qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/hbitmap.h"
  14#include "qemu/host-utils.h"
  15#include "trace.h"
  16#include "crypto/hash.h"
  17
  18/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  19 * array of unsigned longs, but HBitmap is also optimized to provide fast
  20 * iteration over set bits; going from one bit to the next is O(logB n)
  21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  22 * that the number of levels is in fact fixed.
  23 *
  24 * In order to do this, it stacks multiple bitmaps with progressively coarser
  25 * granularity; in all levels except the last, bit N is set iff the N-th
  26 * unsigned long is nonzero in the immediately next level.  When iteration
  27 * completes on the last level it can examine the 2nd-last level to quickly
  28 * skip entire words, and even do so recursively to skip blocks of 64 words or
  29 * powers thereof (32 on 32-bit machines).
  30 *
  31 * Given an index in the bitmap, it can be split in group of bits like
  32 * this (for the 64-bit case):
  33 *
  34 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  35 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  36 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  37 *
  38 * So it is easy to move up simply by shifting the index right by
  39 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  40 * similarly, and add the word index within the group.  Iteration uses
  41 * ffs (find first set bit) to find the next word to examine; this
  42 * operation can be done in constant time in most current architectures.
  43 *
  44 * Setting or clearing a range of m bits on all levels, the work to perform
  45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  46 *
  47 * When iterating on a bitmap, each bit (on any level) is only visited
  48 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  49 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  51 * cost of advancing from one bit to the next is usually constant (worst case
  52 * O(logB n) as in the non-amortized complexity).
  53 */
  54
  55struct HBitmap {
  56    /* Number of total bits in the bottom level.  */
  57    uint64_t size;
  58
  59    /* Number of set bits in the bottom level.  */
  60    uint64_t count;
  61
  62    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  63     * will actually represent a group of 2^G elements.  Each operation on a
  64     * range of bits first rounds the bits to determine which group they land
  65     * in, and then affect the entire page; iteration will only visit the first
  66     * bit of each group.  Here is an example of operations in a size-16,
  67     * granularity-1 HBitmap:
  68     *
  69     *    initial state            00000000
  70     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  71     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  72     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  73     *    reset(start=5, count=5)  00000000
  74     *
  75     * From an implementation point of view, when setting or resetting bits,
  76     * the bitmap will scale bit numbers right by this amount of bits.  When
  77     * iterating, the bitmap will scale bit numbers left by this amount of
  78     * bits.
  79     */
  80    int granularity;
  81
  82    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
  83    HBitmap *meta;
  84
  85    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  86     * coarsest).  Each bit in level N represents a word in level N+1 that
  87     * has a set bit, except the last level where each bit represents the
  88     * actual bitmap.
  89     *
  90     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  91     * bitmap will still allocate HBITMAP_LEVELS arrays.
  92     */
  93    unsigned long *levels[HBITMAP_LEVELS];
  94
  95    /* The length of each levels[] array. */
  96    uint64_t sizes[HBITMAP_LEVELS];
  97};
  98
  99/* Advance hbi to the next nonzero word and return it.  hbi->pos
 100 * is updated.  Returns zero if we reach the end of the bitmap.
 101 */
 102unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 103{
 104    size_t pos = hbi->pos;
 105    const HBitmap *hb = hbi->hb;
 106    unsigned i = HBITMAP_LEVELS - 1;
 107
 108    unsigned long cur;
 109    do {
 110        i--;
 111        pos >>= BITS_PER_LEVEL;
 112        cur = hbi->cur[i] & hb->levels[i][pos];
 113    } while (cur == 0);
 114
 115    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 116     * bits in the level 0 bitmap; thus we can repurpose the most significant
 117     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 118     * that the above loop ends even without an explicit check on i.
 119     */
 120
 121    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 122        return 0;
 123    }
 124    for (; i < HBITMAP_LEVELS - 1; i++) {
 125        /* Shift back pos to the left, matching the right shifts above.
 126         * The index of this word's least significant set bit provides
 127         * the low-order bits.
