qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/block/flash.h"
  38#include "hw/vfio/vfio-calxeda-xgmac.h"
  39#include "hw/vfio/vfio-amd-xgbe.h"
  40#include "hw/display/ramfb.h"
  41#include "hw/devices.h"
  42#include "net/net.h"
  43#include "sysemu/device_tree.h"
  44#include "sysemu/numa.h"
  45#include "sysemu/sysemu.h"
  46#include "sysemu/kvm.h"
  47#include "hw/compat.h"
  48#include "hw/loader.h"
  49#include "exec/address-spaces.h"
  50#include "qemu/bitops.h"
  51#include "qemu/error-report.h"
  52#include "hw/pci-host/gpex.h"
  53#include "hw/arm/sysbus-fdt.h"
  54#include "hw/platform-bus.h"
  55#include "hw/arm/fdt.h"
  56#include "hw/intc/arm_gic.h"
  57#include "hw/intc/arm_gicv3_common.h"
  58#include "kvm_arm.h"
  59#include "hw/smbios/smbios.h"
  60#include "qapi/visitor.h"
  61#include "standard-headers/linux/input.h"
  62#include "hw/arm/smmuv3.h"
  63
  64#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  65    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  66                                                    void *data) \
  67    { \
  68        MachineClass *mc = MACHINE_CLASS(oc); \
  69        virt_machine_##major##_##minor##_options(mc); \
  70        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  71        if (latest) { \
  72            mc->alias = "virt"; \
  73        } \
  74    } \
  75    static const TypeInfo machvirt_##major##_##minor##_info = { \
  76        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  77        .parent = TYPE_VIRT_MACHINE, \
  78        .instance_init = virt_##major##_##minor##_instance_init, \
  79        .class_init = virt_##major##_##minor##_class_init, \
  80    }; \
  81    static void machvirt_machine_##major##_##minor##_init(void) \
  82    { \
  83        type_register_static(&machvirt_##major##_##minor##_info); \
  84    } \
  85    type_init(machvirt_machine_##major##_##minor##_init);
  86
  87#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
  88    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
  89#define DEFINE_VIRT_MACHINE(major, minor) \
  90    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
  91
  92
  93/* Number of external interrupt lines to configure the GIC with */
  94#define NUM_IRQS 256
  95
  96#define PLATFORM_BUS_NUM_IRQS 64
  97
  98/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
  99 * RAM can go up to the 256GB mark, leaving 256GB of the physical
 100 * address space unallocated and free for future use between 256G and 512G.
 101 * If we need to provide more RAM to VMs in the future then we need to:
 102 *  * allocate a second bank of RAM starting at 2TB and working up
 103 *  * fix the DT and ACPI table generation code in QEMU to correctly
 104 *    report two split lumps of RAM to the guest
 105 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 106 * (We don't want to fill all the way up to 512GB with RAM because
 107 * we might want it for non-RAM purposes later. Conversely it seems
 108 * reasonable to assume that anybody configuring a VM with a quarter
 109 * of a terabyte of RAM will be doing it on a host with more than a
 110 * terabyte of physical address space.)
 111 */
 112#define RAMLIMIT_GB 255
 113#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 114
 115/* Addresses and sizes of our components.
 116 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 117 * 128MB..256MB is used for miscellaneous device I/O.
 118 * 256MB..1GB is reserved for possible future PCI support (ie where the
 119 * PCI memory window will go if we add a PCI host controller).
 120 * 1GB and up is RAM (which may happily spill over into the
 121 * high memory region beyond 4GB).
 122 * This represents a compromise between how much RAM can be given to
 123 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 124 * Note that devices should generally be placed at multiples of 0x10000,
 125 * to accommodate guests using 64K pages.
 126 */
 127static const MemMapEntry a15memmap[] = {
 128    /* Space up to 0x8000000 is reserved for a boot ROM */
 129    [VIRT_FLASH] =              {          0, 0x08000000 },
 130    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 131    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 132    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 133    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 134    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 135    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 136    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 137    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 138    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 139    /* This redistributor space allows up to 2*64kB*123 CPUs */
 140    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 141    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 142    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 143    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 144    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 145    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 146    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 147    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 148    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 149    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 150    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 151    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 152    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 153    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 154    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 155    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 156    [VIRT_GIC_REDIST2] =        { 0x4000000000ULL, 0x4000000 },
 157    [VIRT_PCIE_ECAM_HIGH] =     { 0x4010000000ULL, 0x10000000 },
 158    /* Second PCIe window, 512GB wide at the 512GB boundary */
 159    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 160};
 161
 162static const int a15irqmap[] = {
 163    [VIRT_UART] = 1,
 164    [VIRT_RTC] = 2,
 165    [VIRT_PCIE] = 3, /* ... to 6 */
 166    [VIRT_GPIO] = 7,
 167    [VIRT_SECURE_UART] = 8,
 168    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 169    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 170    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 171    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 172};
 173
 174static const char *valid_cpus[] = {
 175    ARM_CPU_TYPE_NAME("cortex-a15"),
 176    ARM_CPU_TYPE_NAME("cortex-a53"),
 177    ARM_CPU_TYPE_NAME("cortex-a57"),
 178    ARM_CPU_TYPE_NAME("cortex-a72"),
 179    ARM_CPU_TYPE_NAME("host"),
 180    ARM_CPU_TYPE_NAME("max"),
 181};
 182
 183static bool cpu_type_valid(const char *cpu)
 184{
 185    int i;
 186
 187    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 188        if (strcmp(cpu, valid_cpus[i]) == 0) {
 189            return true;
 190        }
 191    }
 192    return false;
 193}
 194
 195static void create_fdt(VirtMachineState *vms)
 196{
 197    void *fdt = create_device_tree(&vms->fdt_size);
 198
 199    if (!fdt) {
 200        error_report("create_device_tree() failed");
 201        exit(1);
 202    }
 203
 204    vms->fdt = fdt;
 205
 206    /* Header */
 207    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 208    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 209    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 210
 211    /* /chosen must exist for load_dtb to fill in necessary properties later */
 212    qemu_fdt_add_subnode(fdt, "/chosen");
 213
 214    /* Clock node, for the benefit of the UART. The kernel device tree
 215     * binding documentation claims the PL011 node clock properties are
 216     * optional but in practice if you omit them the kernel refuses to
 217     * probe for the device.
 218     */
 219    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 220    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 221    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 222    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 223    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 224    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 225                                "clk24mhz");
 226    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 227
 228    if (have_numa_distance) {
 229        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 230        uint32_t *matrix = g_malloc0(size);
 231        int idx, i, j;
 232
 233        for (i = 0; i < nb_numa_nodes; i++) {
 234            for (j = 0; j < nb_numa_nodes; j++) {
 235                idx = (i * nb_numa_nodes + j) * 3;
 236                matrix[idx + 0] = cpu_to_be32(i);
 237                matrix[idx + 1] = cpu_to_be32(j);
 238                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 239            }
 240        }
 241
 242        qemu_fdt_add_subnode(fdt, "/distance-map");
 243        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 244                                "numa-distance-map-v1");
 245        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 246                         matrix, size);
 247        g_free(matrix);
 248    }
 249}
 250
 251static void fdt_add_timer_nodes(const VirtMachineState *vms)
 252{
 253    /* On real hardware these interrupts are level-triggered.
 254     * On KVM they were edge-triggered before host kernel version 4.4,
 255     * and level-triggered afterwards.
