);
 965        hw_breakpoints = NULL;
 966    }
 967
 968    return 0;
 969}
 970
 971void kvm_arch_remove_all_hw_breakpoints(void)
 972{
 973    nb_hw_breakpoints = 0;
 974    g_free(hw_breakpoints);
 975    hw_breakpoints = NULL;
 976}
 977
 978void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
 979{
 980    int i;
 981
 982    if (nb_hw_breakpoints > 0) {
 983        dbg->arch.nr_hw_bp = nb_hw_breakpoints;
 984        dbg->arch.hw_bp = hw_breakpoints;
 985
 986        for (i = 0; i < nb_hw_breakpoints; ++i) {
 987            hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
 988                                                       hw_breakpoints[i].addr);
 989        }
 990        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
 991    } else {
 992        dbg->arch.nr_hw_bp = 0;
 993        dbg->arch.hw_bp = NULL;
 994    }
 995}
 996
 997void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
 998{
 999}
1000
1001MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1002{
1003    return MEMTXATTRS_UNSPECIFIED;
1004}
1005
1006int kvm_arch_process_async_events(CPUState *cs)
1007{
1008    return cs->halted;
1009}
1010
1011static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1012                                     struct kvm_s390_interrupt *interrupt)
1013{
1014    int r = 0;
1015
1016    interrupt->type = irq->type;
1017    switch (irq->type) {
1018    case KVM_S390_INT_VIRTIO:
1019        interrupt->parm = irq->u.ext.ext_params;
1020        /* fall through */
1021    case KVM_S390_INT_PFAULT_INIT:
1022    case KVM_S390_INT_PFAULT_DONE:
1023        interrupt->parm64 = irq->u.ext.ext_params2;
1024        break;
1025    case KVM_S390_PROGRAM_INT:
1026        interrupt->parm = irq->u.pgm.code;
1027        break;
1028    case KVM_S390_SIGP_SET_PREFIX:
1029        interrupt->parm = irq->u.prefix.address;
1030        break;
1031    case KVM_S390_INT_SERVICE:
1032        interrupt->parm = irq->u.ext.ext_params;
1033        break;
1034    case KVM_S390_MCHK:
1035        interrupt->parm = irq->u.mchk.cr14;
1036        interrupt->parm64 = irq->u.mchk.mcic;
1037        break;
1038    case KVM_S390_INT_EXTERNAL_CALL:
1039        interrupt->parm = irq->u.extcall.code;
1040        break;
1041    case KVM_S390_INT_EMERGENCY:
1042        interrupt->parm = irq->u.emerg.code;
1043        break;
1044    case KVM_S390_SIGP_STOP:
1045    case KVM_S390_RESTART:
1046        break; /* These types have no parameters */
1047    case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1048        interrupt->parm = irq->u.io.subchannel_id << 16;
1049        interrupt->parm |= irq->u.io.subchannel_nr;
1050        interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1051        interrupt->parm64 |= irq->u.io.io_int_word;
1052        break;
1053    default:
1054        r = -EINVAL;
1055        break;
1056    }
1057    return r;
1058}
1059
1060static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1061{
1062    struct kvm_s390_interrupt kvmint = {};
1063    int r;
1064
1065    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1066    if (r < 0) {
1067        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1068        exit(1);
1069    }
1070
1071    r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1072    if (r < 0) {
1073        fprintf(stderr, "KVM failed to inject interrupt\n");
1074        exit(1);
1075    }
1076}
1077
1078void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1079{
1080    CPUState *cs = CPU(cpu);
1081    int r;
1082
1083    if (cap_s390_irq) {
1084        r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1085        if (!r) {
1086            return;
1087        }
1088        error_report("KVM failed to inject interrupt %llx", irq->type);
1089        exit(1);
1090    }
1091
1092    inject_vcpu_irq_legacy(cs, irq);
1093}
1094
1095void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1096{
1097    struct kvm_s390_interrupt kvmint = {};
1098    int r;
1099
1100    r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1101    if (r < 0) {
1102        fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1103        exit(1);
1104    }
1105
1106    r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1107    if (r < 0) {
1108        fprintf(stderr, "KVM failed to inject interrupt\n");
1109        exit(1);
1110    }
1111}
1112
1113void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1114{
1115    struct kvm_s390_irq irq = {
1116        .type = KVM_S390_PROGRAM_INT,
1117        .u.pgm.code = code,
1118    };
1119    qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1120                  cpu->env.psw.addr);
1121    kvm_s390_vcpu_interrupt(cpu, &irq);
1122}
1123
1124void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1125{
1126    struct kvm_s390_irq irq = {
1127        .type = KVM_S390_PROGRAM_INT,
1128        .u.pgm.code = code,
1129        .u.pgm.trans_exc_code = te_code,
1130        .u.pgm.exc_access_id = te_code & 3,
1131    };
1132
1133    kvm_s390_vcpu_interrupt(cpu, &irq);
1134}
1135
1136static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1137                                 uint16_t ipbh0)
1138{
1139    CPUS390XState *env = &cpu->env;
1140    uint64_t sccb;
1141    uint32_t code;
1142    int r = 0;
1143
1144    sccb = env->regs[ipbh0 & 0xf];
1145    code = env->regs[(ipbh0 & 0xf0) >> 4];
