qemu/hw/block/nand.c
<<
>>
Prefs
   1/*
   2 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
   3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
   4 * Samsung Electronic.
   5 *
   6 * Copyright (c) 2006 Openedhand Ltd.
   7 * Written by Andrzej Zaborowski <balrog@zabor.org>
   8 *
   9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11 * from ST Microelectronics.
  12 *
  13 * This code is licensed under the GNU GPL v2.
  14 *
  15 * Contributions after 2012-01-13 are licensed under the terms of the
  16 * GNU GPL, version 2 or (at your option) any later version.
  17 */
  18
  19#ifndef NAND_IO
  20
  21#include "qemu/osdep.h"
  22#include "hw/hw.h"
  23#include "hw/block/flash.h"
  24#include "sysemu/block-backend.h"
  25#include "hw/qdev.h"
  26#include "qapi/error.h"
  27#include "qemu/error-report.h"
  28
  29# define NAND_CMD_READ0         0x00
  30# define NAND_CMD_READ1         0x01
  31# define NAND_CMD_READ2         0x50
  32# define NAND_CMD_LPREAD2       0x30
  33# define NAND_CMD_NOSERIALREAD2 0x35
  34# define NAND_CMD_RANDOMREAD1   0x05
  35# define NAND_CMD_RANDOMREAD2   0xe0
  36# define NAND_CMD_READID        0x90
  37# define NAND_CMD_RESET         0xff
  38# define NAND_CMD_PAGEPROGRAM1  0x80
  39# define NAND_CMD_PAGEPROGRAM2  0x10
  40# define NAND_CMD_CACHEPROGRAM2 0x15
  41# define NAND_CMD_BLOCKERASE1   0x60
  42# define NAND_CMD_BLOCKERASE2   0xd0
  43# define NAND_CMD_READSTATUS    0x70
  44# define NAND_CMD_COPYBACKPRG1  0x85
  45
  46# define NAND_IOSTATUS_ERROR    (1 << 0)
  47# define NAND_IOSTATUS_PLANE0   (1 << 1)
  48# define NAND_IOSTATUS_PLANE1   (1 << 2)
  49# define NAND_IOSTATUS_PLANE2   (1 << 3)
  50# define NAND_IOSTATUS_PLANE3   (1 << 4)
  51# define NAND_IOSTATUS_READY    (1 << 6)
  52# define NAND_IOSTATUS_UNPROTCT (1 << 7)
  53
  54# define MAX_PAGE               0x800
  55# define MAX_OOB                0x40
  56
  57typedef struct NANDFlashState NANDFlashState;
  58struct NANDFlashState {
  59    DeviceState parent_obj;
  60
  61    uint8_t manf_id, chip_id;
  62    uint8_t buswidth; /* in BYTES */
  63    int size, pages;
  64    int page_shift, oob_shift, erase_shift, addr_shift;
  65    uint8_t *storage;
  66    BlockBackend *blk;
  67    int mem_oob;
  68
  69    uint8_t cle, ale, ce, wp, gnd;
  70
  71    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  72    uint8_t *ioaddr;
  73    int iolen;
  74
  75    uint32_t cmd;
  76    uint64_t addr;
  77    int addrlen;
  78    int status;
  79    int offset;
  80
  81    void (*blk_write)(NANDFlashState *s);
  82    void (*blk_erase)(NANDFlashState *s);
  83    void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  84
  85    uint32_t ioaddr_vmstate;
  86};
  87
  88#define TYPE_NAND "nand"
  89
  90#define NAND(obj) \
  91    OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
  92
  93static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  94{
  95    /* Like memcpy() but we logical-AND the data into the destination */
  96    int i;
  97    for (i = 0; i < n; i++) {
  98        dest[i] &= src[i];
  99    }
 100}
 101
 102# define NAND_NO_AUTOINCR       0x00000001
 103# define NAND_BUSWIDTH_16       0x00000002
 104# define NAND_NO_PADDING        0x00000004
 105# define NAND_CACHEPRG          0x00000008
 106# define NAND_COPYBACK          0x00000010
 107# define NAND_IS_AND            0x00000020
 108# define NAND_4PAGE_ARRAY       0x00000040
 109# define NAND_NO_READRDY        0x00000100
 110# define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
 111
 112# define NAND_IO
 113
 114# define PAGE(addr)             ((addr) >> ADDR_SHIFT)
 115# define PAGE_START(page)       (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
 116# define PAGE_MASK              ((1 << ADDR_SHIFT) - 1)
 117# define OOB_SHIFT              (PAGE_SHIFT - 5)
 118# define OOB_SIZE               (1 << OOB_SHIFT)
 119# define SECTOR(addr)           ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