 256     * On emulated QEMU they are level-triggered.
 257     *
 258     * Getting the DTB info about them wrong is awkward for some
 259     * guest kernels:
 260     *  pre-4.8 ignore the DT and leave the interrupt configured
 261     *   with whatever the GIC reset value (or the bootloader) left it at
 262     *  4.8 before rc6 honour the incorrect data by programming it back
 263     *   into the GIC, causing problems
 264     *  4.8rc6 and later ignore the DT and always write "level triggered"
 265     *   into the GIC
 266     *
 267     * For backwards-compatibility, virt-2.8 and earlier will continue
 268     * to say these are edge-triggered, but later machines will report
 269     * the correct information.
 270     */
 271    ARMCPU *armcpu;
 272    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 273    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 274
 275    if (vmc->claim_edge_triggered_timers) {
 276        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 277    }
 278
 279    if (vms->gic_version == 2) {
 280        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 281                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 282                             (1 << vms->smp_cpus) - 1);
 283    }
 284
 285    qemu_fdt_add_subnode(vms->fdt, "/timer");
 286
 287    armcpu = ARM_CPU(qemu_get_cpu(0));
 288    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 289        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 290        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 291                         compat, sizeof(compat));
 292    } else {
 293        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 294                                "arm,armv7-timer");
 295    }
 296    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 297    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 298                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 299                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 300                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 301                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 302}
 303
 304static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 305{
 306    int cpu;
 307    int addr_cells = 1;
 308    const MachineState *ms = MACHINE(vms);
 309
 310    /*
 311     * From Documentation/devicetree/bindings/arm/cpus.txt
 312     *  On ARM v8 64-bit systems value should be set to 2,
 313     *  that corresponds to the MPIDR_EL1 register size.
 314     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 315     *  in the system, #address-cells can be set to 1, since
 316     *  MPIDR_EL1[63:32] bits are not used for CPUs
 317     *  identification.
 318     *
 319     *  Here we actually don't know whether our system is 32- or 64-bit one.
 320     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 321     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 322     */
 323    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 324        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 325
 326        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 327            addr_cells = 2;
 328            break;
 329        }
 330    }
 331
 332    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 333    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 334    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 335
 336    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 337        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 338        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 339        CPUState *cs = CPU(armcpu);
 340
 341        qemu_fdt_add_subnode(vms->fdt, nodename);
 342        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 343        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 344                                    armcpu->dtb_compatible);
 345
 346        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 347            && vms->smp_cpus > 1) {
 348            qemu_fdt_setprop_string(vms->fdt, nodename,
 349                                        "enable-method", "psci");
 350        }
 351
 352        if (addr_cells == 2) {
 353            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 354                                 armcpu->mp_affinity);
 355        } else {
 356            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 357                                  armcpu->mp_affinity);
 358        }
 359
 360        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 361            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 362                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 363        }
 364
 365        g_free(nodename);
 366    }
 367}
 368
 369static void fdt_add_its_gic_node(VirtMachineState *vms)
 370{
 371    char *nodename;
 372
 373    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 374    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 375                               vms->memmap[VIRT_GIC_ITS].base);
 376    qemu_fdt_add_subnode(vms->fdt, nodename);
 377    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 378                            "arm,gic-v3-its");
 379    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 380    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 381                                 2, vms->memmap[VIRT_GIC_ITS].base,
 382                                 2, vms->memmap[VIRT_GIC_ITS].size);
 383    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 384    g_free(nodename);
 385}
 386
 387static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 388{
 389    char *nodename;
 390
 391    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 392                               vms->memmap[VIRT_GIC_V2M].base);
 393    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 394    qemu_fdt_add_subnode(vms->fdt, nodename);
 395    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 396                            "arm,gic-v2m-frame");
 397    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 398    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 399                                 2, vms->memmap[VIRT_GIC_V2M].base,
 400                                 2, vms->memmap[VIRT_GIC_V2M].size);
 401    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 402    g_free(nodename);
 403}
 404
 405static void fdt_add_gic_node(VirtMachineState *vms)
 406{
 407    char *nodename;
 408
 409    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 410    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 411
 412    nodename = g_strdup_printf("/intc@%" PRIx64,
 413                               vms->memmap[VIRT_GIC_DIST].base);
 414    qemu_fdt_add_subnode(vms->fdt, nodename);
 415    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
 416    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
 417    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
 418    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
 419    qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
 420    if (vms->gic_version == 3) {
 421        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 422
 423        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 424                                "arm,gic-v3");
 425
 426        qemu_fdt_setprop_cell(vms->fdt, nodename,
 427                              "#redistributor-regions", nb_redist_regions);
 428
 429        if (nb_redist_regions == 1) {
 430            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 431                                         2, vms->memmap[VIRT_GIC_DIST].base,
 432                                         2, vms->memmap[VIRT_GIC_DIST].size,
 433                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 434                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 435        } else {
 436            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 437                                         2, vms->memmap[VIRT_GIC_DIST].base,
 438                                         2, vms->memmap[VIRT_GIC_DIST].size,
 439                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 440                                         2, vms->memmap[VIRT_GIC_REDIST].size,
 441                                         2, vms->memmap[VIRT_GIC_REDIST2].base,
 442                                         2, vms->memmap[VIRT_GIC_REDIST2].size);
 443        }
 444
 445        if (vms->virt) {
 446            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 447                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 448                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 449        }
 450    } else {
 451        /* 'cortex-a15-gic' means 'GIC v2' */
 452        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 453                                "arm,cortex-a15-gic");
 454        if (!vms->virt) {
 455            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 456                                         2, vms->memmap[VIRT_GIC_DIST].base,
 457                                         2, vms->memmap[VIRT_GIC_DIST].size,
 458                                         2, vms->memmap[VIRT_GIC_CPU].base,
 459                                         2, vms->memmap[VIRT_GIC_CPU].size);
 460        } else {
 461            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 462                                         2, vms->memmap[VIRT_GIC_DIST].base,
 463                                         2, vms->memmap[VIRT_GIC_DIST].size,
 464                                         2, vms->memmap[VIRT_GIC_CPU].base,
 465                                         2, vms->memmap[VIRT_GIC_CPU].size,
 466                                         2, vms->memmap[VIRT_GIC_HYP].base,
 467                                         2, vms->memmap[VIRT_GIC_HYP].size,
 468                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 469                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 470            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 471                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 472                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 473        }
 474    }
 475
 476    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
 477    g_free(nodename);
 478}
 479
 480static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 481{
 482    CPUState *cpu;
 483    ARMCPU *armcpu;
 484    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 485
 486    CPU_FOREACH(cpu) {
 487        armcpu = ARM_CPU(cpu);
 488        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 489            return;
 490        }
 491        if (kvm_enabled()) {
 492            if (kvm_irqchip_in_kernel()) {
 493                kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
 494            }
 495            kvm_arm_pmu_init(cpu);
 496        }
 497    }
 498
 499    if (vms->gic_version == 2) {
 500        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 501                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 502                             (1 << vms->smp_cpus) - 1);
 503    }
 504
 505    armcpu = ARM_CPU(qemu_get_cpu(0));
 506    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 507    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 508        const char compat[] = "arm,armv8-pmuv3";
 509        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 510                         compat, sizeof(compat));
 511        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 512                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 513    }
 514}
 515
 516static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 517{
 518    const char *itsclass = its_class_name();
 519    DeviceState *dev;
 520
 521    if (!itsclass) {
 522        /* Do nothing if not supported */
 523        return;
 524    }
 525
 526    dev = qdev_create(NULL, itsclass);
 527
 528    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 529                             &error_abort);
 530    qdev_init_nofail(dev);
 531    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 532
 533    fdt_add_its_gic_node(vms);
 534}
 535
 536static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 537{
 538    int i;
 539    int irq = vms->irqmap[VIRT_GIC_V2M];
 540    DeviceState *dev;
 541
 542    dev = qdev_create(NULL, "arm-gicv2m");
 543    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 544    qdev_prop_set_uint32(dev, "base-spi", irq);
 545    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 546    qdev_init_nofail(dev);
 547
 548    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 549        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 550    }
 551
 552    fdt_add_v2m_gic_node(vms);
 553}
 554
 555static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 556{
 557    /* We create a standalone GIC */
 558    DeviceState *gicdev;
 559    SysBusDevice *gicbusdev;
 560    const char *gictype;
 561    int type = vms->gic_version, i;
 562    uint32_t nb_redist_regions = 0;
 563
 564    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 565
 566    gicdev = qdev_create(NULL, gictype);
 567    qdev_prop_set_uint32(gicdev, "revision", type);
 568    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 569    /* Note that the num-irq property counts both internal and external
 570     * interrupts; there are always 32 of the former (mandated by GIC spec).