 128         */
 129        assert(cur);
 130        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 131        hbi->cur[i] = cur & (cur - 1);
 132
 133        /* Set up next level for iteration.  */
 134        cur = hb->levels[i + 1][pos];
 135    }
 136
 137    hbi->pos = pos;
 138    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 139
 140    assert(cur);
 141    return cur;
 142}
 143
 144int64_t hbitmap_iter_next(HBitmapIter *hbi, bool advance)
 145{
 146    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
 147            hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
 148    int64_t item;
 149
 150    if (cur == 0) {
 151        cur = hbitmap_iter_skip_words(hbi);
 152        if (cur == 0) {
 153            return -1;
 154        }
 155    }
 156
 157    if (advance) {
 158        /* The next call will resume work from the next bit.  */
 159        hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
 160    } else {
 161        hbi->cur[HBITMAP_LEVELS - 1] = cur;
 162    }
 163    item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
 164
 165    return item << hbi->granularity;
 166}
 167
 168void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 169{
 170    unsigned i, bit;
 171    uint64_t pos;
 172
 173    hbi->hb = hb;
 174    pos = first >> hb->granularity;
 175    assert(pos < hb->size);
 176    hbi->pos = pos >> BITS_PER_LEVEL;
 177    hbi->granularity = hb->granularity;
 178
 179    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 180        bit = pos & (BITS_PER_LONG - 1);
 181        pos >>= BITS_PER_LEVEL;
 182
 183        /* Drop bits representing items before first.  */
 184        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 185
 186        /* We have already added level i+1, so the lowest set bit has
 187         * been processed.  Clear it.
 188         */
 189        if (i != HBITMAP_LEVELS - 1) {
 190            hbi->cur[i] &= ~(1UL << bit);
 191        }
 192    }
 193}
 194
 195int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start)
 196{
 197    size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
 198    unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
 199    uint64_t sz = hb->sizes[HBITMAP_LEVELS - 1];
 200    unsigned long cur = last_lev[pos];
 201    unsigned start_bit_offset =
 202            (start >> hb->granularity) & (BITS_PER_LONG - 1);
 203    int64_t res;
 204
 205    cur |= (1UL << start_bit_offset) - 1;
 206    assert((start >> hb->granularity) < hb->size);
 207
 208    if (cur == (unsigned long)-1) {
 209        do {
 210            pos++;
 211        } while (pos < sz && last_lev[pos] == (unsigned long)-1);
 212
 213        if (pos >= sz) {
 214            return -1;
 215        }
 216
 217        cur = last_lev[pos];
 218    }
 219
 220    res = (pos << BITS_PER_LEVEL) + ctol(cur);
 221    if (res >= hb->size) {
 222        return -1;
 223    }
 224
 225    res = res << hb->granularity;
 226    if (res < start) {
 227        assert(((start - res) >> hb->granularity) == 0);
 228        return start;
 229    }
 230
 231    return res;
 232}
 233
 234bool hbitmap_empty(const HBitmap *hb)
 235{
 236    return hb->count == 0;
 237}
 238
 239int hbitmap_granularity(const HBitmap *hb)
 240{
 241    return hb->granularity;
 242}
 243
 244uint64_t hbitmap_count(const HBitmap *hb)
 245{
 246    return hb->count << hb->granularity;
 247}
 248
 249/* Count the number of set bits between start and end, not accounting for
 250 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 251 */
 252static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 253{
 254    HBitmapIter hbi;
 255    uint64_t count = 0;
 256    uint64_t end = last + 1;
 257    unsigned long cur;
 258    size_t pos;
 259
 260    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 261    for (;;) {
 262        pos = hbitmap_iter_next_word(&hbi, &cur);
 263        if (pos >= (end >> BITS_PER_LEVEL)) {
 264            break;
 265        }
 266        count += ctpopl(cur);
 267    }
 268
 269    if (pos == (end >> BITS_PER_LEVEL)) {
 270        /* Drop bits representing the END-th and subsequent items.  */
 271        int bit = end & (BITS_PER_LONG - 1);
 272        cur &= (1UL << bit) - 1;
 273        count += ctpopl(cur);
 274    }
 275
 276    return count;
 277}
 278
 279/* Setting starts at the last layer and propagates up if an element
 280 * changes.
 281 */
 282static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 283{
 284    unsigned long mask;
 285    unsigned long old;
 286
 287    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 288    assert(start <= last);
 289
 290    mask = 2UL << (last & (BITS_PER_LONG - 1));
 291    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 292    old = *elem;
 293    *elem |= mask;
 294    return old != *elem;
 295}
 296
 297/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 298 * Returns true if at least one bit is changed. */
 299static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
 300                           uint64_t last)
 301{
 302    size_t pos = start >> BITS_PER_LEVEL;
 303    size_t lastpos = last >> BITS_PER_LEVEL;
 304    bool changed = false;
 305    size_t i;
 306
 307    i = pos;
 308    if (i < lastpos) {
 309        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 310        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 311        for (;;) {
 312            start = next;
 313            next += BITS_PER_LONG;
 314            if (++i == lastpos) {
 315                break;
 316            }
 317            changed |= (hb->levels[level][i] == 0);
 318            hb->levels[level][i] = ~0UL;
 319        }
 320    }
 321    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 322
 323    /* If there was any change in this layer, we may have to update
 324     * the one above.
