qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/option.h"
  21#include "trace.h"
  22#include "qed.h"
  23#include "sysemu/block-backend.h"
  24#include "qapi/qmp/qdict.h"
  25#include "qapi/qobject-input-visitor.h"
  26#include "qapi/qapi-visit-block-core.h"
  27
  28static QemuOptsList qed_create_opts;
  29
  30static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  31                          const char *filename)
  32{
  33    const QEDHeader *header = (const QEDHeader *)buf;
  34
  35    if (buf_size < sizeof(*header)) {
  36        return 0;
  37    }
  38    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  39        return 0;
  40    }
  41    return 100;
  42}
  43
  44/**
  45 * Check whether an image format is raw
  46 *
  47 * @fmt:    Backing file format, may be NULL
  48 */
  49static bool qed_fmt_is_raw(const char *fmt)
  50{
  51    return fmt && strcmp(fmt, "raw") == 0;
  52}
  53
  54static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  55{
  56    cpu->magic = le32_to_cpu(le->magic);
  57    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  58    cpu->table_size = le32_to_cpu(le->table_size);
  59    cpu->header_size = le32_to_cpu(le->header_size);
  60    cpu->features = le64_to_cpu(le->features);
  61    cpu->compat_features = le64_to_cpu(le->compat_features);
  62    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  63    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  64    cpu->image_size = le64_to_cpu(le->image_size);
  65    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  66    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  67}
  68
  69static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  70{
  71    le->magic = cpu_to_le32(cpu->magic);
  72    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  73    le->table_size = cpu_to_le32(cpu->table_size);
  74    le->header_size = cpu_to_le32(cpu->header_size);
  75    le->features = cpu_to_le64(cpu->features);
  76    le->compat_features = cpu_to_le64(cpu->compat_features);
  77    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  78    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  79    le->image_size = cpu_to_le64(cpu->image_size);
  80    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  81    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  82}
  83
  84int qed_write_header_sync(BDRVQEDState *s)
  85{
  86    QEDHeader le;
  87    int ret;
  88
  89    qed_header_cpu_to_le(&s->header, &le);
  90    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  91    if (ret != sizeof(le)) {
  92        return ret;
  93    }
  94    return 0;
  95}
  96
  97/**
  98 * Update header in-place (does not rewrite backing filename or other strings)
  99 *
 100 * This function only updates known header fields in-place and does not affect
 101 * extra data after the QED header.
 102 *
 103 * No new allocating reqs can start while this function runs.
 104 */
 105static int coroutine_fn qed_write_header(BDRVQEDState *s)
 106{
 107    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 108     * the data following the header if an unrecognized compat feature is
 109     * active.  Therefore, first read the sectors containing the header, update
 110     * them, and write back.
 111     */
 112
 113    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 114    size_t len = nsectors * BDRV_SECTOR_SIZE;
 115    uint8_t *buf;
 116    struct iovec iov;
 117    QEMUIOVector qiov;
 118    int ret;
 119
 120    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 121
 122    buf = qemu_blockalign(s->bs, len);
 123    iov = (struct iovec) {
 124        .iov_base = buf,
 125        .iov_len = len,
 126    };
 127    qemu_iovec_init_external(&qiov, &iov, 1);
 128
 129    ret = bdrv_co_preadv(s->bs->file, 0, qiov.size, &qiov, 0);
 130    if (ret < 0) {
 131        goto out;
 132    }
 133
 134    /* Update header */
 135    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 136
 137    ret = bdrv_co_pwritev(s->bs->file, 0, qiov.size,  &qiov, 0);
 138    if (ret < 0) {
 139        goto out;
 140    }
 141
 142    ret = 0;
 143out:
 144    qemu_vfree(buf);
 145    return ret;
 146}
 147
 148static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 149{
 150    uint64_t table_entries;
 151    uint64_t l2_size;
 152
 153    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 154    l2_size = table_entries * cluster_size;
 155
 156    return l2_size * table_entries;
 157}
 158
 159static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 160{
 161    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 162        cluster_size > QED_MAX_CLUSTER_SIZE) {
 163        return false;
 164    }
 165    if (cluster_size & (cluster_size - 1)) {
 166        return false; /* not power of 2 */
 167    }
 168    return true;
 169}
 170
 171static bool qed_is_table_size_valid(uint32_t table_size)
 172{
 173    if (table_size < QED_MIN_TABLE_SIZE ||
 174        table_size > QED_MAX_TABLE_SIZE) {
 175        return false;
 176    }
 177    if (table_size & (table_size - 1)) {
 178        return false; /* not power of 2 */
 179    }
 180    return true;
 181}
 182
 183static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 184                                    uint32_t table_size)
 185{
 186    if (image_size % BDRV_SECTOR_SIZE != 0) {
 187        return false; /* not multiple of sector size */
 188    }
 189    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 190        return false; /* image is too large */
 191    }
 192    return true;
 193}
 194
 195/**
 196 * Read a string of known length from the image file
 197 *
 198 * @file:       Image file
 199 * @offset:     File offset to start of string, in bytes
 200 * @n:          String length in bytes
 201 * @buf:        Destination buffer
 202 * @buflen:     Destination buffer length in bytes
 203 * @ret:        0 on success, -errno on failure
 204 *
 205 * The string is NUL-terminated.
 206 */
 207static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 208                           char *buf, size_t buflen)
 209{
 210    int ret;
 211    if (n >= buflen) {
 212        return -EINVAL;
 213    }
 214    ret = bdrv_pread(file, offset, buf, n);
 215    if (ret < 0) {
 216        return ret;
 217    }
 218    buf[n] = '\0';
 219    return 0;
 220}
 221
 222/**
 223 * Allocate new clusters
 224 *
 225 * @s:          QED state
 226 * @n:          Number of contiguous clusters to allocate
 227 * @ret:        Offset of first allocated cluster
 228 *
 229 * This function only produces the offset where the new clusters should be
 230 * written.  It updates BDRVQEDState but does not make any changes to the image
 231 * file.
 232 *
 233 * Called with table_lock held.