 120# define SECTOR_OFFSET(addr)    ((addr) & ((511 >> PAGE_SHIFT) << 8))
 121
 122# define PAGE_SIZE              256
 123# define PAGE_SHIFT             8
 124# define PAGE_SECTORS           1
 125# define ADDR_SHIFT             8
 126# include "nand.c"
 127# define PAGE_SIZE              512
 128# define PAGE_SHIFT             9
 129# define PAGE_SECTORS           1
 130# define ADDR_SHIFT             8
 131# include "nand.c"
 132# define PAGE_SIZE              2048
 133# define PAGE_SHIFT             11
 134# define PAGE_SECTORS           4
 135# define ADDR_SHIFT             16
 136# include "nand.c"
 137
 138/* Information based on Linux drivers/mtd/nand/nand_ids.c */
 139static const struct {
 140    int size;
 141    int width;
 142    int page_shift;
 143    int erase_shift;
 144    uint32_t options;
 145} nand_flash_ids[0x100] = {
 146    [0 ... 0xff] = { 0 },
 147
 148    [0x6e] = { 1,       8,      8, 4, 0 },
 149    [0x64] = { 2,       8,      8, 4, 0 },
 150    [0x6b] = { 4,       8,      9, 4, 0 },
 151    [0xe8] = { 1,       8,      8, 4, 0 },
 152    [0xec] = { 1,       8,      8, 4, 0 },
 153    [0xea] = { 2,       8,      8, 4, 0 },
 154    [0xd5] = { 4,       8,      9, 4, 0 },
 155    [0xe3] = { 4,       8,      9, 4, 0 },
 156    [0xe5] = { 4,       8,      9, 4, 0 },
 157    [0xd6] = { 8,       8,      9, 4, 0 },
 158
 159    [0x39] = { 8,       8,      9, 4, 0 },
 160    [0xe6] = { 8,       8,      9, 4, 0 },
 161    [0x49] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 162    [0x59] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 163
 164    [0x33] = { 16,      8,      9, 5, 0 },
 165    [0x73] = { 16,      8,      9, 5, 0 },
 166    [0x43] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 167    [0x53] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 168
 169    [0x35] = { 32,      8,      9, 5, 0 },
 170    [0x75] = { 32,      8,      9, 5, 0 },
 171    [0x45] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 172    [0x55] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 173
 174    [0x36] = { 64,      8,      9, 5, 0 },
 175    [0x76] = { 64,      8,      9, 5, 0 },
 176    [0x46] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 177    [0x56] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 178
 179    [0x78] = { 128,     8,      9, 5, 0 },
 180    [0x39] = { 128,     8,      9, 5, 0 },
 181    [0x79] = { 128,     8,      9, 5, 0 },
 182    [0x72] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 183    [0x49] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 184    [0x74] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 185    [0x59] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 186
 187    [0x71] = { 256,     8,      9, 5, 0 },
 188
 189    /*
 190     * These are the new chips with large page size. The pagesize and the
 191     * erasesize is determined from the extended id bytes
 192     */
 193# define LP_OPTIONS     (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
 194# define LP_OPTIONS16   (LP_OPTIONS | NAND_BUSWIDTH_16)
 195
 196    /* 512 Megabit */
 197    [0xa2] = { 64,      8,      0, 0, LP_OPTIONS },
 198    [0xf2] = { 64,      8,      0, 0, LP_OPTIONS },
 199    [0xb2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 200    [0xc2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 201
 202    /* 1 Gigabit */
 203    [0xa1] = { 128,     8,      0, 0, LP_OPTIONS },
 204    [0xf1] = { 128,     8,      0, 0, LP_OPTIONS },
 205    [0xb1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 206    [0xc1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 207
 208    /* 2 Gigabit */
 209    [0xaa] = { 256,     8,      0, 0, LP_OPTIONS },
 210    [0xda] = { 256,     8,      0, 0, LP_OPTIONS },
 211    [0xba] = { 256,     16,     0, 0, LP_OPTIONS16 },
 212    [0xca] = { 256,     16,     0, 0, LP_OPTIONS16 },
 213
 214    /* 4 Gigabit */
 215    [0xac] = { 512,     8,      0, 0, LP_OPTIONS },