 571     */
 572    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 573    if (!kvm_irqchip_in_kernel()) {
 574        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 575    }
 576
 577    if (type == 3) {
 578        uint32_t redist0_capacity =
 579                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 580        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 581
 582        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 583
 584        qdev_prop_set_uint32(gicdev, "len-redist-region-count",
 585                             nb_redist_regions);
 586        qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
 587
 588        if (nb_redist_regions == 2) {
 589            uint32_t redist1_capacity =
 590                        vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 591
 592            qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
 593                MIN(smp_cpus - redist0_count, redist1_capacity));
 594        }
 595    } else {
 596        if (!kvm_irqchip_in_kernel()) {
 597            qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
 598                              vms->virt);
 599        }
 600    }
 601    qdev_init_nofail(gicdev);
 602    gicbusdev = SYS_BUS_DEVICE(gicdev);
 603    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 604    if (type == 3) {
 605        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 606        if (nb_redist_regions == 2) {
 607            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
 608        }
 609    } else {
 610        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 611        if (vms->virt) {
 612            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 613            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 614        }
 615    }
 616
 617    /* Wire the outputs from each CPU's generic timer and the GICv3
 618     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 619     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 620     */
 621    for (i = 0; i < smp_cpus; i++) {
 622        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 623        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 624        int irq;
 625        /* Mapping from the output timer irq lines from the CPU to the
 626         * GIC PPI inputs we use for the virt board.
 627         */
 628        const int timer_irq[] = {
 629            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 630            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 631            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 632            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 633        };
 634
 635        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 636            qdev_connect_gpio_out(cpudev, irq,
 637                                  qdev_get_gpio_in(gicdev,
 638                                                   ppibase + timer_irq[irq]));
 639        }
 640
 641        if (type == 3) {
 642            qemu_irq irq = qdev_get_gpio_in(gicdev,
 643                                            ppibase + ARCH_GIC_MAINT_IRQ);
 644            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 645                                        0, irq);
 646        } else if (vms->virt) {
 647            qemu_irq irq = qdev_get_gpio_in(gicdev,
 648                                            ppibase + ARCH_GIC_MAINT_IRQ);
 649            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 650        }
 651
 652        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 653                                    qdev_get_gpio_in(gicdev, ppibase
 654                                                     + VIRTUAL_PMU_IRQ));
 655
 656        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 657        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 658                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 659        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 660                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 661        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 662                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 663    }
 664
 665    for (i = 0; i < NUM_IRQS; i++) {
 666        pic[i] = qdev_get_gpio_in(gicdev, i);
 667    }
 668
 669    fdt_add_gic_node(vms);
 670
 671    if (type == 3 && vms->its) {
 672        create_its(vms, gicdev);
 673    } else if (type == 2) {
 674        create_v2m(vms, pic);
 675    }
 676}
 677
 678static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 679                        MemoryRegion *mem, Chardev *chr)
 680{
 681    char *nodename;
 682    hwaddr base = vms->memmap[uart].base;
 683    hwaddr size = vms->memmap[uart].size;
 684    int irq = vms->irqmap[uart];
 685    const char compat[] = "arm,pl011\0arm,primecell";
 686    const char clocknames[] = "uartclk\0apb_pclk";
 687    DeviceState *dev = qdev_create(NULL, "pl011");
 688    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 689
 690    qdev_prop_set_chr(dev, "chardev", chr);
 691    qdev_init_nofail(dev);
 692    memory_region_add_subregion(mem, base,
 693                                sysbus_mmio_get_region(s, 0));
 694    sysbus_connect_irq(s, 0, pic[irq]);
 695
 696    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 697    qemu_fdt_add_subnode(vms->fdt, nodename);
 698    /* Note that we can't use setprop_string because of the embedded NUL */
 699    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 700                         compat, sizeof(compat));
 701    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 702                                     2, base, 2, size);
 703    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 704                               GIC_FDT_IRQ_TYPE_SPI, irq,
 705                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 706    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 707                               vms->clock_phandle, vms->clock_phandle);
 708    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 709                         clocknames, sizeof(clocknames));
 710
 711    if (uart == VIRT_UART) {
 712        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 713    } else {
 714        /* Mark as not usable by the normal world */
 715        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 716        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 717
 718        qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
 719        qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
 720                                nodename);
 721    }
 722
 723    g_free(nodename);
 724}
 725
 726static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 727{
 728    char *nodename;
 729    hwaddr base = vms->memmap[VIRT_RTC].base;
 730    hwaddr size = vms->memmap[VIRT_RTC].size;
 731    int irq = vms->irqmap[VIRT_RTC];
 732    const char compat[] = "arm,pl031\0arm,primecell";
 733
 734    sysbus_create_simple("pl031", base, pic[irq]);
 735
 736    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 737    qemu_fdt_add_subnode(vms->fdt, nodename);
 738    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 739    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 740                                 2, base, 2, size);
 741    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 742                           GIC_FDT_IRQ_TYPE_SPI, irq,
 743                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 744    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 745    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 746    g_free(nodename);
 747}
 748
 749static DeviceState *gpio_key_dev;
 750static void virt_powerdown_req(Notifier *n, void *opaque)
 751{
 752    /* use gpio Pin 3 for power button event */
 753    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 754}
 755
 756static Notifier virt_system_powerdown_notifier = {
 757    .notify = virt_powerdown_req
 758};
 759
 760static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 761{
 762    char *nodename;
 763    DeviceState *pl061_dev;
 764    hwaddr base = vms->memmap[VIRT_GPIO].base;
 765    hwaddr size = vms->memmap[VIRT_GPIO].size;
 766    int irq = vms->irqmap[VIRT_GPIO];
 767    const char compat[] = "arm,pl061\0arm,primecell";
 768
 769    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 770
 771    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 772    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 773    qemu_fdt_add_subnode(vms->fdt, nodename);
 774    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 775                                 2, base, 2, size);
 776    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 777    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 778    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 779    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 780                           GIC_FDT_IRQ_TYPE_SPI, irq,
 781                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 782    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 783    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 784    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 785
 786    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 787                                        qdev_get_gpio_in(pl061_dev, 3));
 788    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 789    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 790    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 791    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 792
 793    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 794    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 795                            "label", "GPIO Key Poweroff");
 796    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 797                          KEY_POWER);
 798    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 799                           "gpios", phandle, 3, 0);
 800
 801    /* connect powerdown request */
 802    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 803
 804    g_free(nodename);
 805}
 806
 807static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 808{
 809    int i;
 810    hwaddr size = vms->memmap[VIRT_MMIO].size;
 811
 812    /* We create the transports in forwards order. Since qbus_realize()
 813     * prepends (not appends) new child buses, the incrementing loop below will
 814     * create a list of virtio-mmio buses with decreasing base addresses.