 234 */
 235static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 236{
 237    uint64_t offset = s->file_size;
 238    s->file_size += n * s->header.cluster_size;
 239    return offset;
 240}
 241
 242QEDTable *qed_alloc_table(BDRVQEDState *s)
 243{
 244    /* Honor O_DIRECT memory alignment requirements */
 245    return qemu_blockalign(s->bs,
 246                           s->header.cluster_size * s->header.table_size);
 247}
 248
 249/**
 250 * Allocate a new zeroed L2 table
 251 *
 252 * Called with table_lock held.
 253 */
 254static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 255{
 256    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 257
 258    l2_table->table = qed_alloc_table(s);
 259    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 260
 261    memset(l2_table->table->offsets, 0,
 262           s->header.cluster_size * s->header.table_size);
 263    return l2_table;
 264}
 265
 266static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
 267{
 268    qemu_co_mutex_lock(&s->table_lock);
 269
 270    /* No reentrancy is allowed.  */
 271    assert(!s->allocating_write_reqs_plugged);
 272    if (s->allocating_acb != NULL) {
 273        /* Another allocating write came concurrently.  This cannot happen
 274         * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
 275         */
 276        qemu_co_mutex_unlock(&s->table_lock);
 277        return false;
 278    }
 279
 280    s->allocating_write_reqs_plugged = true;
 281    qemu_co_mutex_unlock(&s->table_lock);
 282    return true;
 283}
 284
 285static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 286{
 287    qemu_co_mutex_lock(&s->table_lock);
 288    assert(s->allocating_write_reqs_plugged);
 289    s->allocating_write_reqs_plugged = false;
 290    qemu_co_queue_next(&s->allocating_write_reqs);
 291    qemu_co_mutex_unlock(&s->table_lock);
 292}
 293
 294static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 295{
 296    BDRVQEDState *s = opaque;
 297    int ret;
 298
 299    trace_qed_need_check_timer_cb(s);
 300
 301    if (!qed_plug_allocating_write_reqs(s)) {
 302        return;
 303    }
 304
 305    /* Ensure writes are on disk before clearing flag */
 306    ret = bdrv_co_flush(s->bs->file->bs);
 307    if (ret < 0) {
 308        qed_unplug_allocating_write_reqs(s);
 309        return;
 310    }
 311
 312    s->header.features &= ~QED_F_NEED_CHECK;
 313    ret = qed_write_header(s);
 314    (void) ret;
 315
 316    qed_unplug_allocating_write_reqs(s);
 317
 318    ret = bdrv_co_flush(s->bs);
 319    (void) ret;
 320}
 321
 322static void qed_need_check_timer_cb(void *opaque)
 323{
 324    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 325    qemu_coroutine_enter(co);
 326}
 327
 328static void qed_start_need_check_timer(BDRVQEDState *s)
 329{
 330    trace_qed_start_need_check_timer(s);
 331
 332    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 333     * migration.
 334     */
 335    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 336                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 337}
 338
 339/* It's okay to call this multiple times or when no timer is started */
 340static void qed_cancel_need_check_timer(BDRVQEDState *s)
 341{
 342    trace_qed_cancel_need_check_timer(s);
 343    timer_del(s->need_check_timer);
 344}
 345
 346static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 347{
 348    BDRVQEDState *s = bs->opaque;
 349
 350    qed_cancel_need_check_timer(s);
 351    timer_free(s->need_check_timer);
 352}
 353
 354static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 355                                        AioContext *new_context)
 356{
 357    BDRVQEDState *s = bs->opaque;
 358
 359    s->need_check_timer = aio_timer_new(new_context,
 360                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 361                                        qed_need_check_timer_cb, s);
 362    if (s->header.features & QED_F_NEED_CHECK) {
 363        qed_start_need_check_timer(s);
 364    }
 365}
 366
 367static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
 368{
 369    BDRVQEDState *s = bs->opaque;
 370
 371    /* Fire the timer immediately in order to start doing I/O as soon as the
 372     * header is flushed.
 373     */
 374    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 375        qed_cancel_need_check_timer(s);
 376        qed_need_check_timer_entry(s);
 377    }
 378}
 379
 380static void bdrv_qed_init_state(BlockDriverState *bs)
 381{
 382    BDRVQEDState *s = bs->opaque;
 383
 384    memset(s, 0, sizeof(BDRVQEDState));
 385    s->bs = bs;
 386    qemu_co_mutex_init(&s->table_lock);
 387    qemu_co_queue_init(&s->allocating_write_reqs);
 388}
 389
 390/* Called with table_lock held.  */
 391static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
 392                                         int flags, Error **errp)
 393{
 394    BDRVQEDState *s = bs->opaque;
 395    QEDHeader le_header;
 396    int64_t file_size;
 397    int ret;
 398
 399    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 400    if (ret < 0) {
 401        return ret;
 402    }
 403    qed_header_le_to_cpu(&le_header, &s->header);
 404
 405    if (s->header.magic != QED_MAGIC) {
 406        error_setg(errp, "Image not in QED format");
 407        return -EINVAL;
 408    }
 409    if (s->header.features & ~QED_FEATURE_MASK) {
 410        /* image uses unsupported feature bits */
 411        error_setg(errp, "Unsupported QED features: %" PRIx64,
 412                   s->header.features & ~QED_FEATURE_MASK);
 413        return -ENOTSUP;
 414    }
 415    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 416        return -EINVAL;
 417    }
 418
 419    /* Round down file size to the last cluster */
 420    file_size = bdrv_getlength(bs->file->bs);
 421    if (file_size < 0) {
 422        return file_size;
 423    }
 424    s->file_size = qed_start_of_cluster(s, file_size);
 425
 426    if (!qed_is_table_size_valid(s->header.table_size)) {
 427        return -EINVAL;
 428    }
 429    if (!qed_is_image_size_valid(s->header.image_size,
 430                                 s->header.cluster_size,
 431                                 s->header.table_size)) {
 432        return -EINVAL;
 433    }
 434    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 435        return -EINVAL;
 436    }
 437
 438    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 439                      sizeof(uint64_t);
 440    s->l2_shift = ctz32(s->header.cluster_size);
 441    s->l2_mask = s->table_nelems - 1;
 442    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 443
 444    /* Header size calculation must not overflow uint32_t */
 445    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 446        return -EINVAL;
 447    }
 448
 449    if ((s->header.features & QED_F_BACKING_FILE)) {
 450        if ((uint64_t)s->header.backing_filename_offset +
 451            s->header.backing_filename_size >
 452            s->header.cluster_size * s->header.header_size) {
 453            return -EINVAL;
 454        }
 455
 456        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 457                              s->header.backing_filename_size, bs->backing_file,
 458                              sizeof(bs->backing_file));
 459        if (ret < 0) {
 460            return ret;
 461        }
 462
 463        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 464            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 465        }
 466    }
 467
 468    /* Reset unknown autoclear feature bits.  This is a backwards
 469     * compatibility mechanism that allows images to be opened by older
 470     * programs, which "knock out" unknown feature bits.  When an image is
 471     * opened by a newer program again it can detect that the autoclear
 472     * feature is no longer valid.