1146
1147    r = sclp_service_call(env, sccb, code);
1148    if (r < 0) {
1149        kvm_s390_program_interrupt(cpu, -r);
1150    } else {
1151        setcc(cpu, r);
1152    }
1153
1154    return 0;
1155}
1156
1157static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1158{
1159    CPUS390XState *env = &cpu->env;
1160    int rc = 0;
1161    uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1162
1163    switch (ipa1) {
1164    case PRIV_B2_XSCH:
1165        ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1166        break;
1167    case PRIV_B2_CSCH:
1168        ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1169        break;
1170    case PRIV_B2_HSCH:
1171        ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1172        break;
1173    case PRIV_B2_MSCH:
1174        ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1175        break;
1176    case PRIV_B2_SSCH:
1177        ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1178        break;
1179    case PRIV_B2_STCRW:
1180        ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1181        break;
1182    case PRIV_B2_STSCH:
1183        ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1184        break;
1185    case PRIV_B2_TSCH:
1186        /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1187        fprintf(stderr, "Spurious tsch intercept\n");
1188        break;
1189    case PRIV_B2_CHSC:
1190        ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1191        break;
1192    case PRIV_B2_TPI:
1193        /* This should have been handled by kvm already. */
1194        fprintf(stderr, "Spurious tpi intercept\n");
1195        break;
1196    case PRIV_B2_SCHM:
1197        ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1198                           run->s390_sieic.ipb, RA_IGNORED);
1199        break;
1200    case PRIV_B2_RSCH:
1201        ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1202        break;
1203    case PRIV_B2_RCHP:
1204        ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1205        break;
1206    case PRIV_B2_STCPS:
1207        /* We do not provide this instruction, it is suppressed. */
1208        break;
1209    case PRIV_B2_SAL:
1210        ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1211        break;
1212    case PRIV_B2_SIGA:
1213        /* Not provided, set CC = 3 for subchannel not operational */
1214        setcc(cpu, 3);
1215        break;
1216    case PRIV_B2_SCLP_CALL:
1217        rc = kvm_sclp_service_call(cpu, run, ipbh0);
1218        break;
1219    default:
1220        rc = -1;
1221        DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1222        break;
1223    }
1224
1225    return rc;
1226}
1227
1228static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1229                                  uint8_t *ar)
1230{
1231    CPUS390XState *env = &cpu->env;
1232    uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1233    uint32_t base2 = run->s390_sieic.ipb >> 28;
1234    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1235                     ((run->s390_sieic.ipb & 0xff00) << 4);
1236
1237    if (disp2 & 0x80000) {
1238        disp2 += 0xfff00000;
1239    }
1240    if (ar) {
1241        *ar = base2;
1242    }
1243
1244    return (base2 ? env->regs[base2] : 0) +
1245           (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1246}
1247
1248static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1249                                  uint8_t *ar)
1250{
1251    CPUS390XState *env = &cpu->env;
1252    uint32_t base2 = run->s390_sieic.ipb >> 28;
1253    uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1254                     ((run->s390_sieic.ipb & 0xff00) << 4);
1255
1256    if (disp2 & 0x80000) {
1257        disp2 += 0xfff00000;
1258    }
1259    if (ar) {
1260        *ar = base2;
1261    }
1262
1263    return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1264}
1265
1266static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1267{
1268    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1269
1270    if (s390_has_feat(S390_FEAT_ZPCI)) {
1271        return clp_service_call(cpu, r2, RA_IGNORED);
1272    } else {
1273        return -1;
1274    }
1275}
1276
1277static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1278{
1279    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1280    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1281
1282    if (s390_has_feat(S390_FEAT_ZPCI)) {
1283        return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1284    } else {
1285        return -1;
1286    }
1287}
1288
1289static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1290{
1291    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1292    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1293
1294    if (s390_has_feat(S390_FEAT_ZPCI)) {
1295        return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1296    } else {
1297        return -1;
1298    }
1299}
1300
1301static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1302{
1303    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1304    uint64_t fiba;
1305    uint8_t ar;
1306
1307    if (s390_has_feat(S390_FEAT_ZPCI)) {
1308        fiba = get_base_disp_rxy(cpu, run, &ar);
1309
1310        return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1311    } else {