 216    [0xdc] = { 512,     8,      0, 0, LP_OPTIONS },
 217    [0xbc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 218    [0xcc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 219
 220    /* 8 Gigabit */
 221    [0xa3] = { 1024,    8,      0, 0, LP_OPTIONS },
 222    [0xd3] = { 1024,    8,      0, 0, LP_OPTIONS },
 223    [0xb3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 224    [0xc3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 225
 226    /* 16 Gigabit */
 227    [0xa5] = { 2048,    8,      0, 0, LP_OPTIONS },
 228    [0xd5] = { 2048,    8,      0, 0, LP_OPTIONS },
 229    [0xb5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 230    [0xc5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 231};
 232
 233static void nand_reset(DeviceState *dev)
 234{
 235    NANDFlashState *s = NAND(dev);
 236    s->cmd = NAND_CMD_READ0;
 237    s->addr = 0;
 238    s->addrlen = 0;
 239    s->iolen = 0;
 240    s->offset = 0;
 241    s->status &= NAND_IOSTATUS_UNPROTCT;
 242    s->status |= NAND_IOSTATUS_READY;
 243}
 244
 245static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
 246{
 247    s->ioaddr[s->iolen++] = value;
 248    for (value = s->buswidth; --value;) {
 249        s->ioaddr[s->iolen++] = 0;
 250    }
 251}
 252
 253static void nand_command(NANDFlashState *s)
 254{
 255    unsigned int offset;
 256    switch (s->cmd) {
 257    case NAND_CMD_READ0:
 258        s->iolen = 0;
 259        break;
 260
 261    case NAND_CMD_READID:
 262        s->ioaddr = s->io;
 263        s->iolen = 0;
 264        nand_pushio_byte(s, s->manf_id);
 265        nand_pushio_byte(s, s->chip_id);
 266        nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
 267        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 268            /* Page Size, Block Size, Spare Size; bit 6 indicates
 269             * 8 vs 16 bit width NAND.
 270             */
 271            nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
 272        } else {
 273            nand_pushio_byte(s, 0xc0); /* Multi-plane */
 274        }
 275        break;
 276
 277    case NAND_CMD_RANDOMREAD2:
 278    case NAND_CMD_NOSERIALREAD2:
 279        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
 280            break;
 281        offset = s->addr & ((1 << s->addr_shift) - 1);
 282        s->blk_load(s, s->addr, offset);
 283        if (s->gnd)
 284            s->iolen = (1 << s->page_shift) - offset;
 285        else
 286            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 287        break;
 288
 289    case NAND_CMD_RESET:
 290        nand_reset(DEVICE(s));
 291        break;
 292
 293    case NAND_CMD_PAGEPROGRAM1:
 294        s->ioaddr = s->io;
 295        s->iolen = 0;
 296        break;
 297
 298    case NAND_CMD_PAGEPROGRAM2:
 299        if (s->wp) {
 300            s->blk_write(s);
 301        }
 302        break;
 303
 304    case NAND_CMD_BLOCKERASE1:
 305        break;
 306
 307    case NAND_CMD_BLOCKERASE2:
 308        s->addr &= (1ull << s->addrlen * 8) - 1;
 309        s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
 310                                                                    16 : 8;
 311
 312        if (s->wp) {
 313            s->blk_erase(s);
 314        }
 315        break;
 316
 317    case NAND_CMD_READSTATUS:
 318        s->ioaddr = s->io;
 319        s->iolen = 0;
 320        nand_pushio_byte(s, s->status);
 321        break;
 322
 323    default:
 324        printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
 325    }
 326}
 327
 328static int nand_pre_save(void *opaque)
 329{
 330    NANDFlashState *s = NAND(opaque);
 331
 332    s->ioaddr_vmstate = s->ioaddr - s->io;
 333
 334    return 0;
 335}
 336
 337static int nand_post_load(void *opaque, int version_id)
 338{
 339    NANDFlashState *s = NAND(opaque);
 340
 341    if (s->ioaddr_vmstate > sizeof(s->io)) {
 342        return -EINVAL;
 343    }
 344    s->ioaddr = s->io + s->ioaddr_vmstate;
 345