 473     */
 474    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 475        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 476        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 477
 478        ret = qed_write_header_sync(s);
 479        if (ret) {
 480            return ret;
 481        }
 482
 483        /* From here on only known autoclear feature bits are valid */
 484        bdrv_flush(bs->file->bs);
 485    }
 486
 487    s->l1_table = qed_alloc_table(s);
 488    qed_init_l2_cache(&s->l2_cache);
 489
 490    ret = qed_read_l1_table_sync(s);
 491    if (ret) {
 492        goto out;
 493    }
 494
 495    /* If image was not closed cleanly, check consistency */
 496    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 497        /* Read-only images cannot be fixed.  There is no risk of corruption
 498         * since write operations are not possible.  Therefore, allow
 499         * potentially inconsistent images to be opened read-only.  This can
 500         * aid data recovery from an otherwise inconsistent image.
 501         */
 502        if (!bdrv_is_read_only(bs->file->bs) &&
 503            !(flags & BDRV_O_INACTIVE)) {
 504            BdrvCheckResult result = {0};
 505
 506            ret = qed_check(s, &result, true);
 507            if (ret) {
 508                goto out;
 509            }
 510        }
 511    }
 512
 513    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 514
 515out:
 516    if (ret) {
 517        qed_free_l2_cache(&s->l2_cache);
 518        qemu_vfree(s->l1_table);
 519    }
 520    return ret;
 521}
 522
 523typedef struct QEDOpenCo {
 524    BlockDriverState *bs;
 525    QDict *options;
 526    int flags;
 527    Error **errp;
 528    int ret;
 529} QEDOpenCo;
 530
 531static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 532{
 533    QEDOpenCo *qoc = opaque;
 534    BDRVQEDState *s = qoc->bs->opaque;
 535
 536    qemu_co_mutex_lock(&s->table_lock);
 537    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 538    qemu_co_mutex_unlock(&s->table_lock);
 539}
 540
 541static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 542                         Error **errp)
 543{
 544    QEDOpenCo qoc = {
 545        .bs = bs,
 546        .options = options,
 547        .flags = flags,
 548        .errp = errp,
 549        .ret = -EINPROGRESS
 550    };
 551
 552    bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
 553                               false, errp);
 554    if (!bs->file) {
 555        return -EINVAL;
 556    }
 557
 558    bdrv_qed_init_state(bs);
 559    if (qemu_in_coroutine()) {
 560        bdrv_qed_open_entry(&qoc);
 561    } else {
 562        assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 563        qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 564        BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 565    }
 566    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 567    return qoc.ret;
 568}
 569
 570static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 571{
 572    BDRVQEDState *s = bs->opaque;
 573
 574    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 575}
 576
 577/* We have nothing to do for QED reopen, stubs just return
 578 * success */
 579static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 580                                   BlockReopenQueue *queue, Error **errp)
 581{
 582    return 0;
 583}
 584
 585static void bdrv_qed_close(BlockDriverState *bs)
 586{
 587    BDRVQEDState *s = bs->opaque;
 588
 589    bdrv_qed_detach_aio_context(bs);
 590
 591    /* Ensure writes reach stable storage */
 592    bdrv_flush(bs->file->bs);
 593
 594    /* Clean shutdown, no check required on next open */
 595    if (s->header.features & QED_F_NEED_CHECK) {
 596        s->header.features &= ~QED_F_NEED_CHECK;
 597        qed_write_header_sync(s);
 598    }
 599
 600    qed_free_l2_cache(&s->l2_cache);
 601    qemu_vfree(s->l1_table);
 602}
 603
 604static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
 605                                           Error **errp)
 606{
 607    BlockdevCreateOptionsQed *qed_opts;
 608    BlockBackend *blk = NULL;
 609    BlockDriverState *bs = NULL;
 610
 611    QEDHeader header;
 612    QEDHeader le_header;
 613    uint8_t *l1_table = NULL;
 614    size_t l1_size;
 615    int ret = 0;
 616
 617    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 618    qed_opts = &opts->u.qed;
 619
 620    /* Validate options and set default values */
 621    if (!qed_opts->has_cluster_size) {
 622        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 623    }
 624    if (!qed_opts->has_table_size) {
 625        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 626    }
 627
 628    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 629        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 630                         "and power of 2",
 631                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 632        return -EINVAL;
 633    }
 634    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 635        error_setg(errp, "QED table size must be within range [%u, %u] "
 636                         "and power of 2",
 637                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 638        return -EINVAL;
 639    }
 640    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 641                                 qed_opts->table_size))
 642    {
 643        error_setg(errp, "QED image size must be a non-zero multiple of "
 644                         "cluster size and less than %" PRIu64 " bytes",
 645                   qed_max_image_size(qed_opts->cluster_size,
 646                                      qed_opts->table_size));
 647        return -EINVAL;
 648    }
 649
 650    /* Create BlockBackend to write to the image */
 651    bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
 652    if (bs == NULL) {
 653        return -EIO;
 654    }
 655
 656    blk = blk_new(BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
 657    ret = blk_insert_bs(blk, bs, errp);
 658    if (ret < 0) {
 659        goto out;
 660    }
 661    blk_set_allow_write_beyond_eof(blk, true);
 662
 663    /* Prepare image format */
 664    header = (QEDHeader) {
 665        .magic = QED_MAGIC,
 666        .cluster_size = qed_opts->cluster_size,
 667        .table_size = qed_opts->table_size,
 668        .header_size = 1,
 669        .features = 0,