1312        return -1;
1313    }
1314}
1315
1316static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1317{
1318    CPUS390XState *env = &cpu->env;
1319    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1320    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1321    uint8_t isc;
1322    uint16_t mode;
1323    int r;
1324
1325    mode = env->regs[r1] & 0xffff;
1326    isc = (env->regs[r3] >> 27) & 0x7;
1327    r = css_do_sic(env, isc, mode);
1328    if (r) {
1329        kvm_s390_program_interrupt(cpu, -r);
1330    }
1331
1332    return 0;
1333}
1334
1335static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1336{
1337    uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1338    uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1339
1340    if (s390_has_feat(S390_FEAT_ZPCI)) {
1341        return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1342    } else {
1343        return -1;
1344    }
1345}
1346
1347static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1348{
1349    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1350    uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1351    uint64_t gaddr;
1352    uint8_t ar;
1353
1354    if (s390_has_feat(S390_FEAT_ZPCI)) {
1355        gaddr = get_base_disp_rsy(cpu, run, &ar);
1356
1357        return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1358    } else {
1359        return -1;
1360    }
1361}
1362
1363static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1364{
1365    uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1366    uint64_t fiba;
1367    uint8_t ar;
1368
1369    if (s390_has_feat(S390_FEAT_ZPCI)) {
1370        fiba = get_base_disp_rxy(cpu, run, &ar);
1371
1372        return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1373    } else {
1374        return -1;
1375    }
1376}
1377
1378static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1379{
1380    int r = 0;
1381
1382    switch (ipa1) {
1383    case PRIV_B9_CLP:
1384        r = kvm_clp_service_call(cpu, run);
1385        break;
1386    case PRIV_B9_PCISTG:
1387        r = kvm_pcistg_service_call(cpu, run);
1388        break;
1389    case PRIV_B9_PCILG:
1390        r = kvm_pcilg_service_call(cpu, run);
1391        break;
1392    case PRIV_B9_RPCIT:
1393        r = kvm_rpcit_service_call(cpu, run);
1394        break;
1395    case PRIV_B9_EQBS:
1396        /* just inject exception */
1397        r = -1;
1398        break;
1399    default:
1400        r = -1;
1401        DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1402        break;
1403    }
1404
1405    return r;
1406}
1407
1408static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1409{
1410    int r = 0;
1411
1412    switch (ipbl) {
1413    case PRIV_EB_PCISTB:
1414        r = kvm_pcistb_service_call(cpu, run);
1415        break;
1416    case PRIV_EB_SIC:
1417        r = kvm_sic_service_call(cpu, run);
1418        break;
1419    case PRIV_EB_SQBS:
1420        /* just inject exception */
1421        r = -1;
1422        break;
1423    default:
1424        r = -1;
1425        DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1426        break;
1427    }
1428
1429    return r;
1430}
1431
1432static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1433{
1434    int r = 0;
1435
1436    switch (ipbl) {
1437    case PRIV_E3_MPCIFC:
1438        r = kvm_mpcifc_service_call(cpu, run);
1439        break;
1440    case PRIV_E3_STPCIFC:
1441        r = kvm_stpcifc_service_call(cpu, run);
1442        break;
1443    default:
1444        r = -1;
1445        DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1446        break;
1447    }
1448
1449    return r;
1450}
1451
1452static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1453{
1454    CPUS390XState *env = &cpu->env;
1455    int ret;
1456
1457    ret = s390_virtio_hypercall(env);
1458    if (ret == -EINVAL) {
1459        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1460        return 0;
1461    }
1462
1463    return ret;
1464}
1465
1466static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1467{
1468    uint64_t r1, r3;
1469    int rc;
1470
1471    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1472    r3 = run->s390_sieic.ipa & 0x000f;
1473    rc = handle_diag_288(&cpu->env, r1, r3);
1474    if (rc) {
1475        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1476    }
1477}
1478
1479static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1480{
1481    uint64_t r1, r3;
1482
1483    r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1484    r3 = run->s390_sieic.ipa & 0x000f;
1485    handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1486}
1487
1488static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1489{
1490    CPUS390XState *env = &cpu->env;
1491    unsigned long pc;
1492
1493    pc = env->psw.addr - sw_bp_ilen;
1494    if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1495        env->psw.addr = pc;
1496        return EXCP_DEBUG;
1497    }
1498
1499    return -ENOENT;
1500}
1501
1502#define DIAG_KVM_CODE_MASK 0x000000000000ffff
1503
1504static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1505{
1506    int r = 0;
1507    uint16_t func_code;
1508
1509    /*
1510     * For any diagnose call we support, bits 48-63 of the resulting
1511     * address specify the function code; the remainder is ignored.