 815     *
 816     * When a -device option is processed from the command line,
 817     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 818     * order. The upshot is that -device options in increasing command line
 819     * order are mapped to virtio-mmio buses with decreasing base addresses.
 820     *
 821     * When this code was originally written, that arrangement ensured that the
 822     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 823     * the first -device on the command line. (The end-to-end order is a
 824     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 825     * guest kernel's name-to-address assignment strategy.)
 826     *
 827     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 828     * the message, if not necessarily the code, of commit 70161ff336.
 829     * Therefore the loop now establishes the inverse of the original intent.
 830     *
 831     * Unfortunately, we can't counteract the kernel change by reversing the
 832     * loop; it would break existing command lines.
 833     *
 834     * In any case, the kernel makes no guarantee about the stability of
 835     * enumeration order of virtio devices (as demonstrated by it changing
 836     * between kernel versions). For reliable and stable identification
 837     * of disks users must use UUIDs or similar mechanisms.
 838     */
 839    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 840        int irq = vms->irqmap[VIRT_MMIO] + i;
 841        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 842
 843        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 844    }
 845
 846    /* We add dtb nodes in reverse order so that they appear in the finished
 847     * device tree lowest address first.
 848     *
 849     * Note that this mapping is independent of the loop above. The previous
 850     * loop influences virtio device to virtio transport assignment, whereas
 851     * this loop controls how virtio transports are laid out in the dtb.
 852     */
 853    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 854        char *nodename;
 855        int irq = vms->irqmap[VIRT_MMIO] + i;
 856        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 857
 858        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 859        qemu_fdt_add_subnode(vms->fdt, nodename);
 860        qemu_fdt_setprop_string(vms->fdt, nodename,
 861                                "compatible", "virtio,mmio");
 862        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 863                                     2, base, 2, size);
 864        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 865                               GIC_FDT_IRQ_TYPE_SPI, irq,
 866                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 867        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 868        g_free(nodename);
 869    }
 870}
 871
 872static void create_one_flash(const char *name, hwaddr flashbase,
 873                             hwaddr flashsize, const char *file,
 874                             MemoryRegion *sysmem)
 875{
 876    /* Create and map a single flash device. We use the same
 877     * parameters as the flash devices on the Versatile Express board.
 878     */
 879    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 880    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 881    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 882    const uint64_t sectorlength = 256 * 1024;
 883
 884    if (dinfo) {
 885        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 886                            &error_abort);
 887    }
 888
 889    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 890    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 891    qdev_prop_set_uint8(dev, "width", 4);
 892    qdev_prop_set_uint8(dev, "device-width", 2);
 893    qdev_prop_set_bit(dev, "big-endian", false);
 894    qdev_prop_set_uint16(dev, "id0", 0x89);
 895    qdev_prop_set_uint16(dev, "id1", 0x18);
 896    qdev_prop_set_uint16(dev, "id2", 0x00);
 897    qdev_prop_set_uint16(dev, "id3", 0x00);
 898    qdev_prop_set_string(dev, "name", name);
 899    qdev_init_nofail(dev);
 900
 901    memory_region_add_subregion(sysmem, flashbase,
 902                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 903
 904    if (file) {
 905        char *fn;
 906        int image_size;
 907
 908        if (drive_get(IF_PFLASH, 0, 0)) {
 909            error_report("The contents of the first flash device may be "
 910                         "specified with -bios or with -drive if=pflash... "
 911                         "but you cannot use both options at once");
 912            exit(1);
 913        }
 914        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 915        if (!fn) {
 916            error_report("Could not find ROM image '%s'", file);
 917            exit(1);
 918        }
 919        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 920        g_free(fn);
 921        if (image_size < 0) {
 922            error_report("Could not load ROM image '%s'", file);
 923            exit(1);
 924        }
 925    }
 926}
 927
 928static void create_flash(const VirtMachineState *vms,
 929                         MemoryRegion *sysmem,
 930                         MemoryRegion *secure_sysmem)
 931{
 932    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 933     * Any file passed via -bios goes in the first of these.
 934     * sysmem is the system memory space. secure_sysmem is the secure view
 935     * of the system, and the first flash device should be made visible only
 936     * there. The second flash device is visible to both secure and nonsecure.
 937     * If sysmem == secure_sysmem this means there is no separate Secure
 938     * address space and both flash devices are generally visible.
 939     */
 940    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 941    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 942    char *nodename;
 943
 944    create_one_flash("virt.flash0", flashbase, flashsize,
 945                     bios_name, secure_sysmem);
 946    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 947                     NULL, sysmem);
 948
 949    if (sysmem == secure_sysmem) {
 950        /* Report both flash devices as a single node in the DT */
 951        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 952        qemu_fdt_add_subnode(vms->fdt, nodename);
 953        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 954        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 955                                     2, flashbase, 2, flashsize,
 956                                     2, flashbase + flashsize, 2, flashsize);
 957        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 958        g_free(nodename);
 959    } else {
 960        /* Report the devices as separate nodes so we can mark one as
 961         * only visible to the secure world.