 670        .compat_features = 0,
 671        .l1_table_offset = qed_opts->cluster_size,
 672        .image_size = qed_opts->size,
 673    };
 674
 675    l1_size = header.cluster_size * header.table_size;
 676
 677    /* File must start empty and grow, check truncate is supported */
 678    ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
 679    if (ret < 0) {
 680        goto out;
 681    }
 682
 683    if (qed_opts->has_backing_file) {
 684        header.features |= QED_F_BACKING_FILE;
 685        header.backing_filename_offset = sizeof(le_header);
 686        header.backing_filename_size = strlen(qed_opts->backing_file);
 687
 688        if (qed_opts->has_backing_fmt) {
 689            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 690            if (qed_fmt_is_raw(backing_fmt)) {
 691                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 692            }
 693        }
 694    }
 695
 696    qed_header_cpu_to_le(&header, &le_header);
 697    ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
 698    if (ret < 0) {
 699        goto out;
 700    }
 701    ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
 702                     header.backing_filename_size, 0);
 703    if (ret < 0) {
 704        goto out;
 705    }
 706
 707    l1_table = g_malloc0(l1_size);
 708    ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
 709    if (ret < 0) {
 710        goto out;
 711    }
 712
 713    ret = 0; /* success */
 714out:
 715    g_free(l1_table);
 716    blk_unref(blk);
 717    bdrv_unref(bs);
 718    return ret;
 719}
 720
 721static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
 722                                                QemuOpts *opts,
 723                                                Error **errp)
 724{
 725    BlockdevCreateOptions *create_options = NULL;
 726    QDict *qdict;
 727    Visitor *v;
 728    BlockDriverState *bs = NULL;
 729    Error *local_err = NULL;
 730    int ret;
 731
 732    static const QDictRenames opt_renames[] = {
 733        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 734        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 735        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 736        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 737        { NULL, NULL },
 738    };
 739
 740    /* Parse options and convert legacy syntax */
 741    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 742
 743    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 744        ret = -EINVAL;
 745        goto fail;
 746    }
 747
 748    /* Create and open the file (protocol layer) */
 749    ret = bdrv_create_file(filename, opts, &local_err);
 750    if (ret < 0) {
 751        error_propagate(errp, local_err);
 752        goto fail;
 753    }
 754
 755    bs = bdrv_open(filename, NULL, NULL,
 756                   BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 757    if (bs == NULL) {
 758        ret = -EIO;
 759        goto fail;
 760    }
 761
 762    /* Now get the QAPI type BlockdevCreateOptions */
 763    qdict_put_str(qdict, "driver", "qed");
 764    qdict_put_str(qdict, "file", bs->node_name);
 765
 766    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 767    if (!v) {
 768        ret = -EINVAL;
 769        goto fail;
 770    }
 771
 772    visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
 773    visit_free(v);
 774
 775    if (local_err) {
 776        error_propagate(errp, local_err);
 777        ret = -EINVAL;
 778        goto fail;
 779    }
 780
 781    /* Silently round up size */
 782    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 783    create_options->u.qed.size =
 784        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 785
 786    /* Create the qed image (format layer) */
 787    ret = bdrv_qed_co_create(create_options, errp);
 788
 789fail:
 790    qobject_unref(qdict);
 791    bdrv_unref(bs);
 792    qapi_free_BlockdevCreateOptions(create_options);
 793    return ret;
 794}
 795
 796static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
 797                                                 bool want_zero,
 798                                                 int64_t pos, int64_t bytes,
 799                                                 int64_t *pnum, int64_t *map,
 800                                                 BlockDriverState **file)
 801{
 802    BDRVQEDState *s = bs->opaque;
 803    size_t len = MIN(bytes, SIZE_MAX);
 804    int status;
 805    QEDRequest request = { .l2_table = NULL };
 806    uint64_t offset;
 807    int ret;
 808
 809    qemu_co_mutex_lock(&s->table_lock);
 810    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 811
 812    *pnum = len;
 813    switch (ret) {
 814    case QED_CLUSTER_FOUND:
 815        *map = offset | qed_offset_into_cluster(s, pos);
 816        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 817        *file = bs->file->bs;
 818        break;
 819    case QED_CLUSTER_ZERO:
 820        status = BDRV_BLOCK_ZERO;
 821        break;
 822    case QED_CLUSTER_L2:
 823    case QED_CLUSTER_L1:
 824        status = 0;
 825        break;
 826    default:
 827        assert(ret < 0);
 828        status = ret;
 829        break;
 830    }
 831
 832    qed_unref_l2_cache_entry(request.l2_table);
 833    qemu_co_mutex_unlock(&s->table_lock);
 834
 835    return status;
 836}
 837
 838static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 839{
 840    return acb->bs->opaque;
 841}
 842
 843/**
 844 * Read from the backing file or zero-fill if no backing file
 845 *
 846 * @s:              QED state
 847 * @pos:            Byte position in device
 848 * @qiov:           Destination I/O vector
 849 * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
 850 * @cb:             Completion function
 851 * @opaque:         User data for completion function
 852 *
 853 * This function reads qiov->size bytes starting at pos from the backing file.
 854 * If there is no backing file then zeroes are read.
 855 */
 856static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 857                                              QEMUIOVector *qiov,
 858                                              QEMUIOVector **backing_qiov)
 859{
 860    uint64_t backing_length = 0;
 861    size_t size;
 862    int ret;
 863
 864    /* If there is a backing file, get its length.  Treat the absence of a
 865     * backing file like a zero length backing file.