1512     */
1513    func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1514    switch (func_code) {
1515    case DIAG_TIMEREVENT:
1516        kvm_handle_diag_288(cpu, run);
1517        break;
1518    case DIAG_IPL:
1519        kvm_handle_diag_308(cpu, run);
1520        break;
1521    case DIAG_KVM_HYPERCALL:
1522        r = handle_hypercall(cpu, run);
1523        break;
1524    case DIAG_KVM_BREAKPOINT:
1525        r = handle_sw_breakpoint(cpu, run);
1526        break;
1527    default:
1528        DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1529        kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1530        break;
1531    }
1532
1533    return r;
1534}
1535
1536static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1537{
1538    CPUS390XState *env = &cpu->env;
1539    const uint8_t r1 = ipa1 >> 4;
1540    const uint8_t r3 = ipa1 & 0x0f;
1541    int ret;
1542    uint8_t order;
1543
1544    /* get order code */
1545    order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1546
1547    ret = handle_sigp(env, order, r1, r3);
1548    setcc(cpu, ret);
1549    return 0;
1550}
1551
1552static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1553{
1554    unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1555    uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1556    int r = -1;
1557
1558    DPRINTF("handle_instruction 0x%x 0x%x\n",
1559            run->s390_sieic.ipa, run->s390_sieic.ipb);
1560    switch (ipa0) {
1561    case IPA0_B2:
1562        r = handle_b2(cpu, run, ipa1);
1563        break;
1564    case IPA0_B9:
1565        r = handle_b9(cpu, run, ipa1);
1566        break;
1567    case IPA0_EB:
1568        r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1569        break;
1570    case IPA0_E3:
1571        r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1572        break;
1573    case IPA0_DIAG:
1574        r = handle_diag(cpu, run, run->s390_sieic.ipb);
1575        break;
1576    case IPA0_SIGP:
1577        r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1578        break;
1579    }
1580
1581    if (r < 0) {
1582        r = 0;
1583        kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1584    }
1585
1586    return r;
1587}
1588
1589static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1590                                   int pswoffset)
1591{
1592    CPUState *cs = CPU(cpu);
1593
1594    s390_cpu_halt(cpu);
1595    cpu->env.crash_reason = reason;
1596    qemu_system_guest_panicked(cpu_get_crash_info(cs));
1597}
1598
1599/* try to detect pgm check loops */
1600static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1601{
1602    CPUState *cs = CPU(cpu);
1603    PSW oldpsw, newpsw;
1604
1605    newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1606                           offsetof(LowCore, program_new_psw));
1607    newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1608                           offsetof(LowCore, program_new_psw) + 8);
1609    oldpsw.mask  = run->psw_mask;
1610    oldpsw.addr  = run->psw_addr;
1611    /*
1612     * Avoid endless loops of operation exceptions, if the pgm new
1613     * PSW will cause a new operation exception.
1614     * The heuristic checks if the pgm new psw is within 6 bytes before
1615     * the faulting psw address (with same DAT, AS settings) and the
1616     * new psw is not a wait psw and the fault was not triggered by
1617     * problem state. In that case go into crashed state.
1618     */
1619
1620    if (oldpsw.addr - newpsw.addr <= 6 &&
1621        !(newpsw.mask & PSW_MASK_WAIT) &&
1622        !(oldpsw.mask & PSW_MASK_PSTATE) &&
1623        (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1624        (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1625        unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1626                               offsetof(LowCore, program_new_psw));
1627        return EXCP_HALTED;
1628    }
1629    return 0;
1630}
1631
1632static int handle_intercept(S390CPU *cpu)
1633{
1634    CPUState *cs = CPU(cpu);
1635    struct kvm_run *run = cs->kvm_run;
1636    int icpt_code = run->s390_sieic.icptcode;
1637    int r = 0;
1638
1639    DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1640            (long)cs->kvm_run->psw_addr);
1641    switch (icpt_code) {
1642        case ICPT_INSTRUCTION:
1643            r = handle_instruction(cpu, run);
1644            break;
1645        case ICPT_PROGRAM:
1646            unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1647                                   offsetof(LowCore, program_new_psw));
1648            r = EXCP_HALTED;
1649            break;
1650        case ICPT_EXT_INT:
1651            unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1652                                   offsetof(LowCore, external_new_psw));
1653            r = EXCP_HALTED;
1654            break;
1655        case ICPT_WAITPSW:
1656            /* disabled wait, since enabled wait is handled in kernel */
1657            s390_handle_wait(cpu);
1658            r = EXCP_HALTED;
1659            break;
1660        case ICPT_CPU_STOP:
1661            do_stop_interrupt(&cpu->env);
1662            r = EXCP_HALTED;
1663            break;
1664        case ICPT_OPEREXC:
1665            /* check for break points */
1666            r = handle_sw_breakpoint(cpu, run);
1667            if (r == -ENOENT) {
1668                /* Then check for potential pgm check loops */
1669                r = handle_oper_loop(cpu, run);
1670                if (r == 0) {
1671                    kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1672                }
1673            }
1674            break;
1675        case ICPT_SOFT_INTERCEPT:
1676            fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1677            exit(1);
1678            break;
1679        case ICPT_IO:
1680            fprintf(stderr, "KVM unimplemented icpt IO\n");
1681            exit(1);
1682            break;
1683        default:
1684            fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1685            exit(1);
1686            break;
1687    }
1688
1689    return r;
1690}
1691
1692static int handle_tsch(S390CPU *cpu)
1693{
1694    CPUState *cs = CPU(cpu);
1695    struct kvm_run *run = cs->kvm_run;
1696    int ret;
1697
1698    ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1699                             RA_IGNORED);
1700    if (ret < 0) {
1701        /*
1702         * Failure.