 962         */
 963        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 964        qemu_fdt_add_subnode(vms->fdt, nodename);
 965        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 966        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 967                                     2, flashbase, 2, flashsize);
 968        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 969        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 970        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 971        g_free(nodename);
 972
 973        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 974        qemu_fdt_add_subnode(vms->fdt, nodename);
 975        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 976        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 977                                     2, flashbase + flashsize, 2, flashsize);
 978        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 979        g_free(nodename);
 980    }
 981}
 982
 983static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 984{
 985    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 986    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 987    FWCfgState *fw_cfg;
 988    char *nodename;
 989
 990    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 991    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 992
 993    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 994    qemu_fdt_add_subnode(vms->fdt, nodename);
 995    qemu_fdt_setprop_string(vms->fdt, nodename,
 996                            "compatible", "qemu,fw-cfg-mmio");
 997    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 998                                 2, base, 2, size);
 999    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1000    g_free(nodename);
1001    return fw_cfg;
1002}
1003
1004static void create_pcie_irq_map(const VirtMachineState *vms,
1005                                uint32_t gic_phandle,
1006                                int first_irq, const char *nodename)
1007{
1008    int devfn, pin;
1009    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1010    uint32_t *irq_map = full_irq_map;
1011
1012    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1013        for (pin = 0; pin < 4; pin++) {
1014            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1015            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1016            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1017            int i;
1018
1019            uint32_t map[] = {
1020                devfn << 8, 0, 0,                           /* devfn */
1021                pin + 1,                                    /* PCI pin */
1022                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1023
1024            /* Convert map to big endian */
1025            for (i = 0; i < 10; i++) {
1026                irq_map[i] = cpu_to_be32(map[i]);
1027            }
1028            irq_map += 10;
1029        }
1030    }
1031
1032    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1033                     full_irq_map, sizeof(full_irq_map));
1034
1035    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1036                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1037                           0x7           /* PCI irq */);
1038}
1039
1040static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1041                        PCIBus *bus)
1042{
1043    char *node;
1044    const char compat[] = "arm,smmu-v3";
1045    int irq =  vms->irqmap[VIRT_SMMU];
1046    int i;
1047    hwaddr base = vms->memmap[VIRT_SMMU].base;
1048    hwaddr size = vms->memmap[VIRT_SMMU].size;
1049    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1050    DeviceState *dev;
1051
1052    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1053        return;
1054    }
1055
1056    dev = qdev_create(NULL, "arm-smmuv3");
1057
1058    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1059                             &error_abort);
1060    qdev_init_nofail(dev);
1061    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1062    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1063        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1064    }
1065
1066    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1067    qemu_fdt_add_subnode(vms->fdt, node);
1068    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1069    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1070
1071    qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1072            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1073            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1074            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1075            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1076
1077    qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1078                     sizeof(irq_names));
1079
1080    qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1081    qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1082    qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1083
1084    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1085
1086    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1087    g_free(node);
1088}
1089
1090static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1091{
1092    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1093    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1094    hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1095    hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1096    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1097    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1098    hwaddr base_ecam, size_ecam;
1099    hwaddr base = base_mmio;
1100    int nr_pcie_buses;
1101    int irq = vms->irqmap[VIRT_PCIE];
1102    MemoryRegion *mmio_alias;
1103    MemoryRegion *mmio_reg;
1104    MemoryRegion *ecam_alias;
1105    MemoryRegion *ecam_reg;
1106    DeviceState *dev;
1107    char *nodename;
1108    int i, ecam_id;
1109    PCIHostState *pci;
1110
1111    dev = qdev_create(NULL, TYPE_GPEX_HOST);
1112    qdev_init_nofail(dev);
1113
1114    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1115    base_ecam = vms->memmap[ecam_id].base;
1116    size_ecam = vms->memmap[ecam_id].size;
1117    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1118    /* Map only the first size_ecam bytes of ECAM space */
1119    ecam_alias = g_new0(MemoryRegion, 1);
1120    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1121    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1122                             ecam_reg, 0, size_ecam);
1123    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1124
1125    /* Map the MMIO window into system address space so as to expose
1126     * the section of PCI MMIO space which starts at the same base address
1127     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1128     * the window).
1129     */
1130    mmio_alias = g_new0(MemoryRegion, 1);
1131    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1132    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1133                             mmio_reg, base_mmio, size_mmio);
1134    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1135
1136    if (vms->highmem) {
1137        /* Map high MMIO space */
1138        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1139
1140        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1141                                 mmio_reg, base_mmio_high, size_mmio_high);
1142        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1143                                    high_mmio_alias);
1144    }
1145
1146    /* Map IO port space */
1147    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1148
1149    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1150        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1151        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1152    }
1153
1154    pci = PCI_HOST_BRIDGE(dev);
1155    if (pci->bus) {
1156        for (i = 0; i < nb_nics; i++) {
1157            NICInfo *nd = &nd_table[i];
1158
1159            if (!nd->model) {
1160                nd->model = g_strdup("virtio");
1161            }
1162
1163            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1164        }
1165    }
1166
1167    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1168    qemu_fdt_add_subnode(vms->fdt, nodename);
1169    qemu_fdt_setprop_string(vms->fdt, nodename,
1170                            "compatible", "pci-host-ecam-generic");
1171    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1172    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1173    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1174    qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1175    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1176                           nr_pcie_buses - 1);
1177    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1178
1179    if (vms->msi_phandle) {
1180        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1181                               vms->msi_phandle);
1182    }
1183
1184    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1185                                 2, base_ecam, 2, size_ecam);
1186
1187    if (vms->highmem) {
1188        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1189                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1190                                     2, base_pio, 2, size_pio,
1191                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1192                                     2, base_mmio, 2, size_mmio,
1193                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1194                                     2, base_mmio_high,
1195                                     2, base_mmio_high, 2, size_mmio_high);
1196    } else {
1197        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1198                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1199                                     2, base_pio, 2, size_pio,
1200                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1201                                     2, base_mmio, 2, size_mmio);
1202    }
1203
1204    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1205    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1206
1207    if (vms->iommu) {
1208        vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1209
1210        create_smmu(vms, pic, pci->bus);
1211
1212        qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1213                               0x0, vms->iommu_phandle, 0x0, 0x10000);
1214    }
1215
1216    g_free(nodename);
1217}
1218
1219static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1220{
1221    DeviceState *dev;
1222    SysBusDevice *s;
1223    int i;
1224    MemoryRegion *sysmem = get_system_memory();
1225
1226    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1227    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1228    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1229    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1230    qdev_init_nofail(dev);
1231    vms->platform_bus_dev = dev;
1232
1233    s = SYS_BUS_DEVICE(dev);
1234    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1235        int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1236        sysbus_connect_irq(s, i, pic[irqn]);
1237    }
1238
1239    memory_region_add_subregion(sysmem,
1240                                vms->memmap[VIRT_PLATFORM_BUS].base,
1241                                sysbus_mmio_get_region(s, 0));
1242}
1243
1244static void create_secure_ram(VirtMachineState *vms,
1245                              MemoryRegion *secure_sysmem)
1246{
1247    MemoryRegion *secram = g_new(MemoryRegion, 1);
1248    char *nodename;
1249    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1250    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1251
1252    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1253                           &error_fatal);
1254    memory_region_add_subregion(secure_sysmem, base, secram);
1255
1256    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1257    qemu_fdt_add_subnode(vms->fdt, nodename);
1258    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1259    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1260    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1261    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1262
1263    g_free(nodename);
1264}
1265
1266static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1267{
1268    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1269                                                 bootinfo);
1270
1271    *fdt_size = board->fdt_size;
1272    return board->fdt;
1273}
1274
1275static void virt_build_smbios(VirtMachineState *vms)
1276{
1277    MachineClass *mc = MACHINE_GET_CLASS(vms);
1278    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1279    uint8_t *smbios_tables, *smbios_anchor;
1280    size_t smbios_tables_len, smbios_anchor_len;
1281    const char *product = "QEMU Virtual Machine";
1282
1283    if (!vms->fw_cfg) {
1284        return;
1285    }
1286
1287    if (kvm_enabled()) {
1288        product = "KVM Virtual Machine";
1289    }
1290
1291    smbios_set_defaults("QEMU", product,
1292                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1293                        true, SMBIOS_ENTRY_POINT_30);
1294
1295    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1296                      &smbios_anchor, &smbios_anchor_len);
1297
1298    if (smbios_anchor) {
1299        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1300                        smbios_tables, smbios_tables_len);
1301        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1302                        smbios_anchor, smbios_anchor_len);
1303    }
1304}
1305
1306static
1307void virt_machine_done(Notifier *notifier, void *data)
1308{
1309    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1310                                         machine_done);
1311    ARMCPU *cpu = ARM_CPU(first_cpu);
1312    struct arm_boot_info *info = &vms->bootinfo;
1313    AddressSpace *as = arm_boot_address_space(cpu, info);
1314
1315    /*
1316     * If the user provided a dtb, we assume the dynamic sysbus nodes
1317     * already are integrated there. This corresponds to a use case where
1318     * the dynamic sysbus nodes are complex and their generation is not yet
1319     * supported. In that case the user can take charge of the guest dt
1320     * while qemu takes charge of the qom stuff.