 346    return 0;
 347}
 348
 349static const VMStateDescription vmstate_nand = {
 350    .name = "nand",
 351    .version_id = 1,
 352    .minimum_version_id = 1,
 353    .pre_save = nand_pre_save,
 354    .post_load = nand_post_load,
 355    .fields = (VMStateField[]) {
 356        VMSTATE_UINT8(cle, NANDFlashState),
 357        VMSTATE_UINT8(ale, NANDFlashState),
 358        VMSTATE_UINT8(ce, NANDFlashState),
 359        VMSTATE_UINT8(wp, NANDFlashState),
 360        VMSTATE_UINT8(gnd, NANDFlashState),
 361        VMSTATE_BUFFER(io, NANDFlashState),
 362        VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
 363        VMSTATE_INT32(iolen, NANDFlashState),
 364        VMSTATE_UINT32(cmd, NANDFlashState),
 365        VMSTATE_UINT64(addr, NANDFlashState),
 366        VMSTATE_INT32(addrlen, NANDFlashState),
 367        VMSTATE_INT32(status, NANDFlashState),
 368        VMSTATE_INT32(offset, NANDFlashState),
 369        /* XXX: do we want to save s->storage too? */
 370        VMSTATE_END_OF_LIST()
 371    }
 372};
 373
 374static void nand_realize(DeviceState *dev, Error **errp)
 375{
 376    int pagesize;
 377    NANDFlashState *s = NAND(dev);
 378    int ret;
 379
 380
 381    s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
 382    s->size = nand_flash_ids[s->chip_id].size << 20;
 383    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 384        s->page_shift = 11;
 385        s->erase_shift = 6;
 386    } else {
 387        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
 388        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
 389    }
 390
 391    switch (1 << s->page_shift) {
 392    case 256:
 393        nand_init_256(s);
 394        break;
 395    case 512:
 396        nand_init_512(s);
 397        break;
 398    case 2048:
 399        nand_init_2048(s);
 400        break;
 401    default:
 402        error_setg(errp, "Unsupported NAND block size %#x",
 403                   1 << s->page_shift);
 404        return;
 405    }
 406
 407    pagesize = 1 << s->oob_shift;
 408    s->mem_oob = 1;
 409    if (s->blk) {
 410        if (blk_is_read_only(s->blk)) {
 411            error_setg(errp, "Can't use a read-only drive");
 412            return;
 413        }
 414        ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
 415                           BLK_PERM_ALL, errp);
 416        if (ret < 0) {
 417            return;
 418        }
 419        if (blk_getlength(s->blk) >=
 420                (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
 421            pagesize = 0;
 422            s->mem_oob = 0;
 423        }
 424    } else {
 425        pagesize += 1 << s->page_shift;
 426    }
 427    if (pagesize) {
 428        s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
 429                        0xff, s->pages * pagesize);
 430    }
 431    /* Give s->ioaddr a sane value in case we save state before it is used. */
 432    s->ioaddr = s->io;
 433}
 434
 435static Property nand_properties[] = {
 436    DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
 437    DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
 438    DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
 439    DEFINE_PROP_END_OF_LIST(),
 440};
 441
 442static void nand_class_init(ObjectClass *klass, void *data)
 443{
 444    DeviceClass *dc = DEVICE_CLASS(klass);
 445
 446    dc->realize = nand_realize;
 447    dc->reset = nand_reset;
 448    dc->vmsd = &vmstate_nand;
 449    dc->props = nand_properties;
 450}
 451
 452static const TypeInfo nand_info = {
 453    .name          = TYPE_NAND,
 454    .parent        = TYPE_DEVICE,
 455    .instance_size = sizeof(NANDFlashState),
 456    .class_init    = nand_class_init,
 457};
 458
 459static void nand_register_types(void)
 460{
 461    type_register_static(&nand_info);
 462}
 463
 464/*
 465 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
 466 * outputs are R/B and eight I/O pins.
 467 *
 468 * CE, WP and R/B are active low.