1703         * If an I/O interrupt had been dequeued, we have to reinject it.
1704         */
1705        if (run->s390_tsch.dequeued) {
1706            s390_io_interrupt(run->s390_tsch.subchannel_id,
1707                              run->s390_tsch.subchannel_nr,
1708                              run->s390_tsch.io_int_parm,
1709                              run->s390_tsch.io_int_word);
1710        }
1711        ret = 0;
1712    }
1713    return ret;
1714}
1715
1716static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1717{
1718    SysIB_322 sysib;
1719    int del;
1720
1721    if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1722        return;
1723    }
1724    /* Shift the stack of Extended Names to prepare for our own data */
1725    memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1726            sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1727    /* First virt level, that doesn't provide Ext Names delimits stack. It is
1728     * assumed it's not capable of managing Extended Names for lower levels.
1729     */
1730    for (del = 1; del < sysib.count; del++) {
1731        if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1732            break;
1733        }
1734    }
1735    if (del < sysib.count) {
1736        memset(sysib.ext_names[del], 0,
1737               sizeof(sysib.ext_names[0]) * (sysib.count - del));
1738    }
1739    /* Insert short machine name in EBCDIC, padded with blanks */
1740    if (qemu_name) {
1741        memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1742        ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1743                                                    strlen(qemu_name)));
1744    }
1745    sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1746    memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1747    /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1748     * considered by s390 as not capable of providing any Extended Name.
1749     * Therefore if no name was specified on qemu invocation, we go with the
1750     * same "KVMguest" default, which KVM has filled into short name field.
1751     */
1752    if (qemu_name) {
1753        strncpy((char *)sysib.ext_names[0], qemu_name,
1754                sizeof(sysib.ext_names[0]));
1755    } else {
1756        strcpy((char *)sysib.ext_names[0], "KVMguest");
1757    }
1758    /* Insert UUID */
1759    memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1760
1761    s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1762}
1763
1764static int handle_stsi(S390CPU *cpu)
1765{
1766    CPUState *cs = CPU(cpu);
1767    struct kvm_run *run = cs->kvm_run;
1768
1769    switch (run->s390_stsi.fc) {
1770    case 3:
1771        if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1772            return 0;
1773        }
1774        /* Only sysib 3.2.2 needs post-handling for now. */
1775        insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1776        return 0;
1777    default:
1778        return 0;
1779    }
1780}
1781
1782static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1783{
1784    CPUState *cs = CPU(cpu);
1785    struct kvm_run *run = cs->kvm_run;
1786
1787    int ret = 0;
1788    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1789
1790    switch (arch_info->type) {
1791    case KVM_HW_WP_WRITE:
1792        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1793            cs->watchpoint_hit = &hw_watchpoint;
1794            hw_watchpoint.vaddr = arch_info->addr;
1795            hw_watchpoint.flags = BP_MEM_WRITE;
1796            ret = EXCP_DEBUG;
1797        }
1798        break;
1799    case KVM_HW_BP:
1800        if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1801            ret = EXCP_DEBUG;
1802        }
1803        break;
1804    case KVM_SINGLESTEP:
1805        if (cs->singlestep_enabled) {
1806            ret = EXCP_DEBUG;
1807        }
1808        break;
1809    default:
1810        ret = -ENOSYS;
1811    }
1812
1813    return ret;
1814}
1815
1816int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1817{
1818    S390CPU *cpu = S390_CPU(cs);
1819    int ret = 0;
1820
1821    qemu_mutex_lock_iothread();
1822
1823    kvm_cpu_synchronize_state(cs);
1824
1825    switch (run->exit_reason) {
1826        case KVM_EXIT_S390_SIEIC:
1827            ret = handle_intercept(cpu);
1828            break;
1829        case KVM_EXIT_S390_RESET:
1830            s390_ipl_reset_request(cs, S390_RESET_REIPL);
1831            break;
1832        case KVM_EXIT_S390_TSCH:
1833            ret = handle_tsch(cpu);
1834            break;
1835        case KVM_EXIT_S390_STSI:
1836            ret = handle_stsi(cpu);
1837            break;
1838        case KVM_EXIT_DEBUG:
1839            ret = kvm_arch_handle_debug_exit(cpu);
1840            break;
1841        default:
1842            fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1843            break;
1844    }
1845    qemu_mutex_unlock_iothread();
1846
1847    if (ret == 0) {
1848        ret = EXCP_INTERRUPT;
1849    }
1850    return ret;
1851}
1852
1853bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1854{
1855    return true;
1856}
1857
1858void kvm_s390_enable_css_support(S390CPU *cpu)
1859{
1860    int r;
1861
1862    /* Activate host kernel channel subsystem support. */
1863    r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1864    assert(r == 0);
1865}
1866
1867void kvm_arch_init_irq_routing(KVMState *s)
1868{
1869    /*
1870     * Note that while irqchip capabilities generally imply that cpustates
1871     * are handled in-kernel, it is not true for s390 (yet); therefore, we
1872     * have to override the common code kvm_halt_in_kernel_allowed setting.