 325     */
 326    if (level > 0 && changed) {
 327        hb_set_between(hb, level - 1, pos, lastpos);
 328    }
 329    return changed;
 330}
 331
 332void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 333{
 334    /* Compute range in the last layer.  */
 335    uint64_t first, n;
 336    uint64_t last = start + count - 1;
 337
 338    trace_hbitmap_set(hb, start, count,
 339                      start >> hb->granularity, last >> hb->granularity);
 340
 341    first = start >> hb->granularity;
 342    last >>= hb->granularity;
 343    assert(last < hb->size);
 344    n = last - first + 1;
 345
 346    hb->count += n - hb_count_between(hb, first, last);
 347    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 348        hb->meta) {
 349        hbitmap_set(hb->meta, start, count);
 350    }
 351}
 352
 353/* Resetting works the other way round: propagate up if the new
 354 * value is zero.
 355 */
 356static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 357{
 358    unsigned long mask;
 359    bool blanked;
 360
 361    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 362    assert(start <= last);
 363
 364    mask = 2UL << (last & (BITS_PER_LONG - 1));
 365    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 366    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 367    *elem &= ~mask;
 368    return blanked;
 369}
 370
 371/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 372 * Returns true if at least one bit is changed. */
 373static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
 374                             uint64_t last)
 375{
 376    size_t pos = start >> BITS_PER_LEVEL;
 377    size_t lastpos = last >> BITS_PER_LEVEL;
 378    bool changed = false;
 379    size_t i;
 380
 381    i = pos;
 382    if (i < lastpos) {
 383        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 384
 385        /* Here we need a more complex test than when setting bits.  Even if
 386         * something was changed, we must not blank bits in the upper level
 387         * unless the lower-level word became entirely zero.  So, remove pos
 388         * from the upper-level range if bits remain set.
 389         */
 390        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 391            changed = true;
 392        } else {
 393            pos++;
 394        }
 395
 396        for (;;) {
 397            start = next;
 398            next += BITS_PER_LONG;
 399            if (++i == lastpos) {
 400                break;
 401            }
 402            changed |= (hb->levels[level][i] != 0);
 403            hb->levels[level][i] = 0UL;
 404        }
 405    }
 406
 407    /* Same as above, this time for lastpos.  */
 408    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 409        changed = true;
 410    } else {
 411        lastpos--;
 412    }
 413
 414    if (level > 0 && changed) {
 415        hb_reset_between(hb, level - 1, pos, lastpos);
 416    }
 417
 418    return changed;
 419
 420}
 421
 422void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 423{
 424    /* Compute range in the last layer.  */
 425    uint64_t first;
 426    uint64_t last = start + count - 1;
 427
 428    trace_hbitmap_reset(hb, start, count,
 429                        start >> hb->granularity, last >> hb->granularity);
 430
 431    first = start >> hb->granularity;
 432    last >>= hb->granularity;
 433    assert(last < hb->size);
 434
 435    hb->count -= hb_count_between(hb, first, last);
 436    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 437        hb->meta) {
 438        hbitmap_set(hb->meta, start, count);
 439    }
 440}
 441
 442void hbitmap_reset_all(HBitmap *hb)
 443{
 444    unsigned int i;
 445
 446    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
 447    for (i = HBITMAP_LEVELS; --i >= 1; ) {
 448        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
 449    }
 450
 451    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
 452    hb->count = 0;
 453}
 454
 455bool hbitmap_is_serializable(const HBitmap *hb)
 456{
 457    /* Every serialized chunk must be aligned to 64 bits so that endianness
 458     * requirements can be fulfilled on both 64 bit and 32 bit hosts.
 459     * We have hbitmap_serialization_align() which converts this
 460     * alignment requirement from bitmap bits to items covered (e.g. sectors).