1321     */
1322    if (info->dtb_filename == NULL) {
1323        platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1324                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1325                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1326                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1327    }
1328    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1329        exit(1);
1330    }
1331
1332    virt_acpi_setup(vms);
1333    virt_build_smbios(vms);
1334}
1335
1336static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1337{
1338    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1339    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1340
1341    if (!vmc->disallow_affinity_adjustment) {
1342        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1343         * GIC's target-list limitations. 32-bit KVM hosts currently
1344         * always create clusters of 4 CPUs, but that is expected to
1345         * change when they gain support for gicv3. When KVM is enabled
1346         * it will override the changes we make here, therefore our
1347         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1348         * and to improve SGI efficiency.
1349         */
1350        if (vms->gic_version == 3) {
1351            clustersz = GICV3_TARGETLIST_BITS;
1352        } else {
1353            clustersz = GIC_TARGETLIST_BITS;
1354        }
1355    }
1356    return arm_cpu_mp_affinity(idx, clustersz);
1357}
1358
1359static void machvirt_init(MachineState *machine)
1360{
1361    VirtMachineState *vms = VIRT_MACHINE(machine);
1362    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1363    MachineClass *mc = MACHINE_GET_CLASS(machine);
1364    const CPUArchIdList *possible_cpus;
1365    qemu_irq pic[NUM_IRQS];
1366    MemoryRegion *sysmem = get_system_memory();
1367    MemoryRegion *secure_sysmem = NULL;
1368    int n, virt_max_cpus;
1369    MemoryRegion *ram = g_new(MemoryRegion, 1);
1370    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1371    bool aarch64 = true;
1372
1373    /* We can probe only here because during property set
1374     * KVM is not available yet
1375     */
1376    if (vms->gic_version <= 0) {
1377        /* "host" or "max" */
1378        if (!kvm_enabled()) {
1379            if (vms->gic_version == 0) {
1380                error_report("gic-version=host requires KVM");
1381                exit(1);
1382            } else {
1383                /* "max": currently means 3 for TCG */
1384                vms->gic_version = 3;
1385            }
1386        } else {
1387            vms->gic_version = kvm_arm_vgic_probe();
1388            if (!vms->gic_version) {
1389                error_report(
1390                    "Unable to determine GIC version supported by host");
1391                exit(1);
1392            }
1393        }
1394    }
1395
1396    if (!cpu_type_valid(machine->cpu_type)) {
1397        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1398        exit(1);
1399    }
1400
1401    /* If we have an EL3 boot ROM then the assumption is that it will
1402     * implement PSCI itself, so disable QEMU's internal implementation
1403     * so it doesn't get in the way. Instead of starting secondary
1404     * CPUs in PSCI powerdown state we will start them all running and
1405     * let the boot ROM sort them out.
1406     * The usual case is that we do use QEMU's PSCI implementation;
1407     * if the guest has EL2 then we will use SMC as the conduit,
1408     * and otherwise we will use HVC (for backwards compatibility and
1409     * because if we're using KVM then we must use HVC).
1410     */
1411    if (vms->secure && firmware_loaded) {
1412        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1413    } else if (vms->virt) {
1414        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1415    } else {
1416        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1417    }
1418
1419    /* The maximum number of CPUs depends on the GIC version, or on how
1420     * many redistributors we can fit into the memory map.
1421     */
1422    if (vms->gic_version == 3) {
1423        virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1424        virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1425    } else {
1426        virt_max_cpus = GIC_NCPU;
1427    }
1428
1429    if (max_cpus > virt_max_cpus) {
1430        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1431                     "supported by machine 'mach-virt' (%d)",
1432                     max_cpus, virt_max_cpus);
1433        exit(1);
1434    }
1435
1436    vms->smp_cpus = smp_cpus;
1437
1438    if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1439        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1440        exit(1);
1441    }
1442
1443    if (vms->virt && kvm_enabled()) {
1444        error_report("mach-virt: KVM does not support providing "
1445                     "Virtualization extensions to the guest CPU");
1446        exit(1);
1447    }
1448
1449    if (vms->secure) {
1450        if (kvm_enabled()) {
1451            error_report("mach-virt: KVM does not support Security extensions");
1452            exit(1);
1453        }
1454
1455        /* The Secure view of the world is the same as the NonSecure,
1456         * but with a few extra devices. Create it as a container region
1457         * containing the system memory at low priority; any secure-only
1458         * devices go in at higher priority and take precedence.
1459         */
1460        secure_sysmem = g_new(MemoryRegion, 1);
1461        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1462                           UINT64_MAX);
1463        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1464    }
1465
1466    create_fdt(vms);
1467
1468    possible_cpus = mc->possible_cpu_arch_ids(machine);
1469    for (n = 0; n < possible_cpus->len; n++) {
1470        Object *cpuobj;
1471        CPUState *cs;
1472
1473        if (n >= smp_cpus) {
1474            break;
1475        }
1476
1477        cpuobj = object_new(possible_cpus->cpus[n].type);
1478        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1479                                "mp-affinity", NULL);
1480
1481        cs = CPU(cpuobj);
1482        cs->cpu_index = n;
1483
1484        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1485                          &error_fatal);
1486
1487        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1488
1489        if (!vms->secure) {
1490            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1491        }
1492
1493        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1494            object_property_set_bool(cpuobj, false, "has_el2", NULL);
1495        }
1496
1497        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1498            object_property_set_int(cpuobj, vms->psci_conduit,
1499                                    "psci-conduit", NULL);
1500
1501            /* Secondary CPUs start in PSCI powered-down state */
1502            if (n > 0) {
1503                object_property_set_bool(cpuobj, true,
1504                                         "start-powered-off", NULL);
1505            }
1506        }
1507
1508        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1509            object_property_set_bool(cpuobj, false, "pmu", NULL);
1510        }
1511
1512        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1513            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1514                                    "reset-cbar", &error_abort);
1515        }
1516
1517        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1518                                 &error_abort);
1519        if (vms->secure) {
1520            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1521                                     "secure-memory", &error_abort);
1522        }
1523
1524        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1525        object_unref(cpuobj);
1526    }
1527    fdt_add_timer_nodes(vms);
1528    fdt_add_cpu_nodes(vms);
1529
1530    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1531                                         machine->ram_size);
1532    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1533
1534    create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1535
1536    create_gic(vms, pic);
1537
1538    fdt_add_pmu_nodes(vms);
1539
1540    create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1541
1542    if (vms->secure) {
1543        create_secure_ram(vms, secure_sysmem);
1544        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1545    }
1546
1547    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1548
1549    create_rtc(vms, pic);
1550
1551    create_pcie(vms, pic);
1552
1553    create_gpio(vms, pic);
1554
1555    /* Create mmio transports, so the user can create virtio backends
1556     * (which will be automatically plugged in to the transports). If
1557     * no backend is created the transport will just sit harmlessly idle.