 866     */
 867    if (s->bs->backing) {
 868        int64_t l = bdrv_getlength(s->bs->backing->bs);
 869        if (l < 0) {
 870            return l;
 871        }
 872        backing_length = l;
 873    }
 874
 875    /* Zero all sectors if reading beyond the end of the backing file */
 876    if (pos >= backing_length ||
 877        pos + qiov->size > backing_length) {
 878        qemu_iovec_memset(qiov, 0, 0, qiov->size);
 879    }
 880
 881    /* Complete now if there are no backing file sectors to read */
 882    if (pos >= backing_length) {
 883        return 0;
 884    }
 885
 886    /* If the read straddles the end of the backing file, shorten it */
 887    size = MIN((uint64_t)backing_length - pos, qiov->size);
 888
 889    assert(*backing_qiov == NULL);
 890    *backing_qiov = g_new(QEMUIOVector, 1);
 891    qemu_iovec_init(*backing_qiov, qiov->niov);
 892    qemu_iovec_concat(*backing_qiov, qiov, 0, size);
 893
 894    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 895    ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
 896    if (ret < 0) {
 897        return ret;
 898    }
 899    return 0;
 900}
 901
 902/**
 903 * Copy data from backing file into the image
 904 *
 905 * @s:          QED state
 906 * @pos:        Byte position in device
 907 * @len:        Number of bytes
 908 * @offset:     Byte offset in image file
 909 */
 910static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
 911                                                   uint64_t pos, uint64_t len,
 912                                                   uint64_t offset)
 913{
 914    QEMUIOVector qiov;
 915    QEMUIOVector *backing_qiov = NULL;
 916    struct iovec iov;
 917    int ret;
 918
 919    /* Skip copy entirely if there is no work to do */
 920    if (len == 0) {
 921        return 0;
 922    }
 923
 924    iov = (struct iovec) {
 925        .iov_base = qemu_blockalign(s->bs, len),
 926        .iov_len = len,
 927    };
 928    qemu_iovec_init_external(&qiov, &iov, 1);
 929
 930    ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
 931
 932    if (backing_qiov) {
 933        qemu_iovec_destroy(backing_qiov);
 934        g_free(backing_qiov);
 935        backing_qiov = NULL;
 936    }
 937
 938    if (ret) {
 939        goto out;
 940    }
 941
 942    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 943    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 944    if (ret < 0) {
 945        goto out;
 946    }
 947    ret = 0;
 948out:
 949    qemu_vfree(iov.iov_base);
 950    return ret;
 951}
 952
 953/**
 954 * Link one or more contiguous clusters into a table
 955 *
 956 * @s:              QED state
 957 * @table:          L2 table
 958 * @index:          First cluster index
 959 * @n:              Number of contiguous clusters
 960 * @cluster:        First cluster offset
 961 *
 962 * The cluster offset may be an allocated byte offset in the image file, the
 963 * zero cluster marker, or the unallocated cluster marker.
 964 *
 965 * Called with table_lock held.
 966 */
 967static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 968                                             int index, unsigned int n,
 969                                             uint64_t cluster)
 970{
 971    int i;
 972    for (i = index; i < index + n; i++) {
 973        table->offsets[i] = cluster;
 974        if (!qed_offset_is_unalloc_cluster(cluster) &&
 975            !qed_offset_is_zero_cluster(cluster)) {
 976            cluster += s->header.cluster_size;
 977        }
 978    }
 979}
 980
 981/* Called with table_lock held.  */
 982static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 983{
 984    BDRVQEDState *s = acb_to_s(acb);
 985
 986    /* Free resources */
 987    qemu_iovec_destroy(&acb->cur_qiov);
 988    qed_unref_l2_cache_entry(acb->request.l2_table);
 989
 990    /* Free the buffer we may have allocated for zero writes */
 991    if (acb->flags & QED_AIOCB_ZERO) {
 992        qemu_vfree(acb->qiov->iov[0].iov_base);
 993        acb->qiov->iov[0].iov_base = NULL;
 994    }
 995
 996    /* Start next allocating write request waiting behind this one.  Note that
 997     * requests enqueue themselves when they first hit an unallocated cluster
 998     * but they wait until the entire request is finished before waking up the
 999     * next request in the queue.  This ensures that we don't cycle through
1000     * requests multiple times but rather finish one at a time completely.
1001     */
1002    if (acb == s->allocating_acb) {
1003        s->allocating_acb = NULL;
1004        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
1005            qemu_co_queue_next(&s->allocating_write_reqs);
1006        } else if (s->header.features & QED_F_NEED_CHECK) {
1007            qed_start_need_check_timer(s);
1008        }
1009    }
1010}
1011
1012/**
1013 * Update L1 table with new L2 table offset and write it out
1014 *
1015 * Called with table_lock held.
1016 */
1017static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1018{
1019    BDRVQEDState *s = acb_to_s(acb);
1020    CachedL2Table *l2_table = acb->request.l2_table;
1021    uint64_t l2_offset = l2_table->offset;
1022    int index, ret;
1023
1024    index = qed_l1_index(s, acb->cur_pos);
1025    s->l1_table->offsets[index] = l2_table->offset;
1026
1027    ret = qed_write_l1_table(s, index, 1);
1028
1029    /* Commit the current L2 table to the cache */
1030    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1031
1032    /* This is guaranteed to succeed because we just committed the entry to the
1033     * cache.
1034     */
1035    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1036    assert(acb->request.l2_table != NULL);
1037
1038    return ret;
1039}
1040
1041
1042/**
1043 * Update L2 table with new cluster offsets and write them out
1044 *
1045 * Called with table_lock held.
1046 */
1047static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1048{
1049    BDRVQEDState *s = acb_to_s(acb);
1050    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1051    int index, ret;
1052
1053    if (need_alloc) {
1054        qed_unref_l2_cache_entry(acb->request.l2_table);
1055        acb->request.l2_table = qed_new_l2_table(s);
1056    }
1057
1058    index = qed_l2_index(s, acb->cur_pos);
1059    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1060                         offset);
1061
1062    if (need_alloc) {
1063        /* Write out the whole new L2 table */
1064        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1065        if (ret) {
1066            return ret;
1067        }
1068        return qed_aio_write_l1_update(acb);
1069    } else {
1070        /* Write out only the updated part of the L2 table */
1071        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1072                                 false);
1073        if (ret) {
1074            return ret;
1075        }
1076    }
1077    return 0;
1078}
1079
1080/**
1081 * Write data to the image file
1082 *
1083 * Called with table_lock *not* held.