 461     * That value is:
 462     *    64 << hb->granularity
 463     * Since this value must not exceed UINT64_MAX, hb->granularity must be
 464     * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
 465     *
 466     * In order for hbitmap_serialization_align() to always return a
 467     * meaningful value, bitmaps that are to be serialized must have a
 468     * granularity of less than 58. */
 469
 470    return hb->granularity < 58;
 471}
 472
 473bool hbitmap_get(const HBitmap *hb, uint64_t item)
 474{
 475    /* Compute position and bit in the last layer.  */
 476    uint64_t pos = item >> hb->granularity;
 477    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 478    assert(pos < hb->size);
 479
 480    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 481}
 482
 483uint64_t hbitmap_serialization_align(const HBitmap *hb)
 484{
 485    assert(hbitmap_is_serializable(hb));
 486
 487    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
 488     * hosts. */
 489    return UINT64_C(64) << hb->granularity;
 490}
 491
 492/* Start should be aligned to serialization granularity, chunk size should be
 493 * aligned to serialization granularity too, except for last chunk.
 494 */
 495static void serialization_chunk(const HBitmap *hb,
 496                                uint64_t start, uint64_t count,
 497                                unsigned long **first_el, uint64_t *el_count)
 498{
 499    uint64_t last = start + count - 1;
 500    uint64_t gran = hbitmap_serialization_align(hb);
 501
 502    assert((start & (gran - 1)) == 0);
 503    assert((last >> hb->granularity) < hb->size);
 504    if ((last >> hb->granularity) != hb->size - 1) {
 505        assert((count & (gran - 1)) == 0);
 506    }
 507
 508    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
 509    last = (last >> hb->granularity) >> BITS_PER_LEVEL;
 510
 511    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
 512    *el_count = last - start + 1;
 513}
 514
 515uint64_t hbitmap_serialization_size(const HBitmap *hb,
 516                                    uint64_t start, uint64_t count)
 517{
 518    uint64_t el_count;
 519    unsigned long *cur;
 520
 521    if (!count) {
 522        return 0;
 523    }
 524    serialization_chunk(hb, start, count, &cur, &el_count);
 525
 526    return el_count * sizeof(unsigned long);
 527}
 528
 529void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
 530                            uint64_t start, uint64_t count)
 531{
 532    uint64_t el_count;
 533    unsigned long *cur, *end;
 534
 535    if (!count) {
 536        return;
 537    }
 538    serialization_chunk(hb, start, count, &cur, &el_count);
 539    end = cur + el_count;
 540
 541    while (cur != end) {
 542        unsigned long el =
 543            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
 544
 545        memcpy(buf, &el, sizeof(el));
 546        buf += sizeof(el);
 547        cur++;
 548    }
 549}
 550
 551void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
 552                              uint64_t start, uint64_t count,
 553                              bool finish)
 554{
 555    uint64_t el_count;
 556    unsigned long *cur, *end;
 557
 558    if (!count) {
 559        return;
 560    }
 561    serialization_chunk(hb, start, count, &cur, &el_count);
 562    end = cur + el_count;
 563
 564    while (cur != end) {
 565        memcpy(cur, buf, sizeof(*cur));
 566
 567        if (BITS_PER_LONG == 32) {
 568            le32_to_cpus((uint32_t *)cur);
 569        } else {
 570            le64_to_cpus((uint64_t *)cur);
 571        }
 572
 573        buf += sizeof(unsigned long);
 574        cur++;
 575    }
 576    if (finish) {
 577        hbitmap_deserialize_finish(hb);
 578    }
 579}
 580
 581void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
 582                                bool finish)
 583{
 584    uint64_t el_count;
 585    unsigned long *first;
 586
 587    if (!count) {
 588        return;
 589    }
 590    serialization_chunk(hb, start, count, &first, &el_count);
 591
 592    memset(first, 0, el_count * sizeof(unsigned long));
 593    if (finish) {
 594        hbitmap_deserialize_finish(hb);
 595    }
 596}
 597
 598void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
 599                              bool finish)
 600{
 601    uint64_t el_count;
 602    unsigned long *first;
 603
 604    if (!count) {
 605        return;
 606    }
 607    serialization_chunk(hb, start, count, &first, &el_count);
 608
 609    memset(first, 0xff, el_count * sizeof(unsigned long));
 610    if (finish) {
 611        hbitmap_deserialize_finish(hb);
 612    }
 613}
 614
 615void hbitmap_deserialize_finish(HBitmap *bitmap)
 616{
 617    int64_t i, size, prev_size;
 618    int lev;
 619
 620    /* restore levels starting from penultimate to zero level, assuming
 621     * that the last level is ok */
 622    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 623    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
 624        prev_size = size;
 625        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 626        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
 627
 628        for (i = 0; i < prev_size; ++i) {
 629            if (bitmap->levels[lev + 1][i]) {
 630                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
 631                    1UL << (i & (BITS_PER_LONG - 1));
 632            }
 633        }
 634    }
 635
 636    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 637    bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
 638}
 639
 640void hbitmap_free(HBitmap *hb)
 641{
 642    unsigned i;
 643    assert(!hb->meta);
 644    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 645        g_free(hb->levels[i]);
 646    }
 647    g_free(hb);
 648}
 649
 650HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 651{
 652    HBitmap *hb = g_new0(struct HBitmap, 1);
 653    unsigned i;
 654
 655    assert(granularity >= 0 && granularity < 64);
 656    size = (size + (1ULL << granularity) - 1) >> granularity;
 657    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 658
 659    hb->size = size;
 660    hb->granularity = granularity;
 661    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 662        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 663        hb->sizes[i] = size;
 664        hb->levels[i] = g_new0(unsigned long, size);
 665    }
 666
 667    /* We necessarily have free bits in level 0 due to the definition
 668     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 669     * hbitmap_iter_skip_words.