1558     */
1559    create_virtio_devices(vms, pic);
1560
1561    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1562    rom_set_fw(vms->fw_cfg);
1563
1564    create_platform_bus(vms, pic);
1565
1566    vms->bootinfo.ram_size = machine->ram_size;
1567    vms->bootinfo.kernel_filename = machine->kernel_filename;
1568    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1569    vms->bootinfo.initrd_filename = machine->initrd_filename;
1570    vms->bootinfo.nb_cpus = smp_cpus;
1571    vms->bootinfo.board_id = -1;
1572    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1573    vms->bootinfo.get_dtb = machvirt_dtb;
1574    vms->bootinfo.skip_dtb_autoload = true;
1575    vms->bootinfo.firmware_loaded = firmware_loaded;
1576    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1577
1578    vms->machine_done.notify = virt_machine_done;
1579    qemu_add_machine_init_done_notifier(&vms->machine_done);
1580}
1581
1582static bool virt_get_secure(Object *obj, Error **errp)
1583{
1584    VirtMachineState *vms = VIRT_MACHINE(obj);
1585
1586    return vms->secure;
1587}
1588
1589static void virt_set_secure(Object *obj, bool value, Error **errp)
1590{
1591    VirtMachineState *vms = VIRT_MACHINE(obj);
1592
1593    vms->secure = value;
1594}
1595
1596static bool virt_get_virt(Object *obj, Error **errp)
1597{
1598    VirtMachineState *vms = VIRT_MACHINE(obj);
1599
1600    return vms->virt;
1601}
1602
1603static void virt_set_virt(Object *obj, bool value, Error **errp)
1604{
1605    VirtMachineState *vms = VIRT_MACHINE(obj);
1606
1607    vms->virt = value;
1608}
1609
1610static bool virt_get_highmem(Object *obj, Error **errp)
1611{
1612    VirtMachineState *vms = VIRT_MACHINE(obj);
1613
1614    return vms->highmem;
1615}
1616
1617static void virt_set_highmem(Object *obj, bool value, Error **errp)
1618{
1619    VirtMachineState *vms = VIRT_MACHINE(obj);
1620
1621    vms->highmem = value;
1622}
1623
1624static bool virt_get_its(Object *obj, Error **errp)
1625{
1626    VirtMachineState *vms = VIRT_MACHINE(obj);
1627
1628    return vms->its;
1629}
1630
1631static void virt_set_its(Object *obj, bool value, Error **errp)
1632{
1633    VirtMachineState *vms = VIRT_MACHINE(obj);
1634
1635    vms->its = value;
1636}
1637
1638static char *virt_get_gic_version(Object *obj, Error **errp)
1639{
1640    VirtMachineState *vms = VIRT_MACHINE(obj);
1641    const char *val = vms->gic_version == 3 ? "3" : "2";
1642
1643    return g_strdup(val);
1644}
1645
1646static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1647{
1648    VirtMachineState *vms = VIRT_MACHINE(obj);
1649
1650    if (!strcmp(value, "3")) {
1651        vms->gic_version = 3;
1652    } else if (!strcmp(value, "2")) {
1653        vms->gic_version = 2;
1654    } else if (!strcmp(value, "host")) {
1655        vms->gic_version = 0; /* Will probe later */
1656    } else if (!strcmp(value, "max")) {
1657        vms->gic_version = -1; /* Will probe later */
1658    } else {
1659        error_setg(errp, "Invalid gic-version value");
1660        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1661    }
1662}
1663
1664static char *virt_get_iommu(Object *obj, Error **errp)
1665{
1666    VirtMachineState *vms = VIRT_MACHINE(obj);
1667
1668    switch (vms->iommu) {
1669    case VIRT_IOMMU_NONE:
1670        return g_strdup("none");
1671    case VIRT_IOMMU_SMMUV3:
1672        return g_strdup("smmuv3");
1673    default:
1674        g_assert_not_reached();
1675    }
1676}
1677
1678static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1679{
1680    VirtMachineState *vms = VIRT_MACHINE(obj);
1681
1682    if (!strcmp(value, "smmuv3")) {
1683        vms->iommu = VIRT_IOMMU_SMMUV3;
1684    } else if (!strcmp(value, "none")) {
1685        vms->iommu = VIRT_IOMMU_NONE;
1686    } else {
1687        error_setg(errp, "Invalid iommu value");
1688        error_append_hint(errp, "Valid values are none, smmuv3.\n");
1689    }
1690}
1691
1692static CpuInstanceProperties
1693virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1694{
1695    MachineClass *mc = MACHINE_GET_CLASS(ms);
1696    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1697
1698    assert(cpu_index < possible_cpus->len);
1699    return possible_cpus->cpus[cpu_index].props;
1700}
1701
1702static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1703{
1704    return idx % nb_numa_nodes;
1705}
1706
1707static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1708{
1709    int n;
1710    VirtMachineState *vms = VIRT_MACHINE(ms);
1711
1712    if (ms->possible_cpus) {
1713        assert(ms->possible_cpus->len == max_cpus);
1714        return ms->possible_cpus;
1715    }
1716
1717    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1718                                  sizeof(CPUArchId) * max_cpus);
1719    ms->possible_cpus->len = max_cpus;
1720    for (n = 0; n < ms->possible_cpus->len; n++) {
1721        ms->possible_cpus->cpus[n].type = ms->cpu_type;
1722        ms->possible_cpus->cpus[n].arch_id =
1723            virt_cpu_mp_affinity(vms, n);
1724        ms->possible_cpus->cpus[n].props.has_thread_id = true;
1725        ms->possible_cpus->cpus[n].props.thread_id = n;
1726    }
1727    return ms->possible_cpus;
1728}
1729
1730static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1731                                        DeviceState *dev, Error **errp)
1732{
1733    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1734
1735    if (vms->platform_bus_dev) {
1736        if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1737            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1738                                     SYS_BUS_DEVICE(dev));
1739        }
1740    }
1741}
1742
1743static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1744                                                        DeviceState *dev)
1745{
1746    if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1747        return HOTPLUG_HANDLER(machine);
1748    }
1749
1750    return NULL;
1751}
1752
1753static void virt_machine_class_init(ObjectClass *oc, void *data)
1754{
1755    MachineClass *mc = MACHINE_CLASS(oc);
1756    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1757
1758    mc->init = machvirt_init;
1759    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1760     * The value may be reduced later when we have more information about the
1761     * configuration of the particular instance.
1762     */
1763    mc->max_cpus = 512;
1764    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1765    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1766    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1767    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1768    mc->block_default_type = IF_VIRTIO;
1769    mc->no_cdrom = 1;
1770    mc->pci_allow_0_address = true;
1771    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1772    mc->minimum_page_bits = 12;
1773    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1774    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1775    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1776    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1777    assert(!mc->get_hotplug_handler);
1778    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1779    hc->plug = virt_machine_device_plug_cb;
1780}
1781
1782static const TypeInfo virt_machine_info = {
1783    .name          = TYPE_VIRT_MACHINE,
1784    .parent        = TYPE_MACHINE,
1785    .abstract      = true,
1786    .instance_size = sizeof(VirtMachineState),
1787    .class_size    = sizeof(VirtMachineClass),
1788    .class_init    = virt_machine_class_init,
1789    .interfaces = (InterfaceInfo[]) {
1790         { TYPE_HOTPLUG_HANDLER },
1791         { }
1792    },
1793};
1794
1795static void machvirt_machine_init(void)
1796{
1797    type_register_static(&virt_machine_info);
1798}
1799type_init(machvirt_machine_init);
1800
1801static void virt_3_1_instance_init(Object *obj)
1802{
1803    VirtMachineState *vms = VIRT_MACHINE(obj);
1804    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1805
1806    /* EL3 is disabled by default on virt: this makes us consistent
1807     * between KVM and TCG for this board, and it also allows us to
1808     * boot UEFI blobs which assume no TrustZone support.