1873     */
1874    if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1875        kvm_gsi_routing_allowed = true;
1876        kvm_halt_in_kernel_allowed = false;
1877    }
1878}
1879
1880int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1881                                    int vq, bool assign)
1882{
1883    struct kvm_ioeventfd kick = {
1884        .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1885        KVM_IOEVENTFD_FLAG_DATAMATCH,
1886        .fd = event_notifier_get_fd(notifier),
1887        .datamatch = vq,
1888        .addr = sch,
1889        .len = 8,
1890    };
1891    if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1892        return -ENOSYS;
1893    }
1894    if (!assign) {
1895        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1896    }
1897    return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1898}
1899
1900int kvm_s390_get_ri(void)
1901{
1902    return cap_ri;
1903}
1904
1905int kvm_s390_get_gs(void)
1906{
1907    return cap_gs;
1908}
1909
1910int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1911{
1912    struct kvm_mp_state mp_state = {};
1913    int ret;
1914
1915    /* the kvm part might not have been initialized yet */
1916    if (CPU(cpu)->kvm_state == NULL) {
1917        return 0;
1918    }
1919
1920    switch (cpu_state) {
1921    case S390_CPU_STATE_STOPPED:
1922        mp_state.mp_state = KVM_MP_STATE_STOPPED;
1923        break;
1924    case S390_CPU_STATE_CHECK_STOP:
1925        mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1926        break;
1927    case S390_CPU_STATE_OPERATING:
1928        mp_state.mp_state = KVM_MP_STATE_OPERATING;
1929        break;
1930    case S390_CPU_STATE_LOAD:
1931        mp_state.mp_state = KVM_MP_STATE_LOAD;
1932        break;
1933    default:
1934        error_report("Requested CPU state is not a valid S390 CPU state: %u",
1935                     cpu_state);
1936        exit(1);
1937    }
1938
1939    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1940    if (ret) {
1941        trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1942                                       strerror(-ret));
1943    }
1944
1945    return ret;
1946}
1947
1948void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1949{
1950    struct kvm_s390_irq_state irq_state = {
1951        .buf = (uint64_t) cpu->irqstate,
1952        .len = VCPU_IRQ_BUF_SIZE,
1953    };
1954    CPUState *cs = CPU(cpu);
1955    int32_t bytes;
1956
1957    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1958        return;
1959    }
1960
1961    bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1962    if (bytes < 0) {
1963        cpu->irqstate_saved_size = 0;
1964        error_report("Migration of interrupt state failed");
1965        return;
1966    }
1967
1968    cpu->irqstate_saved_size = bytes;
1969}
1970
1971int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
1972{
1973    CPUState *cs = CPU(cpu);
1974    struct kvm_s390_irq_state irq_state = {
1975        .buf = (uint64_t) cpu->irqstate,
1976        .len = cpu->irqstate_saved_size,
1977    };
1978    int r;
1979
1980    if (cpu->irqstate_saved_size == 0) {
1981        return 0;
1982    }
1983
1984    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1985        return -ENOSYS;
1986    }
1987
1988    r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
1989    if (r) {
1990        error_report("Setting interrupt state failed %d", r);
1991    }
1992    return r;
1993}
1994
1995int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1996                             uint64_t address, uint32_t data, PCIDevice *dev)
1997{
1998    S390PCIBusDevice *pbdev;
1999    uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2000
2001    if (!dev) {
2002        DPRINTF("add_msi_route no pci device\n");
2003        return -ENODEV;
2004    }
2005
2006    pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2007    if (!pbdev) {
2008        DPRINTF("add_msi_route no zpci device\n");
2009        return -ENODEV;
2010    }
2011
2012    route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2013    route->flags = 0;
2014    route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2015    route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2016    route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2017    route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2018    route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2019    return 0;
2020}
2021
2022int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2023                                int vector, PCIDevice *dev)
2024{
2025    return 0;
2026}
2027
2028int kvm_arch_release_virq_post(int virq)
2029{
2030    return 0;
2031}
2032
2033int kvm_arch_msi_data_to_gsi(uint32_t data)
2034{
2035    abort();
2036}
2037
2038static int query_cpu_subfunc(S390FeatBitmap features)
2039{
2040    struct kvm_s390_vm_cpu_subfunc prop;
2041    struct kvm_device_attr attr = {
2042        .group = KVM_S390_VM_CPU_MODEL,
2043        .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2044        .addr = (uint64_t) &prop,
2045    };
2046    int rc;
2047
2048    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2049    if (rc) {
2050        return  rc;
2051    }
2052
2053    /*
2054     * We're going to add all subfunctions now, if the corresponding feature
2055     * is available that unlocks the query functions.