 670     */
 671    assert(size == 1);
 672    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 673    return hb;
 674}
 675
 676void hbitmap_truncate(HBitmap *hb, uint64_t size)
 677{
 678    bool shrink;
 679    unsigned i;
 680    uint64_t num_elements = size;
 681    uint64_t old;
 682
 683    /* Size comes in as logical elements, adjust for granularity. */
 684    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
 685    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 686    shrink = size < hb->size;
 687
 688    /* bit sizes are identical; nothing to do. */
 689    if (size == hb->size) {
 690        return;
 691    }
 692
 693    /* If we're losing bits, let's clear those bits before we invalidate all of
 694     * our invariants. This helps keep the bitcount consistent, and will prevent
 695     * us from carrying around garbage bits beyond the end of the map.
 696     */
 697    if (shrink) {
 698        /* Don't clear partial granularity groups;
 699         * start at the first full one. */
 700        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
 701        uint64_t fix_count = (hb->size << hb->granularity) - start;
 702
 703        assert(fix_count);
 704        hbitmap_reset(hb, start, fix_count);
 705    }
 706
 707    hb->size = size;
 708    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 709        size = MAX(BITS_TO_LONGS(size), 1);
 710        if (hb->sizes[i] == size) {
 711            break;
 712        }
 713        old = hb->sizes[i];
 714        hb->sizes[i] = size;
 715        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
 716        if (!shrink) {
 717            memset(&hb->levels[i][old], 0x00,
 718                   (size - old) * sizeof(*hb->levels[i]));
 719        }
 720    }
 721    if (hb->meta) {
 722        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
 723    }
 724}
 725
 726bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
 727{
 728    return (a->size == b->size) && (a->granularity == b->granularity);
 729}
 730
 731/**
 732 * Given HBitmaps A and B, let A := A (BITOR) B.
 733 * Bitmap B will not be modified.
 734 *
 735 * @return true if the merge was successful,
 736 *         false if it was not attempted.
 737 */
 738bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
 739{
 740    int i;
 741    uint64_t j;
 742
 743    if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
 744        return false;
 745    }
 746    assert(hbitmap_can_merge(b, result));
 747
 748    if (hbitmap_count(b) == 0) {
 749        return true;
 750    }
 751
 752    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
 753     * It may be possible to improve running times for sparsely populated maps
 754     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
 755     */
 756    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
 757        for (j = 0; j < a->sizes[i]; j++) {
 758            result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
 759        }
 760    }
 761
 762    /* Recompute the dirty count */
 763    result->count = hb_count_between(result, 0, result->size - 1);
 764
 765    return true;
 766}
 767
 768HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
 769{
 770    assert(!(chunk_size & (chunk_size - 1)));
 771    assert(!hb->meta);
 772    hb->meta = hbitmap_alloc(hb->size << hb->granularity,
 773                             hb->granularity + ctz32(chunk_size));
 774    return hb->meta;
 775}
 776
 777void hbitmap_free_meta(HBitmap *hb)
 778{
 779    assert(hb->meta);
 780    hbitmap_free(hb->meta);
 781    hb->meta = NULL;
 782}
 783
 784char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
 785{
 786    size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
 787    char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
 788    char *hash = NULL;
 789    qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
 790
 791    return hash;
 792}
 793