 469 */
 470void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
 471                  uint8_t ce, uint8_t wp, uint8_t gnd)
 472{
 473    NANDFlashState *s = NAND(dev);
 474
 475    s->cle = cle;
 476    s->ale = ale;
 477    s->ce = ce;
 478    s->wp = wp;
 479    s->gnd = gnd;
 480    if (wp) {
 481        s->status |= NAND_IOSTATUS_UNPROTCT;
 482    } else {
 483        s->status &= ~NAND_IOSTATUS_UNPROTCT;
 484    }
 485}
 486
 487void nand_getpins(DeviceState *dev, int *rb)
 488{
 489    *rb = 1;
 490}
 491
 492void nand_setio(DeviceState *dev, uint32_t value)
 493{
 494    int i;
 495    NANDFlashState *s = NAND(dev);
 496
 497    if (!s->ce && s->cle) {
 498        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 499            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
 500                return;
 501            if (value == NAND_CMD_RANDOMREAD1) {
 502                s->addr &= ~((1 << s->addr_shift) - 1);
 503                s->addrlen = 0;
 504                return;
 505            }
 506        }
 507        if (value == NAND_CMD_READ0) {
 508            s->offset = 0;
 509        } else if (value == NAND_CMD_READ1) {
 510            s->offset = 0x100;
 511            value = NAND_CMD_READ0;
 512        } else if (value == NAND_CMD_READ2) {
 513            s->offset = 1 << s->page_shift;
 514            value = NAND_CMD_READ0;
 515        }
 516
 517        s->cmd = value;
 518
 519        if (s->cmd == NAND_CMD_READSTATUS ||
 520                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
 521                s->cmd == NAND_CMD_BLOCKERASE1 ||
 522                s->cmd == NAND_CMD_BLOCKERASE2 ||
 523                s->cmd == NAND_CMD_NOSERIALREAD2 ||
 524                s->cmd == NAND_CMD_RANDOMREAD2 ||
 525                s->cmd == NAND_CMD_RESET) {
 526            nand_command(s);
 527        }
 528
 529        if (s->cmd != NAND_CMD_RANDOMREAD2) {
 530            s->addrlen = 0;
 531        }
 532    }
 533
 534    if (s->ale) {
 535        unsigned int shift = s->addrlen * 8;
 536        uint64_t mask = ~(0xffull << shift);
 537        uint64_t v = (uint64_t)value << shift;
 538
 539        s->addr = (s->addr & mask) | v;
 540        s->addrlen ++;
 541
 542        switch (s->addrlen) {
 543        case 1:
 544            if (s->cmd == NAND_CMD_READID) {
 545                nand_command(s);
 546            }
 547            break;
 548        case 2: /* fix cache address as a byte address */
 549            s->addr <<= (s->buswidth - 1);
 550            break;
 551        case 3:
 552            if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 553                    (s->cmd == NAND_CMD_READ0 ||
 554                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 555                nand_command(s);
 556            }
 557            break;
 558        case 4:
 559            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 560                    nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
 561                    (s->cmd == NAND_CMD_READ0 ||
 562                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 563                nand_command(s);
 564            }
 565            break;
 566        case 5:
 567            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 568                    nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
 569                    (s->cmd == NAND_CMD_READ0 ||
 570                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 571                nand_command(s);
 572            }
 573            break;
 574        default:
 575            break;
 576        }
 577    }
 578
 579    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
 580        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
 581            for (i = s->buswidth; i--; value >>= 8) {
 582                s->io[s->iolen ++] = (uint8_t) (value & 0xff);
 583            }
 584        }
 585    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
 586        if ((s->addr & ((1 << s->addr_shift) - 1)) <
 587                (1 << s->page_shift) + (1 << s->oob_shift)) {
 588            for (i = s->buswidth; i--; s->addr++, value >>= 8) {
 589                s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
 590                    (uint8_t) (value & 0xff);
 591            }
 592        }
 593    }
 594}
 595
 596uint32_t nand_getio(DeviceState *dev)
 597{
 598    int offset;
 599    uint32_t x = 0;
 600    NANDFlashState *s = NAND(dev);
 601
 602    /* Allow sequential reading */
 603    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
 604        offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
 605        s->offset = 0;
 606
 607        s->blk_load(s, s->addr, offset);
 608        if (s->gnd)
 609            s->iolen = (1 << s->page_shift) - offset;
 610        else
 611            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 612    }
 613
 614    if (s->ce || s->iolen <= 0) {
 615        return 0;
 616    }
 617
 618    for (offset = s->buswidth; offset--;) {
 619        x |= s->ioaddr[offset] << (offset << 3);
 620    }
 621    /* after receiving READ STATUS command all subsequent reads will
 622     * return the status register value until another command is issued
 623     */
 624    if (s->cmd != NAND_CMD_READSTATUS) {
 625        s->addr   += s->buswidth;
 626        s->ioaddr += s->buswidth;
 627        s->iolen  -= s->buswidth;
 628    }
 629    return x;
 630}
 631
 632uint32_t nand_getbuswidth(DeviceState *dev)
 633{
 634    NANDFlashState *s = (NANDFlashState *) dev;
 635    return s->buswidth << 3;
 636}
 637
 638DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
 639{
 640    DeviceState *dev;
 641
 642    if (nand_flash_ids[chip_id].size == 0) {
 643        hw_error("%s: Unsupported NAND chip ID.\n", __func__);
 644    }
 645    dev = DEVICE(object_new(TYPE_NAND));
 646    qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
 647    qdev_prop_set_uint8(dev, "chip_id", chip_id);
 648    if (blk) {
 649        qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
 650    }
 651
 652    qdev_init_nofail(dev);
 653    return dev;
 654}
 655
 656type_init(nand_register_types)
 657
 658#else
 659
 660/* Program a single page */
 661static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
 662{
 663    uint64_t off, page, sector, soff;