1809     */
1810    vms->secure = false;
1811    object_property_add_bool(obj, "secure", virt_get_secure,
1812                             virt_set_secure, NULL);
1813    object_property_set_description(obj, "secure",
1814                                    "Set on/off to enable/disable the ARM "
1815                                    "Security Extensions (TrustZone)",
1816                                    NULL);
1817
1818    /* EL2 is also disabled by default, for similar reasons */
1819    vms->virt = false;
1820    object_property_add_bool(obj, "virtualization", virt_get_virt,
1821                             virt_set_virt, NULL);
1822    object_property_set_description(obj, "virtualization",
1823                                    "Set on/off to enable/disable emulating a "
1824                                    "guest CPU which implements the ARM "
1825                                    "Virtualization Extensions",
1826                                    NULL);
1827
1828    /* High memory is enabled by default */
1829    vms->highmem = true;
1830    object_property_add_bool(obj, "highmem", virt_get_highmem,
1831                             virt_set_highmem, NULL);
1832    object_property_set_description(obj, "highmem",
1833                                    "Set on/off to enable/disable using "
1834                                    "physical address space above 32 bits",
1835                                    NULL);
1836    /* Default GIC type is v2 */
1837    vms->gic_version = 2;
1838    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1839                        virt_set_gic_version, NULL);
1840    object_property_set_description(obj, "gic-version",
1841                                    "Set GIC version. "
1842                                    "Valid values are 2, 3 and host", NULL);
1843
1844    vms->highmem_ecam = !vmc->no_highmem_ecam;
1845
1846    if (vmc->no_its) {
1847        vms->its = false;
1848    } else {
1849        /* Default allows ITS instantiation */
1850        vms->its = true;
1851        object_property_add_bool(obj, "its", virt_get_its,
1852                                 virt_set_its, NULL);
1853        object_property_set_description(obj, "its",
1854                                        "Set on/off to enable/disable "
1855                                        "ITS instantiation",
1856                                        NULL);
1857    }
1858
1859    /* Default disallows iommu instantiation */
1860    vms->iommu = VIRT_IOMMU_NONE;
1861    object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1862    object_property_set_description(obj, "iommu",
1863                                    "Set the IOMMU type. "
1864                                    "Valid values are none and smmuv3",
1865                                    NULL);
1866
1867    vms->memmap = a15memmap;
1868    vms->irqmap = a15irqmap;
1869}
1870
1871static void virt_machine_3_1_options(MachineClass *mc)
1872{
1873}
1874DEFINE_VIRT_MACHINE_AS_LATEST(3, 1)
1875
1876#define VIRT_COMPAT_3_0 \
1877    HW_COMPAT_3_0
1878
1879static void virt_3_0_instance_init(Object *obj)
1880{
1881    virt_3_1_instance_init(obj);
1882}
1883
1884static void virt_machine_3_0_options(MachineClass *mc)
1885{
1886    virt_machine_3_1_options(mc);
1887    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_3_0);
1888}
1889DEFINE_VIRT_MACHINE(3, 0)
1890
1891#define VIRT_COMPAT_2_12 \
1892    HW_COMPAT_2_12
1893
1894static void virt_2_12_instance_init(Object *obj)
1895{
1896    virt_3_0_instance_init(obj);
1897}
1898
1899static void virt_machine_2_12_options(MachineClass *mc)
1900{
1901    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1902
1903    virt_machine_3_0_options(mc);
1904    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
1905    vmc->no_highmem_ecam = true;
1906    mc->max_cpus = 255;
1907}
1908DEFINE_VIRT_MACHINE(2, 12)
1909
1910#define VIRT_COMPAT_2_11 \
1911    HW_COMPAT_2_11
1912
1913static void virt_2_11_instance_init(Object *obj)
1914{
1915    virt_2_12_instance_init(obj);
1916}
1917
1918static void virt_machine_2_11_options(MachineClass *mc)
1919{
1920    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1921
1922    virt_machine_2_12_options(mc);
1923    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
1924    vmc->smbios_old_sys_ver = true;
1925}
1926DEFINE_VIRT_MACHINE(2, 11)
1927
1928#define VIRT_COMPAT_2_10 \
1929    HW_COMPAT_2_10
1930
1931static void virt_2_10_instance_init(Object *obj)
1932{
1933    virt_2_11_instance_init(obj);
1934}
1935
1936static void virt_machine_2_10_options(MachineClass *mc)
1937{
1938    virt_machine_2_11_options(mc);
1939    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
1940    /* before 2.11 we never faulted accesses to bad addresses */
1941    mc->ignore_memory_transaction_failures = true;
1942}
1943DEFINE_VIRT_MACHINE(2, 10)
1944
1945#define VIRT_COMPAT_2_9 \
1946    HW_COMPAT_2_9
1947
1948static void virt_2_9_instance_init(Object *obj)
1949{
1950    virt_2_10_instance_init(obj);
1951}
1952
1953static void virt_machine_2_9_options(MachineClass *mc)
1954{
1955    virt_machine_2_10_options(mc);
1956    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
1957}
1958DEFINE_VIRT_MACHINE(2, 9)
1959
1960#define VIRT_COMPAT_2_8 \
1961    HW_COMPAT_2_8
1962
1963static void virt_2_8_instance_init(Object *obj)
1964{
1965    virt_2_9_instance_init(obj);
1966}
1967
1968static void virt_machine_2_8_options(MachineClass *mc)
1969{
1970    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1971
1972    virt_machine_2_9_options(mc);
1973    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1974    /* For 2.8 and earlier we falsely claimed in the DT that
1975     * our timers were edge-triggered, not level-triggered.
1976     */
1977    vmc->claim_edge_triggered_timers = true;
1978}
1979DEFINE_VIRT_MACHINE(2, 8)
1980
1981#define VIRT_COMPAT_2_7 \
1982    HW_COMPAT_2_7
1983
1984static void virt_2_7_instance_init(Object *obj)
1985{
1986    virt_2_8_instance_init(obj);
1987}
1988
1989static void virt_machine_2_7_options(MachineClass *mc)
1990{
1991    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1992
1993    virt_machine_2_8_options(mc);
1994    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1995    /* ITS was introduced with 2.8 */
1996    vmc->no_its = true;
1997    /* Stick with 1K pages for migration compatibility */
1998    mc->minimum_page_bits = 0;
1999}
2000DEFINE_VIRT_MACHINE(2, 7)
2001
2002#define VIRT_COMPAT_2_6 \
2003    HW_COMPAT_2_6
2004
2005static void virt_2_6_instance_init(Object *obj)
2006{
2007    virt_2_7_instance_init(obj);
2008}
2009
2010static void virt_machine_2_6_options(MachineClass *mc)
2011{
2012    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2013
2014    virt_machine_2_7_options(mc);
2015    SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
2016    vmc->disallow_affinity_adjustment = true;
2017    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2018    vmc->no_pmu = true;
2019}
2020DEFINE_VIRT_MACHINE(2, 6)
2021