1084 */
1085static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1086{
1087    BDRVQEDState *s = acb_to_s(acb);
1088    uint64_t offset = acb->cur_cluster +
1089                      qed_offset_into_cluster(s, acb->cur_pos);
1090
1091    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1092
1093    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1094    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1095                           &acb->cur_qiov, 0);
1096}
1097
1098/**
1099 * Populate untouched regions of new data cluster
1100 *
1101 * Called with table_lock held.
1102 */
1103static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1104{
1105    BDRVQEDState *s = acb_to_s(acb);
1106    uint64_t start, len, offset;
1107    int ret;
1108
1109    qemu_co_mutex_unlock(&s->table_lock);
1110
1111    /* Populate front untouched region of new data cluster */
1112    start = qed_start_of_cluster(s, acb->cur_pos);
1113    len = qed_offset_into_cluster(s, acb->cur_pos);
1114
1115    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1116    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1117    if (ret < 0) {
1118        goto out;
1119    }
1120
1121    /* Populate back untouched region of new data cluster */
1122    start = acb->cur_pos + acb->cur_qiov.size;
1123    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1124    offset = acb->cur_cluster +
1125             qed_offset_into_cluster(s, acb->cur_pos) +
1126             acb->cur_qiov.size;
1127
1128    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1129    ret = qed_copy_from_backing_file(s, start, len, offset);
1130    if (ret < 0) {
1131        goto out;
1132    }
1133
1134    ret = qed_aio_write_main(acb);
1135    if (ret < 0) {
1136        goto out;
1137    }
1138
1139    if (s->bs->backing) {
1140        /*
1141         * Flush new data clusters before updating the L2 table
1142         *
1143         * This flush is necessary when a backing file is in use.  A crash
1144         * during an allocating write could result in empty clusters in the
1145         * image.  If the write only touched a subregion of the cluster,
1146         * then backing image sectors have been lost in the untouched
1147         * region.  The solution is to flush after writing a new data
1148         * cluster and before updating the L2 table.
1149         */
1150        ret = bdrv_co_flush(s->bs->file->bs);
1151    }
1152
1153out:
1154    qemu_co_mutex_lock(&s->table_lock);
1155    return ret;
1156}
1157
1158/**
1159 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1160 */
1161static bool qed_should_set_need_check(BDRVQEDState *s)
1162{
1163    /* The flush before L2 update path ensures consistency */
1164    if (s->bs->backing) {
1165        return false;
1166    }
1167
1168    return !(s->header.features & QED_F_NEED_CHECK);
1169}
1170
1171/**
1172 * Write new data cluster
1173 *
1174 * @acb:        Write request
1175 * @len:        Length in bytes
1176 *
1177 * This path is taken when writing to previously unallocated clusters.
1178 *
1179 * Called with table_lock held.
1180 */
1181static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1182{
1183    BDRVQEDState *s = acb_to_s(acb);
1184    int ret;
1185
1186    /* Cancel timer when the first allocating request comes in */
1187    if (s->allocating_acb == NULL) {
1188        qed_cancel_need_check_timer(s);
1189    }
1190
1191    /* Freeze this request if another allocating write is in progress */
1192    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1193        if (s->allocating_acb != NULL) {
1194            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1195            assert(s->allocating_acb == NULL);
1196        }
1197        s->allocating_acb = acb;
1198        return -EAGAIN; /* start over with looking up table entries */
1199    }
1200
1201    acb->cur_nclusters = qed_bytes_to_clusters(s,
1202            qed_offset_into_cluster(s, acb->cur_pos) + len);
1203    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1204
1205    if (acb->flags & QED_AIOCB_ZERO) {
1206        /* Skip ahead if the clusters are already zero */
1207        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1208            return 0;
1209        }
1210        acb->cur_cluster = 1;
1211    } else {
1212        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1213    }
1214
1215    if (qed_should_set_need_check(s)) {
1216        s->header.features |= QED_F_NEED_CHECK;
1217        ret = qed_write_header(s);
1218        if (ret < 0) {
1219            return ret;
1220        }
1221    }
1222
1223    if (!(acb->flags & QED_AIOCB_ZERO)) {
1224        ret = qed_aio_write_cow(acb);
1225        if (ret < 0) {
1226            return ret;
1227        }
1228    }
1229
1230    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1231}
1232
1233/**
1234 * Write data cluster in place
1235 *
1236 * @acb:        Write request
1237 * @offset:     Cluster offset in bytes
1238 * @len:        Length in bytes
1239 *
1240 * This path is taken when writing to already allocated clusters.
1241 *
1242 * Called with table_lock held.
1243 */
1244static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1245                                              size_t len)
1246{
1247    BDRVQEDState *s = acb_to_s(acb);
1248    int r;
1249
1250    qemu_co_mutex_unlock(&s->table_lock);
1251
1252    /* Allocate buffer for zero writes */
1253    if (acb->flags & QED_AIOCB_ZERO) {
1254        struct iovec *iov = acb->qiov->iov;
1255
1256        if (!iov->iov_base) {
1257            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1258            if (iov->iov_base == NULL) {
1259                r = -ENOMEM;
1260                goto out;
1261            }
1262            memset(iov->iov_base, 0, iov->iov_len);
1263        }
1264    }
1265
1266    /* Calculate the I/O vector */
1267    acb->cur_cluster = offset;
1268    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1269
1270    /* Do the actual write.  */
1271    r = qed_aio_write_main(acb);
1272out:
1273    qemu_co_mutex_lock(&s->table_lock);
1274    return r;
1275}
1276
1277/**
1278 * Write data cluster
1279 *
1280 * @opaque:     Write request
1281 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1282 * @offset:     Cluster offset in bytes
1283 * @len:        Length in bytes
1284 *
1285 * Called with table_lock held.