2056     */
2057    s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2058    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2059        s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2060    }
2061    if (test_bit(S390_FEAT_MSA, features)) {
2062        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2063        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2064        s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2065        s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2066        s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2067    }
2068    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2069        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2070    }
2071    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2072        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2073        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2074        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2075        s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2076    }
2077    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2078        s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2079    }
2080    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2081        s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2082    }
2083    return 0;
2084}
2085
2086static int configure_cpu_subfunc(const S390FeatBitmap features)
2087{
2088    struct kvm_s390_vm_cpu_subfunc prop = {};
2089    struct kvm_device_attr attr = {
2090        .group = KVM_S390_VM_CPU_MODEL,
2091        .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2092        .addr = (uint64_t) &prop,
2093    };
2094
2095    if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2096                           KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2097        /* hardware support might be missing, IBC will handle most of this */
2098        return 0;
2099    }
2100
2101    s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2102    if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2103        s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2104    }
2105    if (test_bit(S390_FEAT_MSA, features)) {
2106        s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2107        s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2108        s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2109        s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2110        s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2111    }
2112    if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2113        s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2114    }
2115    if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2116        s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2117        s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2118        s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2119        s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2120    }
2121    if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2122        s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2123    }
2124    if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2125        s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2126    }
2127    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2128}
2129
2130static int kvm_to_feat[][2] = {
2131    { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2132    { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2133    { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2134    { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2135    { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2136    { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2137    { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2138    { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2139    { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2140    { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2141    { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2142    { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2143    { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2144    { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2145};
2146
2147static int query_cpu_feat(S390FeatBitmap features)
2148{
2149    struct kvm_s390_vm_cpu_feat prop;
2150    struct kvm_device_attr attr = {
2151        .group = KVM_S390_VM_CPU_MODEL,
2152        .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2153        .addr = (uint64_t) &prop,
2154    };
2155    int rc;
2156    int i;
2157
2158    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2159    if (rc) {
2160        return  rc;
2161    }
2162
2163    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2164        if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2165            set_bit(kvm_to_feat[i][1], features);
2166        }
2167    }
2168    return 0;
2169}
2170
2171static int configure_cpu_feat(const S390FeatBitmap features)
2172{
2173    struct kvm_s390_vm_cpu_feat prop = {};
2174    struct kvm_device_attr attr = {
2175        .group = KVM_S390_VM_CPU_MODEL,
2176        .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2177        .addr = (uint64_t) &prop,
2178    };
2179    int i;
2180
2181    for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2182        if (test_bit(kvm_to_feat[i][1], features)) {
2183            set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2184        }
2185    }
2186    return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2187}
2188
2189bool kvm_s390_cpu_models_supported(void)
2190{
2191    if (!cpu_model_allowed()) {
2192        /* compatibility machines interfere with the cpu model */
2193        return false;
2194    }
2195    return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2196                             KVM_S390_VM_CPU_MACHINE) &&
2197           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2198                             KVM_S390_VM_CPU_PROCESSOR) &&
2199           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2200                             KVM_S390_VM_CPU_MACHINE_FEAT) &&
2201           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2202                             KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2203           kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2204                             KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2205}
2206
2207void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2208{
2209    struct kvm_s390_vm_cpu_machine prop = {};
2210    struct kvm_device_attr attr = {
2211        .group = KVM_S390_VM_CPU_MODEL,