 664    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
 665    if (PAGE(s->addr) >= s->pages)
 666        return;
 667
 668    if (!s->blk) {
 669        mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
 670                        s->offset, s->io, s->iolen);
 671    } else if (s->mem_oob) {
 672        sector = SECTOR(s->addr);
 673        off = (s->addr & PAGE_MASK) + s->offset;
 674        soff = SECTOR_OFFSET(s->addr);
 675        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 676                      PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 677            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 678            return;
 679        }
 680
 681        mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
 682        if (off + s->iolen > PAGE_SIZE) {
 683            page = PAGE(s->addr);
 684            mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
 685                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
 686        }
 687
 688        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 689                       PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
 690            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 691        }
 692    } else {
 693        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
 694        sector = off >> 9;
 695        soff = off & 0x1ff;
 696        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 697                      (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 698            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 699            return;
 700        }
 701
 702        mem_and(iobuf + soff, s->io, s->iolen);
 703
 704        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 705                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
 706            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 707        }
 708    }
 709    s->offset = 0;
 710}
 711
 712/* Erase a single block */
 713static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
 714{
 715    uint64_t i, page, addr;
 716    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
 717    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
 718
 719    if (PAGE(addr) >= s->pages) {
 720        return;
 721    }
 722
 723    if (!s->blk) {
 724        memset(s->storage + PAGE_START(addr),
 725                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
 726    } else if (s->mem_oob) {
 727        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
 728                        0xff, OOB_SIZE << s->erase_shift);
 729        i = SECTOR(addr);
 730        page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
 731        for (; i < page; i ++)
 732            if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
 733                           BDRV_SECTOR_SIZE, 0) < 0) {
 734                printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
 735            }
 736    } else {
 737        addr = PAGE_START(addr);
 738        page = addr >> 9;
 739        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 740                      BDRV_SECTOR_SIZE) < 0) {
 741            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 742        }
 743        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
 744        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 745                       BDRV_SECTOR_SIZE, 0) < 0) {
 746            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 747        }
 748
 749        memset(iobuf, 0xff, 0x200);
 750        i = (addr & ~0x1ff) + 0x200;
 751        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
 752                        i < addr; i += 0x200) {
 753            if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
 754                printf("%s: write error in sector %" PRIu64 "\n",
 755                       __func__, i >> 9);
 756            }
 757        }
 758
 759        page = i >> 9;
 760        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 761                      BDRV_SECTOR_SIZE) < 0) {
 762            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 763        }
 764        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
 765        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 766                       BDRV_SECTOR_SIZE, 0) < 0) {
 767            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 768        }
 769    }
 770}
 771
 772static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
 773                uint64_t addr, int offset)
 774{
 775    if (PAGE(addr) >= s->pages) {
 776        return;
 777    }
 778
 779    if (s->blk) {
 780        if (s->mem_oob) {
 781            if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
 782                          PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 783                printf("%s: read error in sector %" PRIu64 "\n",
 784                                __func__, SECTOR(addr));
 785            }
 786            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
 787                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
 788                            OOB_SIZE);
 789            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
 790        } else {
 791            if (blk_pread(s->blk, PAGE_START(addr), s->io,
 792                          (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 793                printf("%s: read error in sector %" PRIu64 "\n",
 794                                __func__, PAGE_START(addr) >> 9);
 795            }
 796            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
 797        }
 798    } else {
 799        memcpy(s->io, s->storage + PAGE_START(s->addr) +
 800                        offset, PAGE_SIZE + OOB_SIZE - offset);
 801        s->ioaddr = s->io;
 802    }
 803}
 804
 805static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
 806{
 807    s->oob_shift = PAGE_SHIFT - 5;
 808    s->pages = s->size >> PAGE_SHIFT;
 809    s->addr_shift = ADDR_SHIFT;
 810
 811    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
 812    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
 813    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
 814}
 815
 816# undef PAGE_SIZE
 817# undef PAGE_SHIFT
 818# undef PAGE_SECTORS
 819# undef ADDR_SHIFT
 820#endif  /* NAND_IO */
 821