1286 */
1287static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1288                                           uint64_t offset, size_t len)
1289{
1290    QEDAIOCB *acb = opaque;
1291
1292    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1293
1294    acb->find_cluster_ret = ret;
1295
1296    switch (ret) {
1297    case QED_CLUSTER_FOUND:
1298        return qed_aio_write_inplace(acb, offset, len);
1299
1300    case QED_CLUSTER_L2:
1301    case QED_CLUSTER_L1:
1302    case QED_CLUSTER_ZERO:
1303        return qed_aio_write_alloc(acb, len);
1304
1305    default:
1306        g_assert_not_reached();
1307    }
1308}
1309
1310/**
1311 * Read data cluster
1312 *
1313 * @opaque:     Read request
1314 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1315 * @offset:     Cluster offset in bytes
1316 * @len:        Length in bytes
1317 *
1318 * Called with table_lock held.
1319 */
1320static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1321                                          uint64_t offset, size_t len)
1322{
1323    QEDAIOCB *acb = opaque;
1324    BDRVQEDState *s = acb_to_s(acb);
1325    BlockDriverState *bs = acb->bs;
1326    int r;
1327
1328    qemu_co_mutex_unlock(&s->table_lock);
1329
1330    /* Adjust offset into cluster */
1331    offset += qed_offset_into_cluster(s, acb->cur_pos);
1332
1333    trace_qed_aio_read_data(s, acb, ret, offset, len);
1334
1335    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1336
1337    /* Handle zero cluster and backing file reads, otherwise read
1338     * data cluster directly.
1339     */
1340    if (ret == QED_CLUSTER_ZERO) {
1341        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1342        r = 0;
1343    } else if (ret != QED_CLUSTER_FOUND) {
1344        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1345                                  &acb->backing_qiov);
1346    } else {
1347        BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1348        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1349                           &acb->cur_qiov, 0);
1350    }
1351
1352    qemu_co_mutex_lock(&s->table_lock);
1353    return r;
1354}
1355
1356/**
1357 * Begin next I/O or complete the request
1358 */
1359static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1360{
1361    BDRVQEDState *s = acb_to_s(acb);
1362    uint64_t offset;
1363    size_t len;
1364    int ret;
1365
1366    qemu_co_mutex_lock(&s->table_lock);
1367    while (1) {
1368        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1369
1370        if (acb->backing_qiov) {
1371            qemu_iovec_destroy(acb->backing_qiov);
1372            g_free(acb->backing_qiov);
1373            acb->backing_qiov = NULL;
1374        }
1375
1376        acb->qiov_offset += acb->cur_qiov.size;
1377        acb->cur_pos += acb->cur_qiov.size;
1378        qemu_iovec_reset(&acb->cur_qiov);
1379
1380        /* Complete request */
1381        if (acb->cur_pos >= acb->end_pos) {
1382            ret = 0;
1383            break;
1384        }
1385
1386        /* Find next cluster and start I/O */
1387        len = acb->end_pos - acb->cur_pos;
1388        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1389        if (ret < 0) {
1390            break;
1391        }
1392
1393        if (acb->flags & QED_AIOCB_WRITE) {
1394            ret = qed_aio_write_data(acb, ret, offset, len);
1395        } else {
1396            ret = qed_aio_read_data(acb, ret, offset, len);
1397        }
1398
1399        if (ret < 0 && ret != -EAGAIN) {
1400            break;
1401        }
1402    }
1403
1404    trace_qed_aio_complete(s, acb, ret);
1405    qed_aio_complete(acb);
1406    qemu_co_mutex_unlock(&s->table_lock);
1407    return ret;
1408}
1409
1410static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1411                                       QEMUIOVector *qiov, int nb_sectors,
1412                                       int flags)
1413{
1414    QEDAIOCB acb = {
1415        .bs         = bs,
1416        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1417        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1418        .qiov       = qiov,
1419        .flags      = flags,
1420    };
1421    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1422
1423    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1424
1425    /* Start request */
1426    return qed_aio_next_io(&acb);
1427}
1428
1429static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1430                                          int64_t sector_num, int nb_sectors,
1431                                          QEMUIOVector *qiov)
1432{
1433    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1434}
1435
1436static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1437                                           int64_t sector_num, int nb_sectors,
1438                                           QEMUIOVector *qiov, int flags)
1439{
1440    assert(!flags);
1441    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1442}
1443
1444static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1445                                                  int64_t offset,
1446                                                  int bytes,
1447                                                  BdrvRequestFlags flags)
1448{
1449    BDRVQEDState *s = bs->opaque;
1450    QEMUIOVector qiov;
1451    struct iovec iov;
1452
1453    /* Fall back if the request is not aligned */
1454    if (qed_offset_into_cluster(s, offset) ||
1455        qed_offset_into_cluster(s, bytes)) {
1456        return -ENOTSUP;
1457    }
1458
1459    /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1460     * then it will be allocated during request processing.
1461     */
1462    iov.iov_base = NULL;
1463    iov.iov_len = bytes;
1464
1465    qemu_iovec_init_external(&qiov, &iov, 1);
1466    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1467                          bytes >> BDRV_SECTOR_BITS,
1468                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1469}
1470
1471static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1472                                             int64_t offset,
1473                                             PreallocMode prealloc,
1474                                             Error **errp)
1475{
1476    BDRVQEDState *s = bs->opaque;
1477    uint64_t old_image_size;
1478    int ret;
1479
1480    if (prealloc != PREALLOC_MODE_OFF) {
1481        error_setg(errp, "Unsupported preallocation mode '%s'",
1482                   PreallocMode_str(prealloc));
1483        return -ENOTSUP;
1484    }
1485
1486    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1487                                 s->header.table_size)) {
1488        error_setg(errp, "Invalid image size specified");
1489        return -EINVAL;
1490    }
1491
1492    if ((uint64_t)offset < s->header.image_size) {
1493        error_setg(errp, "Shrinking images is currently not supported");
1494        return -ENOTSUP;
1495    }
1496
1497    old_image_size = s->header.image_size;
1498    s->header.image_size = offset;
1499    ret = qed_write_header_sync(s);
1500    if (ret < 0) {
1501        s->header.image_size = old_image_size;
1502        error_setg_errno(errp, -ret, "Failed to update the image size");
1503    }
1504    return ret;
1505}
1506
1507static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1508{
1509    BDRVQEDState *s = bs->opaque;
1510    return s->header.image_size;
1511}
1512
1513static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1514{
1515    BDRVQEDState *s = bs->opaque;
1516
1517    memset(bdi, 0, sizeof(*bdi));
1518    bdi->cluster_size = s->header.cluster_size;
1519    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1520    bdi->unallocated_blocks_are_zero = true;
1521    return 0;
1522}
1523
1524static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1525                                        const char *backing_file,
1526                                        const char *backing_fmt)
1527{
1528    BDRVQEDState *s = bs->opaque;
1529    QEDHeader new_header, le_header;
1530    void *buffer;
1531    size_t buffer_len, backing_file_len;
1532    int ret;
1533
1534    /* Refuse to set backing filename if unknown compat feature bits are
1535     * active.  If the image uses an unknown compat feature then we may not
1536     * know the layout of data following the header structure and cannot safely
1537     * add a new string.