2212        .attr = KVM_S390_VM_CPU_MACHINE,
2213        .addr = (uint64_t) &prop,
2214    };
2215    uint16_t unblocked_ibc = 0, cpu_type = 0;
2216    int rc;
2217
2218    memset(model, 0, sizeof(*model));
2219
2220    if (!kvm_s390_cpu_models_supported()) {
2221        error_setg(errp, "KVM doesn't support CPU models");
2222        return;
2223    }
2224
2225    /* query the basic cpu model properties */
2226    rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2227    if (rc) {
2228        error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2229        return;
2230    }
2231
2232    cpu_type = cpuid_type(prop.cpuid);
2233    if (has_ibc(prop.ibc)) {
2234        model->lowest_ibc = lowest_ibc(prop.ibc);
2235        unblocked_ibc = unblocked_ibc(prop.ibc);
2236    }
2237    model->cpu_id = cpuid_id(prop.cpuid);
2238    model->cpu_id_format = cpuid_format(prop.cpuid);
2239    model->cpu_ver = 0xff;
2240
2241    /* get supported cpu features indicated via STFL(E) */
2242    s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2243                             (uint8_t *) prop.fac_mask);
2244    /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2245    if (test_bit(S390_FEAT_STFLE, model->features)) {
2246        set_bit(S390_FEAT_DAT_ENH_2, model->features);
2247    }
2248    /* get supported cpu features indicated e.g. via SCLP */
2249    rc = query_cpu_feat(model->features);
2250    if (rc) {
2251        error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2252        return;
2253    }
2254    /* get supported cpu subfunctions indicated via query / test bit */
2255    rc = query_cpu_subfunc(model->features);
2256    if (rc) {
2257        error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2258        return;
2259    }
2260
2261    /* PTFF subfunctions might be indicated although kernel support missing */
2262    if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2263        clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2264        clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2265        clear_bit(S390_FEAT_PTFF_STOE, model->features);
2266        clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2267    }
2268
2269    /* with cpu model support, CMM is only indicated if really available */
2270    if (kvm_s390_cmma_available()) {
2271        set_bit(S390_FEAT_CMM, model->features);
2272    } else {
2273        /* no cmm -> no cmm nt */
2274        clear_bit(S390_FEAT_CMM_NT, model->features);
2275    }
2276
2277    /* bpb needs kernel support for migration, VSIE and reset */
2278    if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2279        clear_bit(S390_FEAT_BPB, model->features);
2280    }
2281
2282    /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2283    if (pci_available) {
2284        set_bit(S390_FEAT_ZPCI, model->features);
2285    }
2286    set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2287
2288    if (s390_known_cpu_type(cpu_type)) {
2289        /* we want the exact model, even if some features are missing */
2290        model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2291                                       ibc_ec_ga(unblocked_ibc), NULL);
2292    } else {
2293        /* model unknown, e.g. too new - search using features */
2294        model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2295                                       ibc_ec_ga(unblocked_ibc),
2296                                       model->features);
2297    }
2298    if (!model->def) {
2299        error_setg(errp, "KVM: host CPU model could not be identified");
2300        return;
2301    }
2302    /* for now, we can only provide the AP feature with HW support */
2303    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2304        KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2305        set_bit(S390_FEAT_AP, model->features);
2306    }
2307    /* strip of features that are not part of the maximum model */
2308    bitmap_and(model->features, model->features, model->def->full_feat,
2309               S390_FEAT_MAX);
2310}
2311
2312static void kvm_s390_configure_apie(bool interpret)
2313{
2314    uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2315                                KVM_S390_VM_CRYPTO_DISABLE_APIE;
2316
2317    if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2318        kvm_s390_set_attr(attr);
2319    }
2320}
2321
2322void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2323{
2324    struct kvm_s390_vm_cpu_processor prop  = {
2325        .fac_list = { 0 },
2326    };
2327    struct kvm_device_attr attr = {
2328        .group = KVM_S390_VM_CPU_MODEL,
2329        .attr = KVM_S390_VM_CPU_PROCESSOR,
2330        .addr = (uint64_t) &prop,
2331    };
2332    int rc;
2333
2334    if (!model) {
2335        /* compatibility handling if cpu models are disabled */
2336        if (kvm_s390_cmma_available()) {
2337            kvm_s390_enable_cmma();
2338        }
2339        return;
2340    }
2341    if (!kvm_s390_cpu_models_supported()) {
2342        error_setg(errp, "KVM doesn't support CPU models");
2343        return;
2344    }
2345    prop.cpuid = s390_cpuid_from_cpu_model(model);
2346    prop.ibc = s390_ibc_from_cpu_model(model);
2347    /* configure cpu features indicated via STFL(e) */
2348    s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2349                         (uint8_t *) prop.fac_list);
2350    rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2351    if (rc) {
2352        error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2353        return;
2354    }
2355    /* configure cpu features indicated e.g. via SCLP */
2356    rc = configure_cpu_feat(model->features);
2357    if (rc) {
2358        error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2359        return;
2360    }
2361    /* configure cpu subfunctions indicated via query / test bit */
2362    rc = configure_cpu_subfunc(model->features);
2363    if (rc) {
2364        error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2365        return;
2366    }
2367    /* enable CMM via CMMA */
2368    if (test_bit(S390_FEAT_CMM, model->features)) {
2369        kvm_s390_enable_cmma();
2370    }
2371
2372    if (test_bit(S390_FEAT_AP, model->features)) {
2373        kvm_s390_configure_apie(true);
2374    }
2375}
2376
2377void kvm_s390_restart_interrupt(S390CPU *cpu)
2378{
2379    struct kvm_s390_irq irq = {
2380        .type = KVM_S390_RESTART,
2381    };
2382
2383    kvm_s390_vcpu_interrupt(cpu, &irq);
2384}
2385
2386void kvm_s390_stop_interrupt(S390CPU *cpu)
2387{
2388    struct kvm_s390_irq irq = {
2389        .type = KVM_S390_SIGP_STOP,
2390    };
2391
2392    kvm_s390_vcpu_interrupt(cpu, &irq);
2393}
2394