1538     */
1539    if (backing_file && (s->header.compat_features &
1540                         ~QED_COMPAT_FEATURE_MASK)) {
1541        return -ENOTSUP;
1542    }
1543
1544    memcpy(&new_header, &s->header, sizeof(new_header));
1545
1546    new_header.features &= ~(QED_F_BACKING_FILE |
1547                             QED_F_BACKING_FORMAT_NO_PROBE);
1548
1549    /* Adjust feature flags */
1550    if (backing_file) {
1551        new_header.features |= QED_F_BACKING_FILE;
1552
1553        if (qed_fmt_is_raw(backing_fmt)) {
1554            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1555        }
1556    }
1557
1558    /* Calculate new header size */
1559    backing_file_len = 0;
1560
1561    if (backing_file) {
1562        backing_file_len = strlen(backing_file);
1563    }
1564
1565    buffer_len = sizeof(new_header);
1566    new_header.backing_filename_offset = buffer_len;
1567    new_header.backing_filename_size = backing_file_len;
1568    buffer_len += backing_file_len;
1569
1570    /* Make sure we can rewrite header without failing */
1571    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1572        return -ENOSPC;
1573    }
1574
1575    /* Prepare new header */
1576    buffer = g_malloc(buffer_len);
1577
1578    qed_header_cpu_to_le(&new_header, &le_header);
1579    memcpy(buffer, &le_header, sizeof(le_header));
1580    buffer_len = sizeof(le_header);
1581
1582    if (backing_file) {
1583        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1584        buffer_len += backing_file_len;
1585    }
1586
1587    /* Write new header */
1588    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1589    g_free(buffer);
1590    if (ret == 0) {
1591        memcpy(&s->header, &new_header, sizeof(new_header));
1592    }
1593    return ret;
1594}
1595
1596static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1597                                                      Error **errp)
1598{
1599    BDRVQEDState *s = bs->opaque;
1600    Error *local_err = NULL;
1601    int ret;
1602
1603    bdrv_qed_close(bs);
1604
1605    bdrv_qed_init_state(bs);
1606    qemu_co_mutex_lock(&s->table_lock);
1607    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1608    qemu_co_mutex_unlock(&s->table_lock);
1609    if (local_err) {
1610        error_propagate_prepend(errp, local_err,
1611                                "Could not reopen qed layer: ");
1612        return;
1613    } else if (ret < 0) {
1614        error_setg_errno(errp, -ret, "Could not reopen qed layer");
1615        return;
1616    }
1617}
1618
1619static int bdrv_qed_co_check(BlockDriverState *bs, BdrvCheckResult *result,
1620                             BdrvCheckMode fix)
1621{
1622    BDRVQEDState *s = bs->opaque;
1623    int ret;
1624
1625    qemu_co_mutex_lock(&s->table_lock);
1626    ret = qed_check(s, result, !!fix);
1627    qemu_co_mutex_unlock(&s->table_lock);
1628
1629    return ret;
1630}
1631
1632static QemuOptsList qed_create_opts = {
1633    .name = "qed-create-opts",
1634    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1635    .desc = {
1636        {
1637            .name = BLOCK_OPT_SIZE,
1638            .type = QEMU_OPT_SIZE,
1639            .help = "Virtual disk size"
1640        },
1641        {
1642            .name = BLOCK_OPT_BACKING_FILE,
1643            .type = QEMU_OPT_STRING,
1644            .help = "File name of a base image"
1645        },
1646        {
1647            .name = BLOCK_OPT_BACKING_FMT,
1648            .type = QEMU_OPT_STRING,
1649            .help = "Image format of the base image"
1650        },
1651        {
1652            .name = BLOCK_OPT_CLUSTER_SIZE,
1653            .type = QEMU_OPT_SIZE,
1654            .help = "Cluster size (in bytes)",
1655            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1656        },
1657        {
1658            .name = BLOCK_OPT_TABLE_SIZE,
1659            .type = QEMU_OPT_SIZE,
1660            .help = "L1/L2 table size (in clusters)"
1661        },
1662        { /* end of list */ }
1663    }
1664};
1665
1666static BlockDriver bdrv_qed = {
1667    .format_name              = "qed",
1668    .instance_size            = sizeof(BDRVQEDState),
1669    .create_opts              = &qed_create_opts,
1670    .supports_backing         = true,
1671
1672    .bdrv_probe               = bdrv_qed_probe,
1673    .bdrv_open                = bdrv_qed_open,
1674    .bdrv_close               = bdrv_qed_close,
1675    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1676    .bdrv_child_perm          = bdrv_format_default_perms,
1677    .bdrv_co_create           = bdrv_qed_co_create,
1678    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1679    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1680    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1681    .bdrv_co_readv            = bdrv_qed_co_readv,
1682    .bdrv_co_writev           = bdrv_qed_co_writev,
1683    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1684    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1685    .bdrv_getlength           = bdrv_qed_getlength,
1686    .bdrv_get_info            = bdrv_qed_get_info,
1687    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1688    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1689    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1690    .bdrv_co_check            = bdrv_qed_co_check,
1691    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1692    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1693    .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1694};
1695
1696static void bdrv_qed_init(void)
1697{
1698    bdrv_register(&bdrv_qed);
1699}
1700
1701block_init(bdrv_qed_init);
1702